碳化硼—碳基陶瓷复合材料的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着芯片集成度的不断提高,电子封装向小型化、轻量化和高性能的方向发展,使得电路的工作温度不断上升,系统单位体积发热率不断增大导致系统工作不稳定。为了获得稳定的性能,必须需要改善散热条件,从而导致电子封装在微电子领域的重要性不断提升,伴随着新型电子封装材料的需求也在不断增加。
     B4C陶瓷材料由于其密度低、熔点高、硬度高、抗疲劳性能好、耐腐蚀抗氧化性能强以及热膨胀系数低等特点,在高温结构材料方面应用较多。如果我们能克服碳化硼导热率低的特点,B4C陶瓷材料将会是一个非常有前景的电子封装基板材料。
     为了提高碳化硼陶瓷材料的导热性能,我们采取了高温真空无压浸渗法、埋粉渗Si法、类粉末冶金法制备了碳化硼-碳基陶瓷复合材料,采用无压浸渗法制备了B4C/Cu复合材料,目的是通过在复合材料中引入热导率较高的金属相来提高材料的热导率。
     为了在复合材料中引入更多的液相,我们采用埋粉渗硅法、类粉末冶金法1600°C下获得碳化硼-碳复合陶瓷,然后1200℃、100MPa热等静压下降低材料中存在的气孔或缺陷。
     本文通过高温真空无压烧结碳化硼-石墨复合材料、埋粉渗Si法、类粉末冶金法制备了碳化硼-碳基陶瓷复合材料,并研究了其导热性能,结果表明材料导热性能较纯碳化硼提高不大。为了提高材料的导热性,我们采取无压浸渗法,为了获得好的润湿性,浸渗温度必须在铜熔点1140℃以上,通过1800°C真空无压烧结碳化硼,然后1600°C无压浸渗金属铜,获得了B4C/Cu陶瓷复合材料中B4C体积分数占60%,复合材料致密度90%以上的复合材料,得到比前述工艺更好的导热性,可以预测尽管Cu在复合材料中所占质量分数不多,但只要形成了连通骨架,将会很大程度上提高复合材料的导热性能。同时还研究了材料的导热机制,结果表明,金属铜的含量、碳化硼颗粒大小、成型压力都对复合材料的导热性能有重要影响。
The trend for microelectronic devices has historically been, and will continue to be, toward a smaller feature size, faster speeds, more complexity, higher power, and lower cost. The driving force behind these advances has traditionally been the development of high degree integrated chips. An increasingly dominant factor in microelectronics is electronic packaging, and the materials needed to create the package, because the improving of the performance of thermal dispersion of package materials strongly affects the performance of the electronics.
     Boron carbide (B4C) is a structure material for high temperature and mechanical applications due to its excellent properties such as lower density, elevated hardness values, high melting temperature, good wear and corrosion resistance, high oxidation resistance and low coefficient of thermal expansion.
     B4C ceramic composites could be promising substrates for microelectronic applications if we improve the thermal conductivity of B4C ceramic composites.
     In this paper, several attempts to overcome the drawback of B4C have been made by fabricating composites with a B4C matrix. We tried to fabricate B4C/Cu and B4C-C/Cu and B4C-C/Si to introduce metallic properties into B4C thereby to obtain high thermal conductivity.
     In order to obtain more liquid silicon in the liquid silicon infiltration, Powder embedded molten silicon infiltration is adopted. A mixed powder of B4C and Cu are milled to distribute uniformly, and then the powder is pressure-free sintered at 1600°C to get the performs, then get the high relative density composites by using the hot isostatic pressing treatment to eliminating the defects of performs .
     Metal–ceramic composites, such as B4C-C/Si or B4C/Cu,can be produced by liquid phase sintering of mixed B4C and Si powders or by free infiltration of porous sintered B4C performs by molten Cu . Since good wetting between ceramic and metal phases is required in order to achieve fully infiltrated composites, molten Cu infiltration has to take place above 1140℃. A high density B4C/Cu cermets with 60vol% of B4C and relative density higher than 90% was successfully fabricated .In spite of the low volume fraction of Cu, the B4C/Cu cermets might exhibit higher thermal conductivity than the composites fabricated by the former method which originated from the existence of continuous metallic phase Cu in B4C/Cu cermets.The thermal conductivity of B4C/Cu cermets is affected by the copper content and the size of B4C grains and the value of cold-pressure forming.
引文
[1] Liu JH, Olorunyomi M O, Lu XZ,et al. New nano-thermal interface material for heat removal in electronic packaging.in: Dresden.Electronics System integration Technology Conference .Germany: 1st Electronics Systemintegration Technology Conference, Vols 1 and 2, Proceedings 2006.1~6
    [2]聂存珠,赵乃勤.金属基电子封装复合材料的研究进展.金属热处理, 2003, 28(6):1~5
    [3]黄文迎,周洪涛.先进电子封装技术与材料[J].精细与专用化学品,2006,14(16):1
    [4]张建云,孙良新,王磊等.电子封装SiCp/356Al复合材料制备及热膨胀性能.功能材料,2004,4(35):507~512
    [5] Zhou MJ, Wong SF, Ong CW,et al. Microstructure and mechanical properties of B4C films deposited by ion beam sputtering.Thin Solid Films, 2007, 516(2-4): 336-339
    [6] Alizadeh A, Taheri-Nassaj E, Ehsani N. Synthesis of boron carbide powder by a carbothermic reduction method.Journal of the European Ceramic Society, 2004, 24(10-11): 3227~3234
    [7] Mondal S, Banthia AK.Low-temperature synthetic route for boron carbide. Journal of the European Ceramic Society, 2005, 25(2-3): 287~291
    [8] Deng JX.Sand erosion performance of B4C/(W,Ti)C ceramic blasting nozzles. Advances in Applied Ceramics, 2005, 104(2): 59~64
    [9] Jimbou R, Saidoh M, Nakamura K,et al. New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall. Journal of Nuclear Materials, 1996, 237: 781~786
    [10] Jimbou R, Kodama K, Saidoh M, Suzuki,et al. Thermal conductivity and retention characteristics of composites made of boron carbide and carbon fibers with extremely high thermal conductivity for first wall armour. Journal of NuclearMaterials, 1997, 241: 1175~1179
    [11]金志浩,高积强,乔冠军.工程陶瓷材料(第1版).西安:西安交通大学出版社, 2000.15~20
    [12]吴懿平,丁汉,吴丰顺等.电子制造技术基础(第1版).北京:机械工业出版社, 2005.249~252
    [13]修子扬,张强,武高辉.高体积分数电子封装用铝基复合材料性能研究[J].电子与封装,2006,6(2):16
    [14]张臣,沈能珏.电子封装材料现状与发展.新材料产业, 2003, 112(3): 11
    [15]阳范文,赵耀明. 21世纪我国电子封装行业的发展机遇与挑战.半导体情报, 2001, 38(4): 15~18
    [16]黄强,顾明远,金燕萍.电子封装材料的研究现状[J].材料导报,2000,14(9):28~32.
    [17] Zweben C.Advances in composite materials for thermal management in electronic packaging. JOM, 1998,50(6):47~51
    [18]张海坡,阮建明.电子封装材料及技术发展状况.粉末冶金材料科学与工程, 2003, 8(3): 216-223
    [19]张兆生,卢振亚.电子封装用陶瓷基片材料的研究进展.材料导报, 2008,22(11): 16~20
    [20]何新华,张庆秋.无机介电材料与应用[M].广州:华南理工大学出版社,2005.148
    [21] Alizadeh A, Taheri-Nassaj E, Ehsani N. Synthesis of boron carbide powder by a carbothermic reduction method. Journal of the European Ceramic Society, 2004, 24(10-11): 3227~3234
    [22] Shabashov VA,Kijko VS,Dmitriev IA,et al.The state of iron impurities in a beryllium ceramic as determined from NGRS data[J].Ceram Int,2004,30:1
    [23] Nakano H,Watari K,Kinemuchi Y, et al. Microstructural characterization of high-thermal-conductivity SiC ceramics [J].J Eur Ceram Soc,2004,14(24):3685
    [24]严雪萍,成立,韩庆福等. MEMS器件的封装材料与封装工艺.半导体技术,2006, 31(12): 900~919
    [25] Zweben C. Ultrahigh-thermal-conductivity packaging materials. in: San Jose.21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium.Canada: Twenty-First Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Proceedings 2005. 168~174
    [26] Gosset D, Provot B. Boron carbide as a potential inert matrix. an evaluation. Progress in Nuclear Energy, 2001, 38(3-4): 263~266
    [27] Zhen YH, Li AJ, Yin YS, et al. Reactive and dense sintering of reinforced-toughened B4C matrix composites. Materials Research Bulletin, 2004, 39(11): 1615~1625
    [28] Jimbou R, Saidoh M, Nakamura K, et al. New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall. Journal of Nuclear Materials, 1996, 237: 781~786
    [29] Jimbou R, Kodama K, Saidoh M, et al. Thermal conductivity and retention characteristics of composites made of boron carbide and carbon fibers with extremely high thermal conductivity for first wall armour. Journal of Nuclear Materials, 1997, 241: 1175~1179
    [30]金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社, 2000.30
    [31] Yamada S, Hirao K, Yamauchi Y, et al. Mechanical and electrical properties of B4C-CrB2 ceramics fabricated by liquid phase sintering. Ceramics International, 2003, 29(3): 299~304
    [32] Moriyama M. Mechanical and electrical properties of strong TiB2-B4C ceramic system by hot-pressing. Journal of the Ceramic Society of Japan, 2001, 109(6): 550~556
    [33] Zhen YH, Li AJ, Yin YS, et al. Reactive and dense sintering of reinforced-toughened B4C matrix composites. Materials Research Bulletin, 2004, 39(11): 1615~1625
    [34] Jung JW, Kang SH. Advances in manufacturing boron carbide-aluminum composites. Journal of the American Ceramic Society, 2004, 87(1): 47~54
    [35]李青,华文君,崔岩等.无压浸渗法制备B4C/Al复合材料研究.材料工程, 2003, (4): 17~20
    [36] Yuji Aritaa,Yoshimasa Nishia,Masaki Amayab,Tsuneo Matsuia.Isotope effects on thermal diffusivity of boron carbide. Thermochimica Acta,2000, 39(42):352~353
    [37] Maruyama T, Onose S. Fabrication and thermal conductivity of boron carbide copper cermet. Journal of Nuclear Science and Technology, 1999, 36(4): 380~385
    [38] Jimbou R, Saidoh M, Nakamura K , et al. New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall. Journal of Nuclear Materials, 1996, 237: 781~786
    [39] Miracle DB. Metal matrix composites-From science to technological significance. Composites Science and Technology, 2005, 65(15-16): 2526~2540
    [40] Abenojar J, Velasco F, Martinez MA. Optimization of processing parameters for the Al+10% B4C system obtained by mechanical alloying. Journal of Materials Processing Technology, 2007, 184(1-3): 441~446
    [41] Jiang QC, Wang HY, Ma BX, et al. Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. Journal of Alloys and Compounds, 2005, 386(1-2): 177~181
    [42]裴立宅.碳化硼材料的制备技术.佛山陶瓷2007,4(125):37~41
    [43]翁哲.多元复合碳化硼基金属陶瓷的制备及表征:[硕士学位论文].华中科技大学:华中科技大学图书馆,2008
    [44]李标荣.电子陶瓷工艺原理(第1版).湖北:华中工学院出版社. 1986.43~44
    [45]李荣久.陶瓷-金属复合材料(第1版).北京:冶金工业出版社. 2002. 309~312
    [46] Froumin N Frage,M Aizenshtein MPDariel.Ceramic–metal interaction and wetting phenomena in the B4C/Cu system. Journal of the European Ceramic Society , 2003,23(5):2821~2828
    [47]曲远方.功能陶瓷的物理性能(第1版).北京:化学工业出版社.2007. 242~250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700