硼氢化钙基储氢材料的吸放氢性能及其储氢机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益严峻的能源危机和环境污染的双重压力,开发一种新的可再生清洁能源迫在眉睫。氢储量丰富,具有最高的单位质量能量密度,燃烧产物只有水,是一种优异的能源载体。目前,安全、高效和可逆的氢气存储是氢能大规模应用面临的主要挑战。固态化学物储氢技术由于相对安全的化学结构和高的储氢容量备受关注。其中,轻金属硼氢化物Ca(BH4)2具有11.4wt%的储氢容量及合适的热力学性能,是一种极具潜力的储氢材料。但由于动力学能垒的存在,导致了较高的放氢操作温度和苛刻的再氢化条件,限制了其实用化。为了阐明Ca(BH4)2的储氢机理并进一步改善Ca(BH4)2的储氢性能,本文在详细分析Ca(BH4)2研究进展的基础上,从高纯Ca(BH4)2的高效、低成本制备;球磨对Ca(BH4)2晶体结构和形貌的影响及其对Ca(BH4)2放氢温度、动力学性能的影响;Ti(OEt)4诱导原位TiO2催化和多孔形貌对Ca(BH4)2储氢性能改善的协同作用;多元复合体系Ca(BH4)2+2LiBH4+2MgH2中各相对体系储氢性能的协同作用;及利用LaMg3合金原位引入LaH3和MgH2对Ca(BH4)2+LiBH4复合体系吸放氢性能影响等方面进行了系统研究。
     研究了通过CaB6和CaH2在氢压下固态球磨和采用NaBH4、CaCl2和THF进行液相球磨制备Ca(BH4)2的方法。研究发现,直接在THF中液相球磨NaBH4和CaCl2,能够高产率地合成前驱体Ca(BH4)2·2THF,进而热处理获得具有混合相(含α、β和γ)的高纯Ca(BH4)2。球磨Ca(BH4)2·2THF促进γ-Ca(BH4)2的生成,通过球磨前驱体的方法成功制备了Ca(BH4)2的γ相。发现了Ca(BH4)2的放氢温度、动力学性能与其晶体结构、晶粒和颗粒尺寸及形貌密切相关。多孔γ-Ca(BH4)2比致密结构的α和β相Ca(BH4)2具有更好的放氢动力学性能;较短时间球磨Ca(BH4)2使其晶粒尺寸和颗粒尺寸减小,有效降低了其放氢温度,而较长时间球磨会导致颗粒团聚,削弱了球磨对Ca(BH4)2储氢性能的改善作用。球磨Ca(BH4)2的活化能明显降低,其具有更好的放氢动力学性能。Ca(BH4)2的放氢反应是一个扩散控制的过程,球磨并不会使其放氢动力学机制发生改变,但会明显提升产物的形核速率,加快反应进程,因而明显提升了球磨材料的放氢速率。
     在Ca(BH4)2中球磨引入液态金属有机化合物Ti(OEt)4并结合热处理,首次制备了纳米TiO2相原位引入的多孔CaB2H7体系,即CaB2H7-0.1TiO2。发现了TiO2的催化作用并揭示了其作用机理。该多孔体系的峰值放氢温度较单一Ca(BH4)2和文献已报道最好的催化体系(NbF5)分别降低了50和30℃,在低于300℃下能够快速释放约5wt%的氢气;放氢产物部分呈现多孔形貌,有利于体系再吸氢性能的提高,起始吸氢温度低至175℃。在350℃和90bar氢压条件下保温1h就能可逆吸收约4wt%的氢气,相当于首次放氢容量的80%。多孔CaB2H7-0.1TiO2体系的放氢活化能和反应焓变较单一Ca(BH4)2明显降低,获得了更优异的动力学与热力学性能。多孔形貌和原位引入的Ti02的协同作用,显著提高了Ca(BH4)2储氢性能,其作用明显大于单一外添Ti02催化相。
     通过机械球磨制备了一种具有高容量和优良循环性能的Ca(BH4)2+2LiBH4+2MgH2三元复合新体系。该三元体系放氢结束温度低,在低于370℃条件下释放了约8.1wt%的氢气。相比于单一Ca(BH4)2及Ca(BH4)2+MgH2等体系,Ca(BH4)2+2LiBH4+2MgH2的可逆性及循环稳定性得到了极大提高,其首次放氢产物的起始吸氢温度为75℃,在350℃和90bar氢压条件下保温18h,能够吸收约7.6wt%的氢气,获得了94%的可逆性。10个循环后,体系仍具有6.2wt%的可逆容量。三元体系的表观活化能和反应焓变比单一Ca(BH4)2和相应二元体系均有明显降低,改善了体系的吸放氢性能。在首次循环后,体系生成了一种新的双阳离子化合物CaMgH3.72,其具有高度可逆性,在低于300℃的温度下能够稳定存在,有效促进了Ca(BH4)2和MgH2的分解,导致了体系在随后循环过程中的低温放氢。
     研究了在Ca(BH4)2体系中添加不同量LaMg3在氢压下球磨对其吸放氢性能的影响。研究结果表明,氢压下球磨促使LaMg3吸氢而原位生成LaH3和MgH2,其呈现非晶态并具有高度分散性。Ca(BH4)2+LiBH4+0.3LaMg3体系的起始吸放氢温度分别为150和204℃,比Ca(BH4)2+LiBH4体系的均低了100℃;升温至450℃,体系共吸收了约5.4wt%的氢气,明显高于Ca(BH4)2+LiBH4体系(2.0wt%)。5次循环后,体系可释放约4wt%的氢气,相当于保持了材料70%的首次放氢容量。MgH2和LaH3的原位引入,热力学上改变了Ca(BH4)2+LiBH4体系的反应过程,较外添MgH2和LaH3,动力学上加快了Ca(BH4)2+LiBH4体系的反应效率,降低了Ca(BH4)2+LiBH4体系的反应焓变和表观活化能,获得了更优异的吸放氢温度和更快的吸放氢速率。原位引入活性添加剂是提高硼氢化物储氢性能的一种有效方法。
As the double pressure of energy crisis and environmental pollution, it is extremely urgent to develop a new renewable clean energy. Hydrogen is considered as a favorable energy carrier because it is the most abundant element in the universe.It possesses the highest energy density per unit mass and burns clean, producing only water. Currently, the main challenge of large-scale use of hydrogen as an energy carrier is to store it in a safe, efficient and reversible system. Solid state hydrogen storage of chemicals has attracted great attention due to the relatively safe structures of the chemicals and high hydrogen storage capacity. Among them, Ca(BH4)2is particularly of interest due to its suitable dehydrogenation enthalpy and relatively high theoretical hydrogen content (11.4wt%). However, its high desorption temperature and harsh conditions for rehydrogenation seriously hinder its application in practice. Based on the overview of the progress in Ca(BH4)2and to clarify further the hydrogen storage mechanism and further improve the hydrogen storage properties of Ca(BH4)2, the present work focuses on the following aspects:the efficient synthesis of high-purity Ca(BH4)2with low cost; the effect of ball-milling on the phase structure and morphology of Ca(BH4)2, and their effects on the hydrogen desorption temperature and kinetics of Ca(BH4)2; the synergetic effect of porous morphology and in situ formed TiO2derived from Ti(OEt)4in improving hydrogen storage performance of Ca(BH4)2; the synergetic actions of the different components on the hydrogen storage properties of Ca(BH4)2+2LiBH4+2MgH2ternary system; the effect of in situ introduced LaH3and MgH2by hydrogenating LaMg3alloy during ball milling on the de-/hydrogenation performances for the Ca(BH4)2+LiBH4composite.
     The synthesis methods of Ca(BH4)2, via solid-state ball milling CaB6and CaH2under H2pressure and liquid-state ball milling NaBH4, CaCl2and THF, are investigated and discussed. It is found that the precursor of Ca(BH4)2·2THF can be prepared in high yield via directly liquid ball milling NaBH4and CaCl2in THF. High-purity Ca(BH4)2in polymorph hybrid (α,β and γ) is obtained after a heat treatment of the Ca(BH4)2·2THF. Ball-milling of Ca(BH4)2·2THF facilicates the formation of γ-Ca(BH4)2, and single γ-Ca(BH4)2is successfully obtained. The hydrogen desorption temperature and kinetics of Ca(BH4)2is strongly related to its crystal structure, crystallite and particle sizes, and morphology. It is found that a short period of ball milling reduces effectively the desorption temperature of Ca(BH4)2due to the reduction of crystallite and particle sizes, however, agglomeration takes place when over period of milling is performed, and hence reduces the role of the milling in improving the hydrogen storage properties of Ca(BH4)2. The apparent activation energy of the milled Ca(BH4)2is evidently lower than that of the pristine one, possessing improved hydrogen desorption kinetics. The desorption process of Ca(BH4)2is a diffusion-contorlled one, and the kinetic mechanism is not changed by ball milling, however, the nucleation rate of the products of Ca(BH4)2is increased, resulting in faster desorption rate.
     With the introduction of Ti(OEt)4into Ca(BH4)2by ball milling followed by a heat treatment, porous CaB2H7with in situ introduced nano-TiO2, viz., CaB2H7-0.1TiO2, is firstly synthesized. TiO2is found to act as a catalyst and the mechanism is revealed. There is ca.5wt%H2rapidly released below300℃for the porous CaB2H7-0.1TiO2system, and its peak temperature for hydrogen desorption is reduced by50and30℃, respectively, compared with single Ca(BH4)2and the best catalyzed Ca(BH4)2system (with NbFs added) ever reported in literature. The porous morphology is partially retained after desorption, which favores the absorption properties of Ca(BH4)2. The dehydrogenated product starts to absorb H2at as low as175℃, and there is ca.4wt%H2soaked at350℃and90bar H2pressure for1h, which equals to80%of the initial desorption capacity. The activation energy and reaction enthalpy of the porous CaB2H7-0.1TiO2system is evidently lowered compared to the single Ca(BH4)2, resulting in the improved kinetics and thermodynamics. The porous morphology and the in situ formed TiO2provide synergetic action on the improvement of the hydrogen storage properties of Ca(BH4)2, which is much more significant than that of the external addition of TiO2catalyst.
     A novel ternary composite system of high capacity and high cyclic stability, Ca(BH4)2+2LiBH4+2MgH2, is synthesized via simply ball milling the three hydrides. The system also shows lower completion temperature. It releases ca.8.1w%H2below370℃. The reversibility and cyclic stability of the Ca(BH4)2+2LiBH4+2MgH2system are superior to the single and binary counterparts. The initial dehydrogenated product starts to soak H2at ca.75℃, and there is ca.7.6wt%H2absorbed at350℃and90bar H2pressure for18h, which is equivalent to a reversibility of94%. After10cycles, the system maintains ca.6.7wt%reversible H2content. The apparent activation energy and reaction enthalpy for the ternary system are evidently reduced compared to other single and binary counterparts, resulting in the improved de-/hydrogenation performances. A new dual-cation hydride of CaMgH3.72is formed after the initial cycle. CaMgH3.72is highly reversible and is stable below300℃. CaMgH3.72facilitates greatly the decomposition of Ca(BH4)2and MgH2, lowering the desorption temperature in the following cycles.
     The effect of the addition of different contents of LaMg3on the de-/hydrogenation performances of the Ca(BH4)2+LiBH4system is investigated. It is found that LaH3and MgH2formed in situ during ball milling by means of the absorption of H2into LaMg3alloy. They exhibit amorphous state and highly disperse. The de-/hydrogenation temperatures of the system was evidently lowered by in situ introducing LaH3and MgH2. The Ca(BH4)2+LiBH4+0.3LaMg3system shows onset desorption and absorption temperature of150and204℃, respectively, both lowered by100℃compared to those of the Ca(BH4)2+LiBH4composite. The system soaked ca.5.4wt%H2up to450℃, which is evidently higher than that of the Ca(BH4)2+LiBH4system (2.0wt%). The system released ca.4wt%H2in the5th cycle, which is equivalent to be70%of the initial desorption capacity. The in situ introduced LaH3and MgH2change thermodynamically the reaction process of the Ca(BH4)2+LiBH4system, and accelerate kinetially the reaction efficiency compared to the one with LaH3and MgH2externally added, lowering the apparent activation energy and reaction enthalpy, which results in an evident reduction in the operating temperatures and a significant increase of the de-/hydrogenation rates. Introduction of in situ formed active additives is proposed to be an effective approach in improving the hydrogen storage property of boron hydrides.
引文
[1]C.-J. Winter. Hydrogen energy — Abundant, efficient, clean:A debate over the energy-system-of-change. International Journal of Hydrogen Energy,2009,34(14, Supplement 1): S1-S52.
    [2]U. Eberle, M. Felderhoff and F. Schuth. Chemical and Physical Solutions for Hydrogen Storage. Angewandte Chemie International Edition,2009,48(36):6608-6630.
    [3]胡子龙.储氢材料.北京:化学工业出版社,2002:10-112.
    [4]Y. Demirel. Energy production, conversion, storage, conservation, and coupling. In:Series: green energy and technology. Springer,2012.
    [5]L. Schlapbach and A. Zuttel. Hydrogen-storage materials for mobile applications. Nature,2001, 414(6861):353-358.
    [6]M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk and T. M. L. Wigley. Advanced Technology Paths to Global Climate Stability:Energy for a Greenhouse Planet. Science,2002,298(5595):981-987.
    [7]W. Lubitz and W. Tumas. Hydrogen:An Overview. Chemical Reviews,2007,107(10): 3900-3903.
    [8]M. Felderhoff, C. Weidenthaler, R. von Helmolt and U. Eberle. Hydrogen storage:the remaining scientific and technological challenges. Physical Chemistry Chemical Physics,2007, 9(21):2643-2653.
    [9]D. K. Ross. Hydrogen storage:The major technological barrier to the development of hydrogen fuel cell cars. Vacuum,2006,80(10):1084-1089.
    [10]L. Schlapbach. TECHNOLOGY Hydrogen-fuelled vehicles. Nature,2009,460(7257): 809-811.
    [11]J. J. Reilly and R. H. Wiswall. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorganic Chemistry,1968,7(11):2254-2256.
    [12]J. H. N. van Vucht, F. A. Kuijpers and H. C. A. M. Bruning. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Research Reports, 1970,25:133-140.
    [13]B. Bogdanovic and M. Schwickardi. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. Journal of Alloys and Compounds,1997,253-254(0): 1-9.
    [14]K. L. Lim, H. Kazemian, Z. Yaakob and W. R. W. Daud. Solid-state Materials and Methods for Hydrogen Storage:A Critical Review. Chemical Engineering & Technology,2010,33(2): 213-226.
    [15]F. Schuth, B. Bogdanovic and M. Felderhoff. Light metal hydrides and complex hydrides for hydrogen storage. Chemical Communications,2004, (20):2249-2258.
    [16]S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Zuttel and C. M. Jensen. Complex Hydrides for Hydrogen Storage. Chemical Reviews,2007,107(10):4111-4132.
    [17]P. Chen and M. Zhu. Recent progress in hydrogen storage. Materials Today,2008,11(12): 36-43.
    [18]J. Graetz. New approaches to hydrogen storage. Chemical Society Reviews,2009,38(1): 73-82.
    [19]A. W. C. van den Berg and C. O. Arean. Materials for hydrogen storage:current research trends and perspectives. Chemical Communications,2008(6):668-681.
    [20]杨泽伟.中国能源安全问题:挑战与应付.世界经济与政治,2008(8):52-60.
    [21]IEA Hydrogen Co-Ordination Group. Hydrogen Production and Storage [EB/OL]. http://www.iea.org/Textbase/papers/2006/hydrogen.pdf.
    [22]Targets for onboard hydrogen storage systems for Light-Duty vehicles, US DOE [EB/OL]. http://wwwl.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets onboard hydro storage e xplanation.pdf.
    [23]P. Jena. Materials for Hydrogen Storage:Past, Present, and Future. The Journal of Physical Chemistry Letters,2011,2(3):206-211.
    [24]H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe and O. M. Yaghi. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature,2004,427(6974):523-527.
    [25]J. L. C. Rowsell and O. M. Yaghi. Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angewandte Chemie International Edition,2005,44(30):4670-4679.
    [26]J. L. C. Rowsell, A. R. Millward, K. S. Park and O. M. Yaghi. Hydrogen Sorption in Functionalized Metal-Organic Frameworks. Journal of the American Chemical Society,2004, 126(18):5666-5667.
    [27]M.-H. Cha, M. C. Nguyen, Y.-L. Lee, J. Im and J. Ihm. Iron-Decorated, Functionalized Metal Organic Framework for High-Capacity Hydrogen Storage:First-Principles Calculations. The Journal of Physical Chemistry C,2010,114(33):14276-14280.
    [28]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature,1997,386(6623):377-379.
    [29]M. Jorda-Beneyto, F. Suarez-Garcia, D. Lozano-Castello, D. Cazorla-Amoros and A. Linares-Solano. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon,2007,45(2):293-303.
    [30]Y. L. Chen, B. Liu, J. Wu, Y. Huang, H. Jiang and K. C. Hwang. Mechanics of hydrogen storage in carbon nanotubes. Journal of the Mechanics and Physics of Solids,2008,56(11): 3224-3241.
    [31]O. V. Pupysheva, A. A. Farajian and B. I. Yakobson. Fullerene Nanocage Capacity for Hydrogen Storage. Nano Letters,2007,8(3):767-774.
    [32]L. Wang and R. T. Yang. Hydrogen Storage Properties of Carbons Doped with Ruthenium, Platinum, and Nickel Nanoparticles. The Journal of Physical Chemistry C,2008,112(32): 12486-12494.
    [33]Y. Li and R. T. Yang. Hydrogen Storage on Platinum Nanoparticles Doped on Superactivated Carbon. The Journal of Physical Chemistry C,2007,111(29):11086-11094.
    [34]R. Bhowmick, S. Rajasekaran, D. Friebel, C. Beasley, L. Jiao, H. Ogasawara, H. Dai, B. Clemens and A. Nilsson. Hydrogen Spillover in Pt-Single-Walled Carbon Nanotube Composites: Formation of Stable C-H Bonds. Journal of the American Chemical Society,2011,133(14): 5580-5586.
    [35]Q. Sun, P. Jena, Q. Wang and M. Marquez. First-Principles Study of Hydrogen Storage on Li12C60. Journal of the American Chemical Society,2006,128(30):9741-9745.
    [36]M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan and Z. Y. Zhang. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Physical Review Letters,2008,100(20).
    [37]K. J. Erickson, A. L. Gibb, A. Sinitskii, M. Rousseas, N. Alem, J. M. Tour and A. K. Zettl. Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons. Nano Letters,2011,11(8):3221-3226.
    [38]M. Li, Y. Li, Z. Zhou, P. Shen and Z. Chen. Ca-Coated Boron Fullerenes and Nanotubes as Superior Hydrogen Storage Materials. Nano Letters,2009,9(5):1944-1948.
    [39]R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu. Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature. Journal of the American Chemical Society,2002,124(26): 7672-7673.
    [40]W. L. Mao and H.-k. Mao. Hydrogen storage in molecular compounds. Proceedings of the National Academy of Sciences of the United States of America,2004,101(3):708-710.
    [41]K. Gandhi, D. K. Dixit and B. K. Dixit. Hydrogen desorption energies of Aluminum hydride (AlnH3n) clusters. Physica B:Condensed Matter,2010,405(15):3075-3081.
    [42]M. U. Niemann, S. S. Srinivasan, A. R. Phani, A. Kumar, D. Y. Goswami and E. K. Stefanakos. Nanomaterials for Hydrogen Storage Applications:A Review. Journal of Nanomaterials,2008.
    [43]S. R. Ovshinsky, M. A. Fetcenko and J. Ross. A Nickel Metal Hydride Battery for Electric Vehicles. Science,1993,260(5105):176-181.
    [44]S. S. Srinivasan, H. W. Brinks, B. C. Hauback, D. Sun and C. M. Jensen. Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors. Journal of Alloys and Compounds,2004,377(1-2):283-289.
    [45]J. Schoenes, A. M. Racu, A. Rode and S. Weber. New insights from Raman and IR spectroscopy into the metal-insulator transition of YHx switchable mirrors. Journal of Alloys and Compounds,2007,446:562-566.
    [46]J. Wang, A. D. Ebner and J. A. Ritter. Physiochemical Pathway for Cyclic Dehydrogenation and Rehydrogenation of LiAlH4. Journal of the American Chemical Society,2006,128(17): 5949-5954.
    [47]M. Fichtner, O. Fuhr and O. Kircher. Magnesium alanate—a material for reversible hydrogen storage? Journal of Alloys and Compounds,2003,356-357(0):418-422.
    [48]P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin and K. L. Tan. Interaction of hydrogen with metal nitrides and imides. Nature,2002,420(6913):302-304.
    [49]P. Chen, Z. T. Xiong, G T. Wu, Y. F. Liu, J. J. Hu and W. F. Luo. Metal-N-H systems for the hydrogen storage. Scripta Materialia,2007,56(10):817-822.
    [50]Z. Xiong, J. Hu, G Wu, P. Chen, W. Luo, K. Gross and J. Wang. Thermodynamic and kinetic investigations of the hydrogen storage in the Li-Mg-N-H system. Journal of Alloys and Compounds,2005,398(1-2):235-239.
    [51]W. F. Luo, J. Wang, K. Stewart, M. Clift and K. Gross. Li-Mg-N-H:Recent investigations and development. Journal of Alloys and Compounds,2007,446:336-341.
    [52]H. Leng, T. Ichikawa and H. Fujii. Hydrogen Storage Properties of Li-Mg-N-H Systems with Different Ratios of LiH/Mg(NH2)2. The Journal of Physical Chemistry B,2006,110(26): 12964-12968.
    [53]A. Zuttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron and C. Emmenegger. Hydrogen storage properties of LiBH4. Journal of Alloys and Compounds,2003,356:515-520.
    [54]K. Chlopek, C. Frommen, A. Leon, O. Zabara and M. Fichtner. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. Journal of Materials Chemistry,2007,17(33): 3496-3503.
    [55]J. J. Vajo, S. L. Skeith and F. Mertens. Reversible storage of hydrogen in destabilized LiBH4. Journal of Physical Chemistry B,2005,109(9):3719-3722.
    [56]F. E. Pinkerton and M. S. Meyer. Reversible hydrogen storage in the lithium borohydride-calcium hydride coupled system. Journal of Alloys and Compounds,2008,464(1-2): L1-L4.
    [57]K.-B. Kim, J.-H. Shim, Y. W. Cho and K. H. Oh. Pressure-enhanced dehydrogenation reaction of the LiBH4-YH3 composite. Chemical Communications,2011,47(35):9831-9833.
    [58]R. Gosalawit-Utke, J. M. B. von Colbe, M. Dornheim, T. R. Jensen, Y. Cerenius, C. B. Minella, M. Peschke and R. Bormann. LiF-MgB2 System for Reversible Hydrogen Storage. Journal of Physical Chemistry C,2010,114(22):10291-10296.
    [59]Y. Zhang, W. S. Zhang, M. Q. Fan, S. S. Liu, H. L. Chu, Y. H. Zhang, X. Y. Gao and L. X. Sun. Enhanced hydrogen storage performance of LiBH4-SiO2-TiF3 composite. Journal of Physical Chemistry C,2008,112(10):4005-4010.
    [60]B. C. Weng, X. B. Yu, Z. Wu, Z. L. Li, T. S. Huang, N. X. Xu and J. Ni. Improved dehydrogenation performance of LiBH4/MgH2 composite with Pd nanoparticles addition. Journal of Alloys and Compounds,2010,503(2):345-349.
    [61]T. K. Nielsen, U. Bosenberg, R. Gosalawit, M. Dornheim, Y. Cerenius, F. Besenbacher and T. R. Jensen. A Reversible Nanoconfined Chemical Reaction. ACS Nano,2010,4(7):3903-3908.
    [62]Y. Nakamori, H. W. Li, K. Kikuchi, M. Aoki, K. Miwa, S. Towata and S. Orimo. Thermodynamical stabilities of metal-borohydrides. Journal of Alloys and Compounds,2007,446: 296-300.
    [63]F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-Roβler and G. Leitner. Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods. Thermochimica Acta,2002,391(1-2):159-168.
    [64]Z. T. Xiong, C. K. Yong, G. T. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature Materials,2008,7(2):138-141.
    [65]X. Kang, Z. Fang, L. Kong, H. Cheng, X. Yao, G. Lu and P. Wang. Ammonia Borane Destabilized by Lithium Hydride:An Advanced On-Board Hydrogen Storage Material. Advanced Materials,2008,20(14):2756-2759.
    [66]H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, B. L. Scott, M. E. Bowden, B. L. Davis and A. K. Burrell. Calcium Amidotrihydroborate:A Hydrogen Storage Material. Angewandte Chemie International Edition,2007,46(47):8995-8997.
    [67]Y. S. Chua, P. Chen, G. Wu and Z. Xiong. Development of amidoboranes for hydrogen storage. Chemical Communications,2011,47(18):5116-5129.
    [68]M. Fichtner, K. Chlopek, M. Longhini and H. Hagemann. Vibrational spectra of Ca(BH4)2. Journal of Physical Chemistry C,2008,112(30):11575-11579.
    [69]H. L. Chu, Z. T. Xiong, G. T. Wu, J. P. Guo, X. L. Zheng, T. He, C. Z. Wu and P. Chen. Hydrogen Storage Properties of Ca(BH4)2-LiNH2 System. Chemistry-an Asian Journal,2010,5(7): 1594-1599.
    [70]E. Ronnebro and E. H. Majzoub. Calcium borohydride for hydrogen storage:Catalysis and reversibility. Journal of Physical Chemistry B,2007,111(42):12045-12047.
    [71]C. Rongeat, V. D'Anna, H. Hagemann, A. Borgschulte, A. Zuttel, L. Schultz and O. Gutfleisch. Effect of additives on the synthesis and reversibility of Ca(BH4)2. Journal of Alloys and Compounds,2010,493(1-2):281-287.
    [72]M. D. Riktor, M. H. Sorby, K. Chlopek, M. Fichtner and B. C. Hauback. The identification of a hitherto unknown intermediate phase CaB2Hx from decomposition of Ca(BH4)2. Journal of Materials Chemistry,2009,19(18):2754-2759.
    [73]K. Miwa, M. Aoki, T. Noritake, N. Ohba, Y. Nakamori, S. Towata, A. Zuttel and S. Orimo. Thermodynamical stability of calcium borohydride Ca(BH4)2. Physical Review B,2006,74(15): 155122-155126.
    [74]F. Buchter, Z. Lodziana, A. Remhof, O. Friedrichs, A. Borgschulte, P. Mauron, A. Zuttel, D. Sheptyakov, G. Barkhordarian, R. Bormann, K. Chlopek, M. Fichtner, M. Sorby, M. Riktor, B. Hauback and S. Orimo. Structure of Ca(BD4)2 beta-phase from combined neutron and synchrotron X-ray powder diffraction data and density functional calculations. Journal of Physical Chemistry B,2008,112(27):8042-8048.
    [75]Y. Filinchuk, E. Ronnebro and D. Chandra. Crystal structures and phase transformations in Ca(BH4)2. Acta Materialia,2009,57(3):732-738.
    [76]M. D. Riktor, M. H. Sorby, K. Chlopek, M. Fichtner, F. Buchter, A. Zuettel and B. C. Hauback. In situ synchrotron diffraction studies of phase transitions and thermal decomposition of Mg(BH4)2 and Ca(BH4)2. Journal of Materials Chemistry,2007,17(47):4939-4942.
    [77]E. H. Majzoub and E. Ronnebro. Crystal Structures of Calcium Borohydride:Theory and Experiment. Journal of Physical Chemistry C,2009,113(8):3352-3358.
    [78]F. Buchter, Z. Lodziana, A. Remhof, O. Friedrichs, A. Borgschulte, P. Mauron, A. Zuttel, D. Sheptyakov, L. Palatinus, K. Chlopek, M. Fichtner, G Barkhordarian, R. Bormann and B. C. Hauback. Structure of the Orthorhombic gamma-Phase and Phase Transitions of Ca(BD4)2. Journal of Physical Chemistry C,2009,113(39):17223-17230.
    [79]J. H. Kim, S. A. Jin, J. H. Shim and Y. W. Cho. Thermal decomposition behavior of calcium borohydride Ca(BH4)2. Journal of Alloys and Compounds,2008,461(1-2):L20-L22.
    [80]M. Aoki, K. Miwa, T. Noritake, N. Ohba, M. Matsumoto, H. W. Li, Y. Nakamori, S. Towata and S. Orimo. Structural and dehydriding properties of Ca(BH4)2. Applied Physics a-Materials Science & Processing,2008,92(3):601-605.
    [81]M. D. Riktor, Y. Filinchuk, P. Vajeeston, E. G. Bardaji, M. Fichtner, H. Fjellvag, M. H. Sorby and B. C. Hauback. The crystal structure of the first borohydride borate, Ca3(BD4)3(BO3). Journal of Materials Chemistry,2011,21(20):7188-7193.
    [82]A. Borgschulte, R. Gremaud, A. Zuttel, P. Martelli, A. Remhof, A. J. Ramirez-Cuesta, K. Refson, E. G. Bardaji, W. Lohstroh, M. Fichtner, H. Hagemann and M. Ernst. Experimental evidence of librational vibrations determining the stability of calcium borohydride. Physical Review B,2011,83(2):024102.
    [83]L. George, V. Drozd, S. K. Saxena, E. G Bardaji and M. Fichtner. High-Pressure Investigation on Calcium Borohydride. Journal of Physical Chemistry C,2009,113(33): 15087-15090.
    [84]A. Liu, S. T. Xie, S. Dabiran-Zohoory and Y. Song. High-Pressure Structures and Transformations of Calcium Borohydride Probed by Combined Raman and Infrared Spectroscopies. Journal of Physical Chemistry C,2010,114(26):11635-11642.
    [85]J. F. Mao, Z. P. Guo, C. K. Poh, A. Ranjbar, Y. H. Guo, X. B. Yu and H. K. Liu. Study on the dehydrogenation kinetics and thermodynamics of Ca(BH4)2. Journal of Alloys and Compounds, 2010,500(2):200-205.
    [86]S. J. Hwang, R. C. Bowman, J. W. Reiter, J. Rijssenbeek, G L. Soloveichik, J. C. Zhao, H. Kabbour and C. C. Ahn. NMR confirmation for formation of B12H122- complexes during hydrogen desorption from metal borohydrides. Journal of Physical Chemistry C,2008,112(9):3164-3169.
    [87]V. Ozolins, E. H. Majzoub and C. Wolverton. First-Principles Prediction of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H System. Journal of the American Chemical Society,2009,131(1):230-237.
    [88]L. L. Wang, D. D. Graham, I. M. Robertson and D. D. Johnson. On the Reversibility of Hydrogen-Storage Reactions in Ca(BH4)2:Characterization via Experiment and Theory. Journal of Physical Chemistry C,2009,113(46):20088-20096.
    [89]A. D. Kulkarni, L. L. Wang, D. D. Johnson, D. S. Sholl and J. K. Johnson. First-Principles Characterization of Amorphous Phases of MB12H12, M= Mg, Ca. Journal of Physical Chemistry C, 2010,114(34):14601-14605.
    [90]S. Li, M. Willis and P. Jena. Reaction Intermediates during the Dehydrogenation of Metal Borohydrides:A Cluster Perspective. The Journal of Physical Chemistry C,2010,114(39): 16849-16854.
    [91]V. Stavila, J. H. Her, W. Zhou, S. J. Hwang, C. Kim, L. A. M. Ottley and T. J. Udovic. Probing the structure, stability and hydrogen storage properties of calcium dodecahydro-closo-dodecaborate. Journal of Solid State Chemistry,2010,183(5):1133-1140.
    [92]T. J. Frankcombe. Calcium Borohydride for Hydrogen Storage:A Computational Study of Ca(BH4)2 Crystal Structures and the CaB2Hx Intermediate. Journal of Physical Chemistry C,2010, 114(20):9503-9509.
    [93]P. Vajeeston, P. Ravindran, B. C. Hauback and H. Fjellvag. Prediction of crystal structure, lattice dynamical, and mechanical properties of CaB2H2. International Journal of Hydrogen Energy, 2011,36(16):10149-10158.
    [94]Y. Kim, S. J. Hwang, J. H. Shim, Y. S. Lee, H. N. Han and Y. W. Cho. Investigation of the Dehydrogenation Reaction Pathway of Ca(BH4)2 and Reversibility of Intermediate Phases. Journal of Physical Chemistry C,2012,116(6):4330-4334.
    [95]Y. Kim, S. J. Hwang, Y. S. Lee, J. Y. Suh, H. N. Han and Y. W. Cho. Hydrogen Back-Pressure Effects on the Dehydrogenation Reactions of Ca(BH4)2. Journal of Physical Chemistry C,2012, 116(49):25715-25720.
    [96]J. H. Kim, S. A. Jin, J. H. Shim and Y. W. Cho. Reversible hydrogen storage in calcium borohydride Ca(BH4)2. Scripta Materialia,2008,58(6):481-483.
    [97]J. H. Kim, J. H. Shim and Y. W. Cho. On the reversibility of hydrogen storage in Ti- and Nb-catalyzed Ca(BH4)2. Journal of Power Sources,2008,181(1):140-143.
    [98]L.-C. Yin, P. Wang, X.-D. Kang, C.-H. Sun and H.-M. Cheng. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate. Physical Chemistry Chemical Physics,2007,9(12):1499-1502.
    [99]N. Eigen, U. Bosenberg, J. Bellosta von Colbe, T. R. Jensen, Y. Cerenius, M. Dornheim, T. Klassen and R. Bormann. Reversible hydrogen storage in NaF-Al composites. Journal of Alloys and Compounds,2009,477(1-2):76-80.
    [100]H. W. Brinks, A. Fossdal and B. C. Hauback. Adjustment of the Stability of Complex Hydrides by Anion Substitution. The Journal of Physical Chemistry C,2008,112(14):5658-5661.
    [101]C. B. Minella, S. Garroni, C. Pistidda, R. Gosalawit-Utke, G. Barkhordarian, C. Rongeat, I. Lindemann, O. Gutfleisch, T. R. Jensen, Y. Cerenius, J. Christensen, M. D. Baro, R. Bormann, T. Klassen and M. Dornheim. Effect of Transition Metal Fluorides on the Sorption Properties and Reversible Formation of Ca(BH4)2. Journal of Physical Chemistry C,2011,115(5):2497-2504.
    [102]Z. G. Wang, Q. Hui, C. L. Wang and N. P. Cheng. First-principle study of the effects of Nb and Ti doping on the dehydrogenation properties of Ca(BH4)2. Computational Materials Science, 2011,50(11):3114-3118.
    [103]C. Bonatto Minella, E. Pellicer, E. Rossinyol, F. Karimi, C. Pistidda, S. Garroni, C. Milanese, P. Nolis, M. D. Baro, O. Gutfleisch, K. P. Pranzas, A. Schreyer, T. Klassen, R. Bormann and M. Dornheim. Chemical State, Distribution, and Role of Ti- and Nb-Based Additives on the Ca(BH4)2 System. The Journal of Physical Chemistry C,2013,117(9):4394-4403.
    [104]G. Barkhordarian, T. R. Jensen, S. Doppiu, U. Bosenberg, A. Borgschulte, R. Gremaud, Y. Cerenius, M. Dornheim, T. Klassen and R. Bormann. Formation of Ca(BH4)2 from hydrogenation of CaH2+MgB2 composite. Journal of Physical Chemistry C,2008,112(7):2743-2749.
    [105]B. Schiavo, A. Girella, F. Agresti, G. Capurso and C. Milanese. Ball-milling and AlB2 addition effects on the hydrogen sorption properties of the CaH2 + MgB2 system. Journal of Alloys and Compounds,2011,509:S714-S718.
    [106]http://www.sgte.org.
    [107]Y. Kim, D. Reed, Y. S. Lee, J. Y. Lee, J. H. Shim, D. Book and Y. W. Cho. Identification of the Dehydrogenated Product of Ca(BH4)2. Journal of Physical Chemistry C,2009,113(14): 5865-5871.
    [108]Y. Kim, D. Reed, Y. S. Lee, J. H. Shim, H. N. Han, D. Book and Y. W. Cho. Hydrogenation reaction of CaH2-CaB6-Mg mixture. Journal of Alloys and Compounds,2010,492(1-2):597-600.
    [109]C. B. Minella, C. Pistidda, S. Garroni, P. Nolis, M. D. Baro, O. Gutfleisch, T. Klassen, R. Bormann and M. Dornheim. Ca(BH4)2 + MgH2:Desorption Reaction and Role of Mg on Its Reversibility. The Journal of Physical Chemistry C,2013,117(8):3846-3852.
    [110]C. B. Minella, S. Garroni, D. Olid, F. Teixidor, C. Pistidda, I. Lindemann, O. Gutfleisch, M. D. Baro, R. Bormann, T. Klassen and M. Dornheim. Experimental Evidence of CaB12H12 Formation During Decomposition of a Ca(BH4)2 + MgH2 Based Reactive Hydride Composite. Journal of Physical Chemistry C,2011,115(36):18010-18014.
    [111]K. S. Alcantara, U. Boesenberg, O. Zavorotynska, J. B. von Colbe, K. Taube, M. Baricco, T. Klassen and M. Dornheim. Sorption and desorption properties of a CaH2/MgB2/CaF2 reactive hydride composite as potential hydrogen storage material. Journal of Solid State Chemistry,2011, 184(11):3104-3109.
    [112]K. S. Alcantara, J. M. Ramallo-Lopez, U. Boesenberg, I. Saldan, C. Pistidda, F. G. Requejo, T. Jensen, Y. Cerenius, M. Sorby, J. Avila, J. B. von Colbe, K. Taube, T. Klassen and M. Dornheim. 3CaH2 + 4MgB2 + CaF2 Reactive Hydride Composite as a Potential Hydrogen Storage Material: Hydrogenation and Dehydrogenation Pathway. Journal of Physical Chemistry C,2012,116(12): 7207-7212.
    [113]R. Gosalawit-Utke, K. Suarez, J. M. B. von Colbe, U. Bosenberg, T. R. Jensen, Y. Cerenius, C. B. Minella, C. Pistidda, G. Barkhordarian, M. Schulze, T. Klassen, R. Bormann and M. Dornheim. Ca(BH4)2-MgF2 Reversible Hydrogen Storage:Reaction Mechanisms and Kinetic Properties. Journal of Physical Chemistry C,2011,115(9):3762-3768.
    [114]J. Y. Lee, Y. S. Lee, J. Y. Suh, J. H. Shim and Y. W. Cho. Metal halide doped metal borohydrides for hydrogen storage:The case of Ca(BH4)2-CaX2 (X= F, Cl) mixture. Journal of Alloys and Compounds,2010,506(2):721-727.
    [115]L. H. Rude, Y. Filinchuk, M. H. Sorby, B. C. Hauback, F. Besenbacher and T. R. Jensen. Anion Substitution in Ca(BH4)2-CaI2:Synthesis, Structure and Stability of Three New Compounds. Journal of Physical Chemistry C,2011,115(15):7768-7777.
    [116]H. Grove, L. H. Rude, T. R. Jensen, M. Corno, P. Ugliengo, M. Baricco, M. H. Sorby and B. C. Hauback. Halide substitution in Ca(BH4)2. Rsc Advances,2014,4(9):4736-4742.
    [117]Z. T. Xiong, J. J. Hu, G. T. Wu, P. Chen, W. F. Luo, K. Gross and J. Wang. Thermodynamic and kinetic investigations of the hydrogen storage in the Li-Mg-N-H system. Journal of Alloys and Compounds,2005,398(1-2):235-239.
    [118]Z. Xiong, G. Wu, J. Hu, Y. Liu, P. Chen, W. Luo and J. Wang. Reversible Hydrogen Storage by a Li-Al-N-H Complex. Advanced Functional Materials,2007,17(7):1137-1142.
    [119]F. E. Pinkerton, G. P. Meisner, M. S. Meyer, M. P. Balogh and M. D. Kundrat. Hydrogen Desorption Exceeding Ten Weight Percent from the New Quaternary Hydride Li3BN2H8. The Journal of Physical Chemistry B,2004,109(1):6-8.
    [120]H. L. Chu, Z. T. Xiong, G. T. Wu, J. P. Guo, T. He and P. Chen. Improved dehydrogenation properties of Ca(BH4)2-LiNH2 combined system. Dalton Transactions,2010,39(44): 10585-10587.
    [121]H. L. Chu, G. T. Wu, Y. Zhang, Z. T. Xiong, J. P. Guo, T. He and P. Chen. Improved Dehydrogenation Properties of Calcium Borohydride Combined with Alkaline-Earth Metal Amides. Journal of Physical Chemistry C,2011,115(36):18035-18041.
    [122]X. B. Yu, Z. X. Yang, Y. H. Guo and G. Li. Thermal decomposition performance of Ca(BH4)2/LiNH2 mixtures. Journal of Alloys and Compounds,2011,509:S724-S727.
    [123]Z. W. Tang, Y. H. Guo, S. F. Li and X. B. Yu. Low-Temperature Hydrogen Generation and Ammonia Suppression from Calcium Borohydride Combined with Guanidinium Borohydride. Journal of Physical Chemistry C,2011,115(7):3188-3193.
    [124]H. L. Chu, G. T. Wu, Z. T. Xiong, J. P. Guo, T. He and P. Chen. Structure and Hydrogen Storage Properties of Calcium Borohydride Diammoniate. Chemistry of Materials,2010,22(21): 6021-6028.
    [125]X. W. Chen, F. Yuan, Y. B. Tan, Z. W. Tang and X. B. Yu. Improved Dehydrogenation Properties of Ca(BH4)2center dot nNH3 (n=1,2, and 4) Combined with Mg(BH4)2. Journal of Physical Chemistry C,2012,116(40):21162-21168.
    [126]Z. W. Tang, Y. B. Tan, Q. F. Gu and X. B. Yu. A novel aided-cation strategy to advance the dehydrogenation of calcium borohydride monoammoniate. Journal of Materials Chemistry,2012, 22(12):5312-5318.
    [127]X. W. Chen and X. B. Yu. Electronic Structure and Initial Dehydrogenation Mechanism of M(BH4)2center dot 2NH3 (M= Mg, Ca, and Zn):A First-Principles Investigation. Journal of Physical Chemistry C,2012,116(22):11900-11906.
    [128]P. F. Yuan, F. Wang, Q. Sun, Y. Jia and Z. X. Guo. Structural, energetic and thermodynamic analyses of Ca(BH4)2center dot 2NH3 from first principles calculations. Journal of Solid State Chemistry,2012,185:206-212.
    [129]G. Q. Zhang, J. Z. Yang, H. Fu, J. Zheng, Y. Li and X. G. Li. Structural and electronic properties of the hydrogen storage compound Ca(BH4)2center dot 2NH3 from first-principles. Computational Materials Science,2012,54:345-349.
    [130]B. Li, Y. Liu, J. Gu, M. Gao and H. Pan. Synergetic Effects of In Situ Formed CaH2 and LiBH4 on Hydrogen Storage Properties of the Li-Mg-N-H System. Chemistry-An Asian Journal, 2013,8(2):374-384.
    [131]B. Li, Y. F. Liu, J. Gu, Y. J. Gu, M. X. Gao and H. G. Pan. Mechanistic investigations on significantly improved hydrogen storage performance of the Ca(BH4)2-added 2LiNH2/MgH2 system. International Journal of Hydrogen Energy,2013,38(12):5030-5038.
    [132]J. F. Mao, Z. P. Guo, X. B. Yu and H. K. Liu. Improved Hydrogen Storage Properties of NaBH4 Destabilized by CaH2 and Ca(BH4)2. Journal of Physical Chemistry C,2011,115(18): 9283-9290.
    [133]A. A. Ibikunle and A. J. Goudy. Kinetics and modeling study of a Mg(BH4)2/Ca(BH4)2 destabilized system. International Journal of Hydrogen Energy,2012,37(17):12420-12424.
    [134]J. Y. Lee, D. Ravnsbaek, Y. S. Lee, Y. Kim, Y. Cerenius, J. H. Shim, T. R. Jensen, N. H. Hur and Y. W. Cho. Decomposition Reactions and Reversibility of the LiBH4-Ca(BH4)2 Composite. Journal of Physical Chemistry C,2009,113(33):15080-15086.
    [135]Z. Z. Fang, X. D. Kang, J. H. Luo, P. Wang, H. W. Li and S. Orimo. Formation and Hydrogen Storage Properties of Dual-Cation (Li, Ca) Borohydride. Journal of Physical Chemistry C,2010,114(51):22736-22741.
    [136]Y. G Yan, A. Remhof, P. Mauron, D. Rentsch, Z. Lodziana, Y. S. Lee, H. S. Lee, Y. W. Cho and A. Zuttel. Controlling the Dehydrogenation Reaction toward Reversibility of the LiBH4-Ca(BH4)2 Eutectic System. Journal of Physical Chemistry C,2013,117(17):8878-8886.
    [137]A. F. Gross, J. J. Vajo, S. L. Van Atta and G L. Olson. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. Journal of Physical Chemistry C,2008,112(14): 5651-5657.
    [138]A. Ampoumogli, T. Steriotis, P. Trikalitis, E. G. Bardaji, M. Fichtner, A. Stubos and G Charalambopoulou. Synthesis and characterisation of a mesoporous carbon/calcium borohydride nanocomposite for hydrogen storage. International Journal of Hydrogen Energy,2012,37(21): 16631-16635.
    [139]C. Comanescu, G. Capurso and A. Maddalena. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage. Nanotechnology,2012, 23(38).
    [140]H. S. Lee, Y. S. Lee, J. Y. Suh, M. Kim, J. S. Yu and Y. W. Cho. Enhanced Desorption and Absorption Properties of Eutectic LiBH4-Ca(BH4)2 Infiltrated into Mesoporous Carbon. Journal of Physical Chemistry C,2011,115(40):20027-20035.
    [141]H. S. Lee, S. J. Hwang, H. K. Kim, Y. S. Lee, J. Park, J. S. Yu and Y. W. Cho. In Situ NMR Study on the Interaction between LiBH4-Ca(BH4)2 and Mesoporous Scaffolds. Journal of Physical Chemistry Letters,2012,3(20):2922-2927.
    [142]H. E. Kissinger. REACTION KINETICS IN DIFFERENTIAL THERMAL ANALYSIS. Analytical Chemistry,1957,29(11):1702-1706.
    [143]I. Llamas-Jansa, O. Friedrichs, M. Fichtner, E. G Bardaji, A. Zuttel and B. C. Hauback. The Role of Ca(BH4)2 Polymorphs. Journal of Physical Chemistry C,2012,116(25):13472-13479.
    [144]Y. F. Liu, K. Zhong, K. Luo, M. X. Gao, H. G Pan and Q. D. Wang. Size-Dependent Kinetic Enhancement in Hydrogen Absorption and Desorption of the Li-Mg-N-H System. Journal of the American Chemical Society,2009,131(5):1862-1870.
    [145]H. W. Li, K. Kikuchi, Y. Nakamori, K. Miwa, S. Towata and S. Orimo. Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2. Scripta Materialia, 2007,57(8):679-682.
    [146]P. J. Wang, L. P. Ma, Z. Z. Fang, X. D. Kang and P. Wang. Improved hydrogen storage property of Li-Mg-B-H system by milling with titanium trifluoride. Energy & Environmental Science,2009,2(1):120-123.
    [147]E. G. Bardaji, N. Hanada, O. Zabara and M. Fichtner. Effect of several metal chlorides on the thermal decomposition behaviour of α-Mg(BH4)2. International Journal of Hydrogen Energy, 2011,36(19):12313-12318.
    [148]W. Li, C. Li, H. Ma and J. Chen. Magnesium Nanowires:Enhanced Kinetics for Hydrogen Absorption and Desorption. Journal of the American Chemical Society,2007,129(21):6710-6711.
    [149]K.-J. Jeon, H. R. Moon, A. M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan and J. J. Urban. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nature Materials,2011,10(4):286-290.
    [150]Z. Liu, H. Huang and C. Zuo. Hydrothermal synthesis and thermodynamic properties of 2CaO·3B2O3·H2O. Journal of Thermal Analysis and Calorimetry,2007,89(2):655-658.
    [151]Y. S. Lee, Y. Filinchuk, H. S. Lee, J. Y. Suh, J. W. Kim, J. S. Yu and Y. W. Cho. On the Formation and the Structure of the First Bimetallic Borohydride Borate, LiCa3(BH4)(BO3)2. Journal of Physical Chemistry C,2011,115(20):10298-10304.
    [152]C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Mullenberg. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp, USA,1979.
    [153]Y. H. Guo, X. B. Yu, L. Gao, G. L. Xia, Z. P. Guo and H. K. Liu. Significantly improved dehydrogenation of LiBH4 destabilized by TiF3. Energy & Environmental Science,2010,3(4): 465-470.
    [154]Y. Liu, F. Wang, Y. Cao, M. Gao, H. Pan and Q. Wang. Mechanisms for the enhanced hydrogen desorption performance of the TiF4-catalyzed Na2LiAlH6 used for hydrogen storage. Energy & Environmental Science,2010,3(5):645-653.
    [155]W. C. Conner and J. L. Falconer. SPILLOVER IN HETEROGENEOUS CATALYSIS. Chemical Reviews,1995,95(3):759-788.
    [156]S.-A. Jin, J.-H. Shim, J.-P. Ahn, Y. W. Cho and K.-W. Yi. Improvement in hydrogen sorption kinetics of MgH2 with Nb hydride catalyst. Acta Materialia,2007,55(15):5073-5079.
    [157]U. Bosenberg, S. Doppiu, L. Mosegaard, G. Barkhordarian, N. Eigen, A. Borgschulte, T. R. Jensen, Y. Cerenius, O. Gutfleisch, T. Klassen, M. Dornheim and R. Bormann. Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Materialia,2007,55(11):3951-3958.
    [158]U. Bosenberg, S. Doppiu, L. Mosegaard, G. Barkhordarian, N. Eigen, A. Borgschulte, T. R. Jensen, Y. Cerenius, O. Gutfleisch, T. Klassen, M. Dornheim and R. Bormann. Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Materialia,2007,55(11):3951-3958.
    [159]J. Gu, M. X. Gao, H. G. Pan, Y. F. Liu, B. Li, Y. J. Yang, C. Liang, H. L. Fu and Z. X. Guo. Improved hydrogen storage performance of Ca(BH4)2:a synergetic effect of porous morphology and in situ formed TiO2. Energy & Environmental Science,2013,6(3):847-858.
    [160]D. Liu, Q. Liu, T. Si, Q. Zhang, F. Fang, D. Sun, L. Ouyang and M. Zhu. Superior hydrogen storage properties of LiBH4 catalyzed by Mg(AlH4)2. Chemical Communications,2011,47(20): 5741-5743.
    [161]Y. F. Zhou, Y. F. Liu, W. Wu, Y. Zhang, M. X. Gao and H. G. Pan. Improved Hydrogen Storage Properties of LiBH4 Destabilized by in Situ Formation of MgH2 and LaH3. Journal of Physical Chemistry C,2012,116(1):1588-1595.
    [162]M. Gao, J. Gu, H. Pan, Y. Wang, Y. Liu, C. Liang and Z. Guo. Ca(BH4)2-LiBH4-MgH2:a novel ternary hydrogen storage system with superior long-term cycling performance. Journal of Materials Chemistry A,2013,1(39):12285-12292.
    [163]T. Sun, H. Wang, Q. G. Zhang, D. L. Sun, X. D. Yao and M. Zhu. Synergetic effects of hydrogenated Mg3La and TiCl3 on the dehydrogenation of LiBH4. Journal of Materials Chemistry, 2011,21(25):9179-9184.
    [164]X. Fan, X. Xiao, L. Chen, X. Wang, S. Li, H. Ge and Q. Wang. High catalytic efficiency of amorphous TiB2 and NbB2 nanoparticles for hydrogen storage using the 2LiBH4-MgH2 system. Journal of Materials Chemistry A,2013,1(37):11368-11375.
    [165]J.-M. Yan, X.-B. Zhang, S. Han, H. Shioyama and Q. Xu. Iron-Nanoparticle-Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane for Chemical Hydrogen Storage. Angewandte Chemie International Edition,2008,47(12):2287-2289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700