B4C/Al抗毁伤复合材料的制备和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1800℃下无压烧结骨架预置体,在真空中或压力为一个大气压的氩气气氛中对骨架熔渗金属Al,可以制备出密度小于2.6g/cm3的复合材料,致密度均超过96%,相对于1atm高纯氩气气氛,真空下铝的熔渗效果更佳。通过调整颗粒级配能够控制复合材料中各物质相的含量从而控制力学性能。
     有机添加剂采用PVB作为粘结剂,PEG2000为增塑剂以及无水乙醇为溶剂,通过轧膜成型制备表面无缺陷的B_4C大规模陶瓷薄片。实验表明,选择粘结剂时避免其因为氢键或缩聚交联是关键。
     B_4C/Al复合材料的抗弯强度主要决定于陶瓷骨架预置体的烧结强度,而陶瓷骨架的强度主要由烧结质量控制。复合材料的弹性模量受烧结质量影响较小,主要与物质相含量有关。实验显示,该工艺下制备的复合材料的断裂韧性随着抗弯强度水平的提高而提高。同时也由于复合材料具有的宏观均匀,微观非均匀的结构,给传统的硬度测量带来较大的偏差,矛盾集中在要求硬度测量时尽可能用较低载荷,同时也要求硬度测量时试样和压头具有大的面积接触从而保证选取点的代表性。
     B_4C/Al复合材料裂纹的起源为内部气孔,断裂过程受裂纹的扩展控制。随着载荷的增加,裂纹的扩展行为经历四个阶段:裂纹在脆性陶瓷相中的快速扩展;裂纹尖端接触金属增韧相钝化;在相界面裂纹偏转或者沿扩展面绕开金属增韧相向后方扩展;形成韧性相桥架,材料失效但保留了韧性相的残余强度。在后三个阶段,增韧相起提高裂纹扩展阻力的作用。
Boron carbide skeletons with tri-dimension co-continuous opening pores were sintered by pressureless sintering methods at 1800℃, then was infiltrated by Al in vacuum environment or in Argon atmosphere. A composite with co-continuous phases of ceramics and metal were successfully fabricated, which was almost fully condensed to the density higher than 96% with mass density lower than 2.6g/cm3.
     Compared with the specimens infiltrated with Al in Argon atmosphere under 1 bar, the quality of the others prepared by infiltration under vacuum condition turns out to be better. By adjusting the sizes distribution of boron carbide particles, the content of each phase of the final products could be under controlled, through which the mechanical properties of those composites could be regulated.
     By choosing proper organic additive, thin sheet of B_4C porous ceramics with large area could be obtained with the method of rolling forming process. PVB has been proved by experiment be an effectual binder as well as PEG2000 as dispersant and plasticizer. With these two kinds of organic additives, the flexibility and the surface quality of green body of the sheets are guaranteed. One principle to pick binders for boron carbide rolling forming is to avoid the polycondensation between the -OH from boric acid and that from the polymer, which causes cross-linked among polymer chains.
     The flexural strength of B_4C/Al composite strongly depends on the strength of boron carbide skeleton, which is determined by sintering quality. The sintering quality has little influence on elastic modulus of those composites. The values of the elastic modulus of those composites are related to the content of material phases. Experiments show that by the preparation technique, the values of fracture toughness of the composites go on higher level while bending strength is higher; which could not gain rational explanation from the classical Griffith Theory. Since the composite has a macro-homogeneous, micro-inhomogeneous structure, some large deviation would be brought about from the traditional hardness measurement. Accurate hardness measurement requires low indenting load, and indenting area being large enough so that we can make sure the statistically representative of the point tested.
     The fracture behavior of B_4C/Al composite is controlled by crack propagation. Crack propagation will experience four stages: rapid crack propagating in brittle ceramic phase; pinning appears when crack tips contact metal toughening phase; crack deflecting at phase interface or propagating backward along the extended surface; toughening phase bridging frame, materials fail but retain the residual strength of the toughening phase. At the last three phases, the resistant of crack propagation comes from toughening phase.
引文
[1]蒋彩霞.超高速撞击碎片云损伤建模. [硕士学位论文],哈尔滨工业大学图书馆, 2007
    [2] Hopkins A. K., Lee T. W. Swift H. F.. Material Phase Transformation Effects upon Performance of Spaced Bumper Systems. Journal of Spacecraft Rockets, 1972, 9: 342-345
    [3] Bjork R. L.. The Physics of Hypervelocity Lethality. International Journal of Impact Engineering, 1987, 5(3): 129-154
    [4]张庆明.超高速碰撞动力学引论.第一版.北京:科学出版社. 2001, 47-48
    [5]王静,王成,宁建国.射流侵彻混凝土靶的靶体阻力计算模型与数值模拟研究,兵工学报, 2008, 29(12): 1409-1416
    [6] Whipple F. L.. Meteorites and space Travel. Astronomical Journal, 1947, 131(17): 1161~1172
    [7] Bouchacourt M., Thevenot F.. The Structure and properties of boron carbide phase. Journal of Less-commet, 1981, 82(11): 227-234
    [8] Jimbou R., Saidoh M., Nakamura, K., Akiba M., et al. New Composite Composed of Boron Carbide and Carbon Fiber with High Thermal Conductivity for First Wall, Journal of Nuclear Materials, 1996, 237(21): 781-786
    [9] Jimbou, R., Kodama K., Saidoh M., Suzuki, Y., et al. Thermal Conductivity and Retention Characteristics of Composites Made of Boron Carbide and Carbon Fibers with Extremely High Thermal Conductivity for First Wall Armour. Journal of Nuclear Materials, 1997, 241(21): 1175-1179
    [10] Maruyama T., Onose S.. Fabrication and Thermal Conductivity of Boron Carbide Copper Cermet. Journal of Nuclear Science and Technology, 1999, 36(4): 380-385
    [11] Jiang Tao, Jin Zhihao, Yang Jianfeng, et al. Mechanical Property and R-curve Behavior of the B4C/BN Ceramics Composites. Materials Science and Engineering: A, 2008, 494(1-2): 203-216
    [12]程卫桃.碳化硼防弹陶瓷工程应用分析.中国陶瓷, 2005, 41(3): 31-32
    [13]章晓波,刘宁.碳化硼材料的性能、制备与应用.硬质合金, 2006, 23(1): 120-125
    [14] Masato Uehara, Ryosuke Shiraishi, Atsushi Nogami, et al. SiC–B4C Composites for Synergistic Enhancement of Thermoelectric Property. Journal of the European Ceramic Society, 2004, 24(2): 409-412
    [15]祝宝军,肖汉宁,陶颖等.碳化硼陶瓷活化烧结技术进展.硬质合金, 2004, 21(2): 116-120
    [16] Schwetz K. A., Grellner W.. The Influence of Carbon on The Microstructure and Properties of Sintered Boron Carbide. Journal of the Less-Common Metals, 1986, 82(1-2): 37-47
    [17] Kumazawa T., Honda T., Zhou Y, et al. Pressureless Sintering of Boron Carbide Ceramics. Journal of the Ceramic Society of Japan, 2008, 34(C): 1319-1321
    [18] Levin L., Frage N.. A novel approach for the preparation of B4C based cermets. International Journal of Refractory Metals and Hard Materials, 2000, 18(2-3): 131-135
    [19] Levin L., Frage N.. The Effect of Ti and TiO2 Addition on the Pressureless Sintering of B4C. Metallurgical and Materials Transactions A, 1999, 30(12): 3201
    [20] Skorokhod V.. Mechanical Properties of Pressureless Sintered Boron Carbide Containing TiB2 Phase. Journal of Materials Science Letters, 1996, 15(15): 1337-1339
    [21] Turov, Yu V.. Structure Formation under Sintering of Powder Iron-boron Carbide Composite. Poroshkovaya Metallurgiya, 1991, 46(6): 25-29.
    [22] Turov, Yu V.. Gas Transport Processes in Sintering of Iron-boron Carbide Powder Composite. Soviet Powder Metallrugy and Metal Ceramics, 1990, 28(8): 618-622.
    [23] Lange R. G. Sintering Kinetics of Pure and Doped Boron Carbide. Materials Science Research, 1980, 13: 311-314
    [24] Moghevsky P., Gutmanans E. Y.. Reactive Formation of Coatings at Boron Carbide Interface with Ti and Cr powder. Journal of the European Ceramics Society, 1995, 15(6): 527-537
    [25] Karl A.. Mechanical Properties of Injection Molded B4C-C Ceramics. Journal of Solid State Chemistry, 1997, 133(1): 68-76
    [26] Dole S. L., Prochazka S., Doremus R.. Microstructural Coarsening during Sintering of Boron Carbide. Journal of American Ceramics Society, 1989, 72(6): 958-966
    [27] Sigl L. S.. Processing and Mechanical Properties of Boron Carbide Sintered with TiC. Journal of the European Ceramic Society, 1998, 18(11): 1521-1529.
    [28]王希军,马南钢,刘恒吉等,碳化硼陶瓷加工工艺的研究,工具技术,2007,41(9):23-25.
    [29]马南钢,王希军,丁华东等,碳化硼厚板的激光切割工艺及其机制,中国激光,2007, 34(10): 1441-1445.
    [30] Navarro C., Zaera R., Cortés R.. Martínez-Casanova M.A. The response of ceramic faced lightweight armours under projectile impact. Structures under Shock and Impact. Composite Science and Technology, 1994, 69(6): 711-717
    [31]翁哲.多元复合碳化硼基金属陶瓷的制备及表征: [硕士学位论文].华中科技大学:华中科技大学图书馆, 2008.
    [32] Pyzik A. J., Beaman D. R.. Al-B-C Phase Development and Affection Mechanical Properties of B4C/Al Derived Composites. Journal of American Ceramics Society, 1999, 78(2): 305-312
    [33] Halverson D. C., Pyzik A. J., Aksay I. A.. Boron-carbide-aluminum and Boron-carbide-reactive Metal Cermets. US Patent, 4605440, 1985. 1-12
    [34] Pyzik A. J., Boron carbide cermet structural materials with high flexure strength. US Patent, 5508120, 1996. 1-8
    [35]王希军,马南钢,丁华东等.改善铝在B4C陶瓷上的润湿性.机械工程材料, 2008, 32(5): 15-19
    [36]丁华东,钱耀川,傅苏黎等.改善Al对B4C润湿性的研究.装甲兵工程学院学报, 2006, 20(2): 88-90
    [37]欧阳鸿武,刘咏,王海兵等.球形粉末堆积密度的计算方法.粉末冶金材料科学与工程, 2002, 7(2): 87-92
    [38] Jung J. W., Kang, S. H.. Advances in manufacturing Boron Carbide-aluminum Composites. Journal of the American Ceramic Society, 2004, 87(1): 47-54
    [39] Lee, B. S., Kang, S.. Low-temperature Processing of B4C-Al Composites via Infiltration Technique. Materials Chemistry and Physics, 2001, 67(1-3): 249-255
    [40] Niimi Hideaki, Yoneda Yasunobu, Sakabe Yukio. Laminated Semiconductor Ceramic Element. Japan Patent. NO.05-121204, 1993. 23-29
    [41] Niimi Hideaki, Yoneda Yasunobu, Sakabe Yukio. Laminated Semiconductor Ceramic Element. Japan Patent. NO.05-144608, 1993. 9-15
    [42] Niimi Hideaki, Yoneda Yasunobu, Sakabe Yukio. Stacked semiconductor ceramic element. Japan Patent. NO.05-159903,1993. 1-8
    [43] Arita Yoko, Niimi Hideaki, Yoneda Yasunobu. Laminated Semiconductor Porcelain Composition. Japan Patent, NO.05-347203,1993. 1-8
    [44] Mihara Kenjirou, Niimi Hideaki, Kikko Toshihiko. Lamination Type Semiconductor Ceramic Element. Japan[p], NO.06-302403. 1-6
    [45] Mitsutoshi Kawamoto, Hirakata. Monolithic Semiconducting Ceramic Electronic Component. US patent, 6680527B1, 2004. 1-20
    [46] Hotza D., Greil P.. Review: Aqueous Tape Casting of Ceramic Powders. Materials Science and Engineering, 1995, 202(A): 206-217
    [47] Ryu B. H., Takahashi M. Suzuki S.. Rheological Characteristics of Aqueous Alumina Slurry for Tape Casting. Journal of Ceramics Society of Japan, 1993, 101(6): 643-648
    [48] Song Jun-kang, Um Woo-sik, Lee Hee-soo.. Effect of Polymer Molecular Weight Variations on PZT Slip for Tape Casting. Journal of European Ceramics Society, 2000, 20(6): 685-688
    [49] Howatt G. N.. Method of Producing High-dielectric High-insulation Ceramic Plates. US patent, 2582993, 1952. 24-34
    [50] Howatt G. N., Breckenzidge, R. G., Brownlow J. M.. Fabrication of thin ceramic sheets for capacitors. Journal of America Ceramics Society. 1947, 30(1): 237-242
    [51] Mistler R. E.. Tape Casting: Past, Present, Potential. America Ceramics Society ?Bullet, 1998, 77(10): 82-86
    [52] Tariolle S., Reynaud C., Thevenot F. et al. Preparation Microstructure and Mechanical Properties of SiC–SiC and B4C–B4C Laminates. Journal of Solid State Chemistry, 2004, 177(1): 487-492
    [53]李花子,王建龙,文湘化等,聚乙烯醇-硼酸固定化方法的改进,环境科学研究, 2002, 15(5): 25-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700