反应超音速火焰喷涂TiC-TiB_2-Ni涂层组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Ti-B_4C-C-Ni为原料,采用反应超音速火焰喷涂技术,制备TiC-TiB_2-Ni涂层,并对涂层合成机理、组织及相关性能进行研究。热力学计算分析表明,自蔓延高温合成TiC-TiB_2-Ni金属陶瓷过程中的绝热燃烧温度随Ni含量的增加而降低,随预热温度的升高而升高。反应超音速火焰喷涂TiC-TiB_2-Ni涂层中除含TiC、TiB_2、Ni相外,还含有一定量的Ti(C、N)、TiO_2、Ti_2O_3和NiO相。喷涂粒子经历孕育、飞行反应、碰撞沉积等阶段后形成涂层,涂层呈典型的层状结构。当TiC/TiB_2比例为1/2时,随Ni含量的增加,涂层组织均匀性增强,夹杂减少,显微硬度降低,结合强度和耐滑动磨损性能呈先升高后降低的变化趋势。Ti-B_4C之间的反应趋势明显大于Ti-C之间的反应趋势。当Ni含量为40%时,随着TiC/TiB_2比例的增加,涂层组织中的夹杂增多,显微硬度和结合强度逐渐降低,涂层耐滑动磨损性能下降。TiB_2引入到TiC涂层中可以显著提高涂层的力学性能。Ni含量和TiC/TiB_2比例的相互作用对涂层性能影响并不显著。当Ni含量为40%,TiC/TiB_2比例为1/2时,涂层的滑动磨损量和冲蚀磨损量均为最小,分别为16.5㎎和76.9㎎。涂层的滑动磨损失效形式主要表现为犁削和脆性剥落。TiC-TiB_2增强NiCrBSi涂层的耐滑动磨损性能明显优于NiCrBSi涂层,而略低于NiCr-Cr_3C_2涂层,涂层组织中出现了明显的金属相与陶瓷相的偏聚现象,均匀性略低于TiC-2TiB_2-40%Ni涂层。冲蚀角度对涂层的耐冲蚀磨损性能有较大影响,在75°角冲蚀作用时,TiC-TiB_2增强NiCrBSi涂层的耐冲蚀磨损性能略低于NiCrBSi涂层和NiCr-Cr_3C_2涂层;而在30°角冲蚀作用时,TiC-TiB_2增强NiCrBSi涂层的耐冲蚀磨损性能优于NiCrBSi涂层。
TiC-TiB_2-Ni coatings were successfully sprayed on the steel substrate with Reactive High Velocity Oxygen Fuel spraying and Ti-B4C-C-Ni reactive system.The reactive principle, microstructure and properties of TiC-TiB_2-Ni coatings’were researched. The analysis of ther- -modynamics of TiC-TiB_2-Ni utilizing the self-propagating high-temperature synthesis reaction of Ti-B4C-C-Ni system shows that adiabatic temperature decreases with the increase of nickel content, and increases with the increase of preheating temperature. Reactive High Velocity Oxygen Fuel spraying TiC-TiB_2-Ni coatings are composed of the major phases of TiC, TiB, Ni, some of Ti(C、N), Ti2O3, TiO2 and NiO. Laminate structure coating was formed after spraying particles experiencing stages of pregnant, flight reaction and colliding.On the condition that TiC/TiB_2 molar ratio is 1/2, TiC-TiB_2-Ni matrix coatings’porosity, lard and micro-hardness decrease gradually with the increase of nickel content. However, their binding strength and wear resistance rise at first and then fall with the increase of nickel content. The reaction of Ti-B4C system is more likely to occur than that of Ti-C system. As nickel content is 40%, coatings’micro-hardness, binding strength and wear resistance decrease with the increase of TiC/TiB_2 ratio. Therefore, the introduction of TiB_2 ceramic phase can significantly improve coatings’mechanical properties. The interaction of nickel content and TiC/TiB_2 molar ratio has a little effect on TiC-TiB_2-Ni coatings’mechanical properties. On the condition that nickel content is 40% and TiC/TiB_2 molar ratio is 1/2, coating’s drying sliding wear weight and erosive loss are the lest of all, which are 16.5㎎ and 76.9㎎ separately. In addition, the drying sliding wear mechanism of coatings’is characterized by ploughing and spalling.TiC-TiB_2 ceramics improves NiCrBSi coating’s wear resistance effectively.There is partial phenomenon between metal and ceramics phases in TiC-TiB_2 reinforced NiCrBSi coating, which decreases coating’s uniformity. Impinging angle has great effect on coatings’erosive wear resistence.At 75°jet angle, erosive wear resistence of TiC-TiB_2 reinforced NiCrBSi coating is worse than those NiCrBSi coating’s and NiCr-Cr_3C_2 coating’s. However, at 30°jet angle, its erosive wear resistence is better than that of NiCrBSi coating’s significantly.
引文
[1] Fauchais P.Reactive thermal plasmas ultrafine partical synthesis and coating deposition[J]. Surface Coatings and Technology, 1977, 97:66-78
    [2]徐滨士,刘世参.表面工程[M].北京:机械工业出版社,2001,7:60-82
    [3]曲敬信,汪泓宏.表面工程手册[M].北京:化学工业出版社,1998:3-9
    [4]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,1995:2-7
    [5]刘长松,殷声.反应热喷涂的发展[J].材料保护,2000,33(1):83-85
    [6]姚海玉,王引真,王海芳,等.Ni对超音速火焰喷涂合成TiC-Ni涂层组织和耐磨性能的影响[J].材料开发与应用,2005,20(5):1-4
    [7]朱春城,曲伟,张幸红.TiC-TiB2复合材料的研究进展[J].材料导报,2003,17(1):48-50
    [8]邓世均.迎接热喷涂工业的兴起[J].材料保护,2000,33(1):78-82
    [9] Kassabji F, Durand J.P, Jacq G.Prospects for the application and development of thermal spraying in 21st century.Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998:1789
    [10]美国焊接学会编.热喷涂原理和应用技术[M].麻毓黄,贾永昌,刘维详译.成都:四川科学技术出版社,1987:50
    [11]王正平,朱胜,徐滨士,等.热喷涂技术在中国的应用与发展[J].第47届国际焊接学会会议论文集[C].1994:327-332
    [12]张明洋.热喷涂技术及其应用[J].冶金设备,1994,3(2):49-54
    [13]李金桂.防腐蚀表面工程技术[M].北京:化学工业出版社,2003:125-225
    [14]王志健,田欣利,胡仲翔.超音速火焰喷涂理论与技术的研究进展[J].兵器材料科学与工程,2002,25(3):63-66
    [15]赵文轸.材料表面工程概论[M].西安:西安交通大学出版社,1998:152
    [16]王汉功,查柏林.KY-HVO/AF多功能超音速火焰喷涂技术研究[J].云南大学学报(自然科学版),2002,24(11):193-196
    [17]隆正隆.多功能超音速火焰喷涂技术通过鉴定[J].机床与液压,2002,28(5):100-103
    [18]赵文轸.超音速火焰喷涂-热喷涂领域的最新技术[J].材料保护,1997,30(12):19-21
    [19] Kreye H.Optimization and Control of the Spray Condition in the jet Kote Process, Ther- -mal Spray Advances in coatings Technology, ASM International, 1988:39
    [20]蔡杰,李文兰,张宝林,等.自蔓延高温合成法(SHS)在陶瓷领域的应用[J].材料导报,1996,11(5):32-35
    [21]殷声,赖和仪.无氧燃烧合成和含氧燃烧合成的进展[J].金属热处理学报,1997,18(3):107-112
    [22]殷声.燃烧合成[M].北京:冶金工业出版社,1999
    [23] Munir Z.A, Reviews in Particulate Materials, 1993(1):41
    [24] Patrick R. Taylor.Titanium carbide-iron composite coatings by reactive plasma spray- -ing of ilmenite[J]. Journal of Alloys and Compounds, 287 (1999):121-125
    [25] Staia M.H, Valente T, Bartuli C, Lewis D.B, etal. Characterization of Cr3C 2-25% NiCr reactive plasma sprayed coatings produced at different pressures[J]. Surface and Coatings Technology, 146-147 (2001):553-562
    [26] Akira Kobayashi.Formation of TiN coatings by gas tunnel type plasma reactive spray- -ing[J]. Surface and Coatings Technology, 2000:152-157
    [27] Galliano F.P, Borgioli F, Bardi U, etal.XRD and XPS study on reactive plasma sprayed titanium titanium nitride coatings[J].Thin Solid Films, 2001:223-229
    [28] Baccia T, Bertaminib L, Ferrari F, etl.Reactive plasma spraying of titanium in nitrogen containing plasma gas. Materials Science and Engineering, A283 (2000):189-195
    [29]杨建桥,何迎春,杨军.氧-乙炔反应热喷涂Al2O3陶瓷涂层性能的研究[J].西北轻工业学院学报,2002,20(2):11-14
    [30]刘长松,黄继华,殷声.成分参数对反应火焰喷涂TiC-Fe涂层的影响[J].中国有色金属学报,2002,12(4):658-661
    [31]胡传折.热喷涂原理及应用[M].北京,中国科学技术出版社,1994
    [32]刘长松,殷声.反应热喷涂的发展[J].材料保护,2000,33(1):83-85
    [33]谢铁兵,刘宪军.电弧喷涂管状丝材新发展及应用[J].表面技术,1999,28(3):22-25
    [34] Dallaire S, Levert H.Synthesis and deposition of TiB2-containing materials by arc-spray- -ing[J]. Surface and Coating Technology, 1991, 50:141-148
    [35]秦颢.管状丝材涂层的硬度与磨粒磨损性能[J].新技术新工艺,2001(10):45-46
    [36]秦颢,杨中元,李学锋,等.电弧喷涂镍铝合金丝材在工程上的应用[J].新技术新工艺,2003,4:37-38
    [37] Takayuki Watanabe, Tadayuki Sato, Atsushi Nezu.Electrode phenolmena investigation of wire arc-spraying for preparation of Ti-Al inter-metallic compounds[J]. Thin Solid Films, 2001:98-103
    [38]马世宁,王建军,杨生美.电弧喷涂7Cr13包芯管状丝材涂层机械性能研究[J].中国表面工程,1995,4:23-26
    [39] Dallaire S, Champagne B.Plasma spray synthesis of TiB2-Fe coatings[J]. Thin Solid Films, 1984, 118:477-483
    [40] Legoux J.G, Dallaire S.Copper-titanium diboride coating[J]. Thermal Spray Technology, 1993, 1(3):35-41
    [41] Ananthapadmanabhan P.V, Patrick R.Titanium carbide-iron composite coatings by reactive plasma spraying of ilmenite[J].Journal of Alloy sand Compounds,1999, 187:111-115
    [42] Pranevicius L, Valatkevicius P, Valincius V, etal.Catalytic behavior of plasma-sprayed Al-Al2O3 coatings doped with metal oxides[J]. Surface and Coatings Technology, 2000,115: 391-395
    [43] Staia M.H, Valente T, Bartuli C, etal.Part I: Characterization of Cr3C2-25%NiCr reactive plasma sprayed coatings produced at different pressures[J]. Surface and Coatings Technolo- -gy, 2001, 146:553-561
    [44] Akira Kobayashi.Formation of TiN coatings by gas tunnel type plasma reactive spraying[J]. Surface and Coatings Technology, 2000, 131:151-157
    [45] Galvanetto E, Galliano F.P, Borgioli F, etal.XRD and XPS study on reactive plasma sprayed titanium-titanium nitride coatings[J]. Thin Solid Films, 2001, 384:113-119
    [46] Liu Chang song, Huang Jihua, Yin Sheng.New process for preparing fine ceramic conta- -ining composite coatings-flame spray synthesis[J]. Journal of University of Science and Technology Beijing, 2000, 9:214-217
    [47]刘长松.火焰热喷涂TiC-Fe涂层的热力学分析[J].金属学报, 2000, 36(1): 62-65
    [48]刘长松.输入焓对火焰喷涂合成TiC-Fe涂层的影响[J].金属学报,2000,36(11): 1210-1212
    [49]刘长松,黄继华,殷声.反应火焰喷涂TiC-Fe涂层的耐磨性能[J].北京科技大学学报, 2001,23(3):240-242
    [50]杨建桥,何迎春,杨军.氧-乙炔反应热喷涂Al2O3陶瓷涂层性能的研究[J].西北轻工业学院学报,2002,4:11-14
    [51]王建江,杜心康,赵忠民,等.粉体聚集状态对自蔓延高温合成(SHS)反应喷涂Al2O3-Al2Cu3涂层的影响[J].金属热处理,2004,29(1):62-65
    [52]王建江,刘宏伟,杜心康.Al2O3复相陶瓷涂层的SHS反应火焰喷涂过程[J].中国表面工程,2004,4:28-31
    [53]王建江,杜心康,王俊英,等. SHS火焰喷涂Al2O3基复相陶瓷涂层机理[J].复合材料学报,2004,21(3):63-68
    [54]王建江,杜心康,付永信,等.自蔓延反应火焰喷涂TiC-TiB2复相陶瓷涂层的水淬熄试验[J].金属热处理,2006,30(5):28-32
    [55] Blatchford M.T, Horlock A.J, Cartney D.G, etal.Production and Characterization of HVOF Sprayed NiCr-TiC Coatings Using SHS Powder Feedstock[A].Proceedings of the International Thermal Spray Conference. Montreal, QUE, United States .2000,5:515-522
    [56] Blatchford M.T, Jones M.,Horlock A.J, etal.Improvements in HVOF sprayed cermet coatings produced from SHS powders[A].Proceedings of the International Thermal Spray Conference.Singapore, 2001, 5:221-230
    [57] Jones M, Horlock A.J, Shipway P.H, etal.Microstructure and abrasive wear behavior of FeCr-TiC coatings deposited by HVOF spraying of SHS powders[J]. Wear, 2001, 5:246-253
    [58] Vaisanen M., Vuoristo P, Mantyla T, etal.Microstructure and Properties of TiC-CrNiMo SHS Spray Powder and Thermally Sprayed Coating[A].Proceedings of the International Thermal Spray Conference, Montreal, QUE, United States, 2000:429-434
    [59] Horlock A.J, McCartney D.G, Shipway P.H, etal.Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis[J]. Materials Science and Engineering, 2002, 10:88-98
    [60] Lotfi B, Shipway P.H, McCartne D.G., etal.Abrasive wear behaviour of Ni(Cr)-TiB2 coatings deposited by HVOF spraying of SHS-derived cermet powders[J]. Wear, 2003, 2:340-349
    [61]姚海玉,王引真,王海芳,等.粉末结构对反应超音速喷涂涂层组织影响的热力学分析[J].中国表面工程,2005,18(3):41-45
    [62]姚海玉,王引真,王海芳,等. Ti-Ni-C系反应超音速火焰喷涂合成研究[J].石油大学学报,2005,29(5):84-88
    [63]姚海玉,王引真,王海芳,等.超音速火焰喷涂合成TiC-Ni涂层滑动磨损性能研究[J].材料热处理学报,2006,27(1):79-83
    [64]石建稳,王引真,李小龙.Mo的添加对反应超音速火焰喷涂合成TiC-Ni金属陶瓷涂层组织和性能的影响[J].硅酸盐通报,2005,19(1):29-31
    [65]朱春城.TiC-TiB2陶瓷基复合材料的自蔓延高温合成研究[D].哈尔滨:哈尔滨工业大学,2004
    [66]朱春城,曲伟,张幸红.TiC-TiB2复合材料的研究进展[J].材料导报,2003, 17(1):48-50
    [67]唐建新,左开芬,胡晓清,等.过渡塑性相工艺制造Ti-B-C复合陶瓷材料[J].清华大学学报(自然科学版),1998,38(12):73-75
    [68]唐建新,曾照强,胡晓清,等.原位合成TiB2-TiC陶瓷基复合材料[J].材料工程,2001,2:19-21
    [69]唐建新,苗赫灌,曾照强.Ti-B4C反应路径分析[J].金属学报,2000,36(8):833-836
    [70]卞玉君,方平伟,张小农,等.增强体TiB和TiC在Ti中的原位生成[J].上海交通大学学报,1998,32(2):120-122
    [71]张小农,吕维洁,张获,等.不连续增强钦基复合材料的原位制备技术研究[J].宇航材料工艺,1998,6:38-41
    [72]吕维洁,张小农,张荻,等.原位合成TiC和TiB2增强钛基复合材料[J].材料工程,1999,8:9-12
    [73]肖汉宁,黄启忠,杨巧勤. C-SiC-TiC-TiB2复合材料的抗氧化性研究[J].无机材料学报,1998,13(4):629-634
    [74]朱心昆,赵昆渝,张家棋.自生复合材料(Al-TiB2-TiC)的燃烧合成研究[J].轻金属,1995,11:55-58
    [75]王业亮,傅正义,王皓,等.TiB2-TiC复相陶瓷的结构与性能研究[J].复合材料学报,2003,20(1):22-26
    [76]王月花,李琳,傅正义,等.基于自蔓延高温合成技术制备TiB2-TiC复相陶瓷[J].中国有色金属学报,1998,8(9):35-38
    [77]蒋军,朱德贵,王良辉.热等静压原位合成TiB2-TiC复相陶瓷材料[J].西南交通大学学报,2004,39(1):131-134
    [78]蒋军,朱德贵,王良辉,等.添加剂镍对原位合成TiB2-TiC复相陶瓷材料性能的影响[J].稀有金属,2003,27(4):421-425
    [79]杨森,钟敏霖,刘文今.激光熔覆制备原位自生TiC颗粒强化Ni基合金复合涂层的研究[J].航空材料学报,2002,22(1):26-30
    [80]孙荣禄,杨贤金.激光熔覆原位合成TiC-TiB2/Ni基金属陶瓷涂层的组织和摩擦磨损性能[J].硅酸盐学报,2003,31(12):1221-1224
    [81]孙荣禄,杨贤金.激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究[J].光学技术,2006,32(2):287-290
    [82]孙荣禄,吕伟鑫,杨贤金.激光熔覆TiC-NiCrBSi金属陶瓷涂层中TiC相的形态及分布特征[J].硅酸盐学报,2005,33(12):1448-1453
    [83]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002:175-800
    [84]朱春城.TiC-TiB2陶瓷基复合材料的自蔓延高温合成研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2004
    [85]唐建新,程继红,曾照强,等.Ti-B4C反应机理和扩散路径的研究[J].机材料学报,2000,10,15(5):884-888
    [86] Yang Ya-feng, Wang Hui-yuan, Liang Yun-hong.Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti -B4C and Ni-Ti-B4C-C systems during casting[J]. Materials Science and Engineering A 445 -446 (2007) 398-404
    [87] Smith R W.Powder Metal Int,1991,25:9
    [88]殷声.燃烧合成[M].北京:冶金工业出版社,1999:112
    [89]郭瑞松,蔡舒.工程结构陶瓷[M].天津:天津大学出版社,2002:214
    [90]张国军.原位反应制备复相陶瓷的研究[M].北京:中国建筑材料科学研究院,1995:77-81
    [91]朱春成,赫晓东,等.TiC-TiB2复相陶瓷的氧化行为[J].材料科学与工艺,2004,12(1):57-60
    [92]王建江,杜心康,王俊英,等. SHS火焰喷涂Al2O3基复相陶瓷涂层机理[J].复合材料学报,2004,21(3):63-68
    [94]斯温MV.陶瓷的结构与性能[M].郭景坤译.北京:科学出版社,1998:172
    [95]姚海玉.反应超音速火焰喷涂合成TiC-Ni金属陶瓷涂层的研究[D].东营:中国石油大学硕士学位论文,2006
    [96]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,1995
    [97] Nisbida M, Hauabuse T. Measurement of residual stress and thermal stress in sprayed coatings [A]. Proceedings of ITSC'95[C].A.Ohmori: Japan High Temperature Society, 1995: 915
    [98]高阳.节能高效等离子喷涂设备的开发和喷涂组织[J].中国表面工程,1999,3:24-27
    [99]翟长生. HEP Jet等离子喷涂Al2O3性能试验研究[J].材料工程,2004,12:47-51
    [100]刘家浚.材料磨损原理及耐磨性[M].北京:清华大学出版社,1993:82
    [101]朱子新,徐滨士,马世宁.高速电弧喷涂Fe-Al/WC复合涂层的摩擦学特性[J].摩擦学学报,2003,23(3):174-179
    [102] Song I, Wang L, Wixom M, etal. Mater. Sci. 35 (2000):2611–2617
    [103] Zhang X.H, Zhu C.C, Qu W, etal.Comp.Sci.Tech.62(2002):2037–2041
    [104]唐建新.过渡塑性相工艺制备Ti-B-C陶瓷基复合材料的机理研究[D].北京:清华大学博士学位论文,1999
    [105] Aoh Jon-ning, Jeng Yau-ren, Chu En-lo, etal.On the wear behavior of surface clad lay- -ers under high temperature[J]. Wear, 1999:1114-11221
    [106] Aoh Jon-ning, Chen Jian-cheng.On the wear characteristics of cobalt base hard facing layer after thermal fatigue and Oxidation[J]. Wear, 2001:611-6201
    [107] ArataY, Ohmori A, Li C.J.Basic study on the properties of plasma sprayed ceramic coa- -tings[J]. Trans JWRI, 1986, 15(2):339-348 68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700