小冲杆试验中材料力学性能的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小冲杆试验法是近几年发展起来的一种新型的测试方法,它利用尺寸极其微小的试样对服役材料进行失效分析和寿命评估,在测试材料基本性能(屈服极限,强度极限等)、韧脆性转变温度、断裂韧性和蠕变性能等方面得到了较广泛的认可、应用和发展。目前,小冲杆试验的一个研究热点在于找到小冲杆试验结果与传统常规试验结果之间的联系,以达到在某些领域,利用小冲杆试验最终代替传统试验的目的。在小冲杆试验研究过程中,研究者普遍采用试验与模拟相结合的方式对小冲杆试验进行全面的研究。有限单元法在模拟小冲杆试验过程中起到了非常重要的作用。
     为了模拟小冲杆试验中材料所表现出的力学性能、研究不同试验条件对试验结果的影响并找到小冲杆试验结果与材料断裂性能之间的关系,本文建立了一个有限元模型,用来研究小冲杆试验过程,并以Ti-6Al-4V合金和原位生成体积分数为10%的TiB与TiC颗粒混合增强Ti-6Al-4V复合材料为例,做了以下的研究:
     1.根据实际小冲杆试验,搭建了一个有限元模型。该模型能够成功地模拟小冲杆试验过程,并输出与实际情况相符的结果曲线,从而验证了此有限元模型的正确性和有效性。
     2.利用上述模型,研究了试样厚度和冲头与试样之间的摩擦系数这两个试验条件对试验结果的影响。对不同厚度试样的模拟结果表明,模拟所得到的载荷-位移曲线的走向基本一致,但是试样所承受的最大载荷对于厚度十分敏感。因此在实际试样制备过程中要特别注意试样厚度的精度。同时说明不同厚度试样的试验结果之间没有可比性。对于摩擦系数的研究表明载荷-位移曲线对于摩擦系数的变化不敏感。
     3.通过有限元模型中的参数,计算了Ti-6Al-4V合金、原位生成体积分数为5%及10%的TiB与TiC颗粒混合增强Ti-6Al-4V复合材料三种钛材料的断裂韧性JΙC和小冲杆试验总能量E sp,建立了等效断裂应变、断裂韧性和总能量之间的关联公式。结果表明:对于钛材料来说,断裂韧性JΙC、小冲杆试验总能量E sp与小冲杆试验中所测得的等效断裂应变εqf之间存在着线性关系,从而找到了小冲杆试验与传统常规试验之间的联系。
Small punch test (SPT) is a new type of assessment method which was invented in recent years. It uses extremely small samples to perform failure analysis and life assessment for materials in service, and SPT has been widely acknowledged, used and developed in assessing materials’basic performance(yield limit, strength limit etc), ductile-brittle transition temperature, fracture toughness and creep properties. Currently, the research focus of small punch test lies on finding the relationship between SPT and conventional test methods, in order to replace them with SPT in some industry fields. Researchers commonly use the combination of test and simulation as a method for conducting a comprehensive study. Finite element method plays a very important role in simulating SPT.
     In order to simulate the mechanical properties of materials shown in small punch test, to analyze the effect of samples’thickness and friction coefficient on the results of SPT and to find the relationship between the results of SPT and fracture properties, an effective finite element mode was developed. Ti-6Al-4V alloy and particulate reinforced 10 vol.% (TiB+TiC)/Ti-6Al-4V metal matrix composites(MMCs)were studied by small punch test method.
     1. A finite element mode was developed according to the actual small punch test. This mode can successfully simulate the process of SPT and output curves which agree with experiment results,which demonstrate that the model is correct and can be used in the further study.
     2. With the model generated by the program, the effect of samples’thickness and friction coefficient on the results of SPT was analyzed. Simulation results show that the load-displacement curves of different samples’thickness go along the same direction; however the maximum load is quite sensitive to the changes of thickness. Therefore, the accuracy of samples’thickness should be paid attention during the process of sample preparation. It also tells us that it is not comparable between the test results of samples with different thickness. Study on the friction coefficient show that the load-displacement is not sensitive to the change of friction coefficient between sample and punch.
     3. Fracture toughness JΙCand small punch energy E spwere calculated with the parameters used in the finite model for Ti-6Al-4V alloy and particulate reinforced 5% and 10 vol.% (TiB+TiC)/Ti-6Al-4V metal matrix composites. Correlation formulas was built up between JΙC, E spand equivalent fracture strain. It shows that for titanium there exists a linear relationship between the three parameters.
引文
1. Baik J, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel. Scripta Metallurgica 1983;17:1443-1447
    2.李璞,关凯书.小冲杆测试法在评定材料性能的应用进展.化工机械2006
    3.张小亮,王兆希.小冲杆试验方法研究进展及存在的问题.中国测试技术2008
    4.陈玉新,凌祥,涂善东. SUS304材料的小冲孔蠕变试验研究.实验力学2005
    5.韩浩,关凯书,王志文.基于Delphi的小冲杆试验机数据采集系统的开发.机械工程材料2004
    6.赵昌正,张国定.金属基复合材料. In.上海:上海交通大学出版社; 1996
    7.汪海芳.复合材料支架结构的力学性能分析. In.哈尔滨:哈尔滨工业大学; 2007
    8.沃西源,周宏志.卫星结构先进复合材料应用发展.航天返回与遥感2002
    9.赵渠森.先进复合材料及其应用.航空制造技术2002
    10.金泉.混杂增强金属基复合材料力学性能的拟实研究. In.上海:上海交通大学; 2006
    11.雷友峰.纤维增强金属基复合材料宏-细观统一本构模型及应用研究. In.南京:南京航空航天大学; 2002
    12.张娟.短纤维增强金属基复合材料热残余应力及其对力学行为的影响. In.成都:西南交通大学; 2002
    13. Eshelby JD. Proc.R.Soc. In; 1957
    14. Cox HL. The elasticity and strength of paper and other fibrous materials. In; 1952
    15. Mori T TK. Average stress in matrix and average energy of materials with misfitting inculsion. In; 1973:571-574
    16.吕维杰.原位合成钛基复合材料的制备、微结构及力学性能. In.上海:上海交通大学; 2000
    17.马志军.钛基复合材料热残余应力的数值模拟. In:西北工业大学;; 2002
    18.吕维洁,张小农,张荻, et al.原位合成TiC和TiB增强钛基复合材料的微观结构与力学性能.
    19.汪海芳.复合材料支架结构的力学性能分析. In:哈尔滨工业大学;; 2007
    20.陈丽芳.原位生成粉末冶金钛基复合材料的研究. In:中南大学;; 2005
    21. Johnson TP, Brooks JW, Loretto MH. Mechanical properties of a Ti-based metal matrix composite produced by a casting route. Scripta Metallurgica et Materiala 1991;25:785-789
    22. Hu D, Johnson TP, Loretto MH. Titanium precipitation in substoichiometric TiC particles. Scripta Metallurgica et Materiala 1994;30:1015-1020
    23. Hirose A, Hasegawa M, Kobayashi KF. Microstructures and mechanical properties of TiB2 particle reinforced TiAl composites by plasma arc melting process. Materials Science and Engineering A 1997;239-240:46-54
    24. Lu Y, Li D, Ping D, Bi J, Ma Z. Microstructure of TiB whisker reinforced Ti matrix composite. Journal of Materials Science and Technology 1997;13:41-44
    25.吕维洁,杨志峰,张荻,张小农,吴人洁.原位合成钛基复合材料增强体TiC的微结构特征.中国有色金属学报2002
    26.吕维洁,杨志峰,张荻,吴人洁.原位合成(TiB+Al_2O_3)/Ti复合材料.铸造2002
    27.吕维洁,张小农,张荻, et al.颗粒增强钛基复合材料研究进展.材料导报1999
    28.吕维洁,张小农,张荻, et al.原位合成TiB/Ti基复合材料增强体的生长机制.
    29.吕维洁,张荻,张小农,吴人洁.原位合成TiB/Ti复合材料的微观结构及力学性能.上海交通大学学报2000
    30.吕维洁,张小农,张荻, et al.原位(TiB+TiC)/Ti复合材料中TiB/Ti界面的微结构研究.
    31.吕维洁,张荻,张小农,吴人洁.原位合成TiC/Ti复合材料的微结构和力学性能.上海交通大学学报2001
    32.张荻,吕维洁,耿珂,张小农,吴人洁.原位合成(TiB+TiC)/Ti6264的微观结构及高温力学性能. In,第十二届全国复合材料学术会议.中国天津; 2002
    33.王敏敏,吕维洁,覃继宁, et al.原位合成TiB和TiC增强钛基复合材料的超塑变形行为及机理研究. In, 2004年中国材料研讨会.中国北京; 2004
    34.覃业霞,吕维洁,徐栋,张荻.原位合成(TiB+TiC)/Ti6242基复合材料高温氧化行为.稀有金属材料与工程2006
    35.吕维洁,覃业霞,张荻,张小农,吴人洁.原位合成增强体TiB层错的透射电镜分析.上海交通大学学报2003
    36.吕维洁,徐栋,覃继宁,张荻.原位合成多元增强钛基复合材料(TiB+TiC+Y_2O_3)/Ti.中国有色金属学报2005
    37.丁科.有限单元法. In; 2006
    38.曾攀.有限元分析及应用. In.北京:清华大学出版社; 2004
    39.张洪信.有限元基础理论与ANSYS应用. In:机械工业出版社; 2006
    40. Getting Started with ABAQUS Version 6.4. In:清华大学出版社; 2003
    41. ABAQUS Analysis User's Manual. In: ABAQUS Inc; 2003
    42. ABAQUS/CAE User's Manual. In: ABAQUS Inc; 2003
    43.陈火红. MARC 2003基础与应用实例. In:科学出版社; 2004
    44.陈火红. MARC有限元实例分析教程. In:机械工业出版社; 2002
    45. Huang.F.H HMLW. bend testing for miniature disks. In; 1982:234-242
    46. Budzakoska E, Carr DG, Stathers PA, et al. Predicting the J integral fracture toughness of Al 6061 using the small punch test. Fatigue and Fracture of Engineering Materials and Structures 2007;30:796-807
    47. Fleury E, Ha JS. Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength. Int J Pres Ves Pip 1998;75:699-706
    48. Shindo Y, Yamaguchi Y, Horiguchi K. Small punch testing for determining the cryogenic fracture properties of 304 and 316 austenitic stainless steels in a high magnetic field. Cryogenics 2004;44:789-792
    49. Manahan MP, Argon AS, Harling OK. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater 1981;104:1545-1550
    50. Lucas GE, Sheckherd JW, Odette GR, Panchanadeeswaran S. Shear punch tests for mechanical property measurements in TEM disc-sized specimens. J Nucl Mater 1984;122:429-434
    51. Mao X, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (? 3 mm) small punch tests. J Nucl Mater 1987;150:42-52
    52. X M. development of small punch test to measure creep resistance as nondestructive evaluation. In: Report for the: Canadian Electricity Association(CEA); 1996
    53. Yang F, Hackett E, Li JCM. Large deformation of a thin disk by a cylindrical punch. Mech Mater1997;26:15-22
    54. Manahan MP, Argon AS, Harling OK. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater 1981;104:1545-1550
    55.韩浩.小冲杆试验测定金属材料常温性能的研究. In.上海:华东理工大学; 2003
    56. Norris SD, Parker JD. Deformation processes during disc bend loading. Mater Sci Tech-Lond 1996;12:163-170
    57.刘玉.小冲杆试验技术在金属材料性能评定中的应用.机械研究与应用2007
    58. Baik J, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel. Scripta Metallurgica 1983;17:1443-1447
    59. Misawa T, Adachi T, Saito M, Hamaguchi Y. Small punch tests for evaluating ductile-brittle transition behavior of irradiated ferritic steels. J Nucl Mater 1987;150:194-202
    60. Kohse G, Ames M, Harling OK. Progress in developing DBTT determinations from miniature disk bend tests. J Nucl Mater 1986;141-143:513-517
    61. Matsushita.T SMLJ. DBTT Estimation of Ferritic Low Alloy Steel in Service Plant by Means of Small Punch Test. In. Seoul: Korean Society ofMechanical Engineers; 1990:259-264
    62. Bulloch JH. The small punch toughness test: some detailed fractographic information. Int J Pres Ves Pip 1995;63:177-194
    63. Foulds J, Viswanathan R. Small punch testing for determining the material toughness of low alloy steel components in service. Journal of Engineering Materials and Technology, Transactions of the ASME 1994;116:457-464
    64.凌祥,郑杨艳,尤英俊,陈玉新. 304不锈钢小冲孔蠕变试验与损伤数值模拟研究.航空材料学报2005
    65.陈玉新.小冲孔蠕变试验技术研究. In:南京工业大学;; 2004
    66.陈玉新,凌祥,涂善东.小冲孔蠕变试验技术.物理测试2004
    67.陈玉新,凌祥,涂善东.小冲孔蠕变试验技术及其应用研究进展.石油化工设备2004
    68. Dobes F, Milic ka K. On the Monkman-grant relation for small punch test data. Materials Science and Engineering A 2002;336:245-248
    69. Mao X, Shoji T, Takahashi H. CHARACTERIZATION OF FRACTURE BEHAVIOR IN SMALL PUNCH TEST BY COMBINED RECRYSTALLIZATION-ETCH METHOD AND RIGID PLASTIC ANALYSIS. J Test Eval 1987;15:30-37
    70. Mao X, Saito M, Takahashi H. Small punch test to predict ductile fracture toughness JIC and brittle fracture toughness KIC. Scripta Metallurgica et Materiala 1991;25:2481-2485
    71. Afzal.K.M NMMA. Computer Modeling of Elastic2Plastic FractureMechanics of Ball Indentation in Ductile Aluminium Sheet. In. Padova; 1995:491-494
    72. Joo Y H HTTI. The use of small punch (bulge) tests to estimate fracture stress in the lower shelf regime. In; 1992:336-342
    73.庄茁,张帆,芩松. ABAQUS非线性有限元分析与实例. In.北京:科学出版社; 2004
    74. Ju JB, Jang JI, Kwon D. Evaluation of fracture toughness by small-punch testing techniques using sharp notched specimens. Int J Pres Ves Pip 2003;80:221-228
    75. Mak J, Wuhrer R, Heness G, et al. Small punch test of advanced in-situ synthesized Ti metal matrixcomposites. Advanced Materials Research 2008;47-50 PART 1:738-741
    76.韩浩,关凯书,李建卫,王志文.小冲杆试验参数的有限元分析.机械强度2004
    77. Bulloch JH. A study concerning material fracture toughness and some small punch test data for low alloy steels. Eng Fail Anal 2004;11:635-653

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700