AZ31B合金固相反应型Al_2O_3-TiB_2复相陶瓷涂层制备工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过Al-TiO_2-B_2O_3反应体系在AZ31B表面原位合成了Al_2O_3-TiB_2复相陶瓷涂层。研究了不同的球磨工艺对粉体粒度分布、表面形貌的影响及添加剂Zn粉和Bi_2O_3对反应体系的活化效果;评价了涂层的结合强度、抗热震性能、耐磨性和耐蚀性等性能。获得如下研究成果:
     添加的Zn粉和Bi_2O_3对原始反应体系Al-TiO_2-B_2O_3均有活化效果,二者组成的复合反应体系分别在400℃和500℃都可发生反应,但Bi_2O_3的活化效果更加明显。由此以添加Bi_2O_3复合反应体在500℃制备的涂层,其物相组成为Al_2O_3、TiB_2并含少量未发生反应的Al、TiO_2以及辅料反应生成的Cr_2O_3等。当涂层骨料中Al、TiO_2和B_2O_3物质的量比为10:3:3并添加10%Bi_2O_3,骨料与粘结剂的质量比为1.35:1时,涂层性能最佳;结合强度可达14.78MPa,热震次数可达45次,磨粒磨损相对于基体提高3.56倍,粘着磨损相对于基体提高3.63倍;耐酸性能提高8.17倍,耐盐性能提高6.61倍。封孔后提高倍数更多。
The Al_2O_3-TiB_2 multiphase ceramic coating is in-situ synthesized through Al-TiO_2-B_2O_3 reaction system on AZ31B alloy surface. Study on the influence of the different ball grinding process on powder particle distribution, surface morphology and the activation effect of additives Zn powder and Bi_2O_3 to Al-TiO_2-B_2O_3 reaction system. The coatings′properties such as bond strength, wear resistance, corrosion resistance etc…are evaluated. Research results are obtained as follows:
     Results indicate that there are activation effects after adding Zn powder and Bi_2O_3 to Al-TiO_2-B_2O_3 primitive reaction system. Different complex reaction system respectively at 400℃and 500℃have reacted, but it is more apparent activation effect adding Bi_2O_3. Accordingly, adding Bi_2O_3 complex reaction system is used and the coating formed at 500℃is composed of Al_2O_3, TiB_2 and a few of Al, TiO_2 and Cr_2O_3. When the ratio of Al to TiO_2 and to B_2O_3 is 10:3:3 and adding 10% Bi_2O_3 in amount of substance and of the aggregate to adhesive is 1.35:1 in weight, the coating is the best. Its bonding strength can reach 14.78MPa, thermal shock times can reach 45, abrasive wear resistance improves 3.56 times than the base AZ31B, adhesive wear resistance improves 3.63 times than the base AZ31B, acid resistance performance improves 8.17 times and salt resistance performance improves 6.61 times. It is improved more times after sealing hole.
引文
[1]曾爱香.金属基陶瓷涂层的制备和应用及发展[J].表面技术,1999,28(1):1~3.
    [2]刘福田,李兆前,黄传真.金属陶瓷复合涂层技术[J].济南大学学报(自然科学版),2002,16(1):84~91.
    [3]邓世钧.高性能陶瓷涂层技术[J].表面工程资讯.2003,3(13):4~5.
    [4]陈建康,屠平亮,周建初.用热化学反应法制备金属陶瓷涂层—涂层技术值得重视的新发展[J].材料工程,1991,(4):17~20.
    [5]万怡灶,罗红林,周贤良.用热化学反应法制备金属陶瓷涂层工艺的研究[J].材料工程,1997(10):25~28.
    [6]穆柏春,张丽娟,谷志刚.耐热防腐蚀复相陶瓷涂层的研究[J].材料保护,1997,30(6):24~26.
    [7]李浩群,邵天敏,杨政等.铝合金基体上Al2O3基陶瓷涂层形成机理[J].清华大学学报,2000,40(4):92~95.
    [8]高红.热化学反应法制备SiO2基纳米复合陶瓷涂层的制各及工艺研究:[D].阜新:辽宁工程技术大学材料加工工程系,2006.
    [9]孙方红.热化学反应法Al2O3基纳米复合陶瓷涂层的制备及性能研究:[D].阜新:辽宁工程技术大学材料加工工程系,2006.
    [10]马壮,李晓,袁晓光,时海芳.镁合金热化学反应SiO2基纳米陶瓷涂层的性能研究[J].表面技术,2008,(3).
    [11]马壮,吕文涛,时海芳,李智超.镁合金热化学反应法制备的Al2O3基陶瓷涂层的性能研究[J].热加工工艺,2007,(24).
    [12]魏宝佳.固相反应型玻璃质陶瓷涂层制备工艺及性能研究[D].辽宁工程技术大学:辽宁工程技术大学,2008.
    [13]马壮,魏宝佳,李智超.金属表面热化学反应法陶瓷涂层研究现状及工艺名称商榷[J].硅酸盐通报,2007,17(5):991~992.
    [14]陆佩文.无机材料科学基础[M].武汉:武汉工业大学出版社,1999,229~252.
    [15]张其土.无机材料科学基础[M].上海:华东理工大学出版社,2007,236.
    [16]宋晓岚,黄学辉.无机材料科学基础[M].北京:化学工业出版社,2009,229~350.
    [17]贺跃辉,黄伯云,曲造辉,刘业翔.渗碳处理提高TiAl基合金高温抗氧化性[J].材料研究学报,1996,(6).
    [18]马保国,穆松,蹇守卫,余蔓丽.磷渣基复合矿化剂对水泥生料易烧性影响的研究[J].硅酸盐通报,2007,(1).
    [19]苏达根,周新涛.钨尾矿作环保型水泥熟料矿化剂研究[J].中国钨业,2007,(2).
    [20]刘景华.矿化剂低温烧成的水泥压蒸安定性[J].黑龙江科技信息,2002,(8).
    [21] N.B.Singh,何其捷.掺有氟硅酸钠矿化剂的熟料在立窑的煅烧过程研究[J].国外建材科技,1994,(1).
    [22]王勇.电解锰渣作为水泥矿化剂的研究[J].混凝土,2010,(8).
    [23]钱惠蓉,荣传勋.我厂用工业废渣作复合矿化剂的体会[J].水泥技术,1988,(1).
    [24]顾幸勇,李霞,刘琪,陈云霞,李月明.水热法制备ZrO2(3Y)纳米粉体中复合矿化剂的作用[J].陶瓷学报,2005,(4).
    [25]付克明,杨林.矿化剂的矿化机理、掺加方法和对水泥熟料产量、质量的影响[J].焦作大学学报,2000,(2).
    [26]韦志仁,强勇,郭树青,彭翔宇,高平,田帅,董国义.温度及矿化剂对水热法合成In2O3晶体的影响[J].人工晶体学报,2010,(S1).
    [27]夏傲,丁前,苗鸿雁.矿化剂对水热合成铌酸锶钡粉体的影响[J].中国陶瓷,2009,(10).
    [28]韦志仁,董国义,王立明,李志强,张华伟.矿化剂浓度和温度对水热法合成氧化锌晶体形态的影响[J].发光学报,2003,(4).
    [29]谢艳春.SHS法制备Al2O3+TiB2+FeA(lNiAl)复合材料的研究[D].山东科技大学,2007:5-20.
    [30] Schmid H K,Aslan M,Assmann S, etal.Microstructural characterization of Al2O3-SiC nanocomposites .Journal of the European Ceramic Society,1998,18,18:39~49.
    [31]王桂松,耿林,王德尊,张世振.反应热压(Al2O3+TiB2+Al3Ti)/Al复合材料的组织形成机制[J].中国有色金属学报,2004,14(2):228~232.
    [32]张文静.燃烧合成法制备TiB2/Al2O3复相陶瓷的研究[D].山东科技大学,2005:5~20.
    [33] Y. Li,N.Li and G.Ruan.Synthesis of Al2O3-TiB2 Ceramic Composites[J].Am.Ceram Soc. Bull.Jan 2005(8):9201~9204.
    [34]董仕节,史耀武,雷永平,Y.Zhou.(TiB2+A12O3)增强铜基复合材料的研究[J].材料工程,2002(6):6~11.
    [35] In-Hyuck Song Mi-Jin Kim Hai-DooKim and Young-Wook Kim.Processing of microcellular cordierite ceramics from a preceramic polymer .Scripta Materialia,2006,54 (8):1521~1525.
    [36] Gary A G,Adams J W.Processing and ballistic performance of Al2O3/TiB2 composites.US Army Research Lab Aberdeen Proving Ground Md 2005 ARL-TR-55~58.
    [37] Pabst G E.Porous ceramics prepared using poppy seed as a pore-forming agent .Ceramics International,2006,19 (5):19~23.
    [38]王晓峰,王惜宝.TiB2金属陶瓷及其涂层制备技术的研究进展[J].材料保护,2002,35(12):5-7.
    [39]赵金龙,董国峰,高钦.(Al2O3+TiB2)/Al复合陶瓷与Al连接的研究[J].大连理工大学学报,1997,(6):128~130.
    [40] A.M.Locci,R.Orrù,G.Cao,Z.A.Munir.Simultaneous Spark Plasma Synthesis and Densification of TiC-TiB2 Composites.J. Am. Ceram.Soc, 2006,89(3):848~855.
    [41]陈敬超,孙加林,孙可伟.40Cr钢表面改性覆层的磨料磨损研究[J].理化检验.物理分册,1998,(7):4~6.
    [42] Wang Xibao,Liang Yong,Yang Songlan.Formation of TiB2 whiskers in laserclad Fe2Ti2B coatings [J].Surface and Coatings Technology,2001,137:209~216.
    [43]孙荣禄,杨德庄,董尚利等.钛合金表面NiCrBSi激光熔覆层的组织与耐磨性研究[J].应用激光,2000,20(5):261~263.
    [44]孙荣禄,郭立新,董尚利等.钛合金表面激光熔覆NiCrBSiC合金涂层的微观组织[J].佳木斯大学学报(自然科学版),2000,18(3):214~218.
    [45]孙荣禄,杨德庄,郭立新等.激光工艺参数对钛合金表面NiCrBSi合金熔覆层组织及硬度的影响[J].光学技术,2001,27(1):34~36.
    [46]孙荣禄,杨德庄,董尚利等.基体材料对NiCrBSi激光熔覆层组织及硬度的影响[J].激光杂志,2001,22(1):38~40.
    [47]马壮,集兴伟,林鹏,董世知,李智超.Q235钢固相反应型Al2O3-TiB2复相陶瓷涂层制备及性能研究[J].煤炭学报,2010,(6).
    [48]马壮,黄圣玲,李威,李智超.固相反应型SiO2基陶瓷涂层耐磨性研究[J].兵器材料科学与工程,2010,(1).
    [49]陈振华.镁合金[M].北京:化学工业出版社.2004.
    [50]曲文超.镁合金、纯铜表面反应热喷涂陶瓷涂层制备工艺及性能研究[D].辽宁工程技术大学:辽宁工程技术大学,2008.
    [51] Froes F H, Eliezer D, Aghion E. Proceedings of the second israeli internationalconference on magnesium science & technology[C].Israel:Dead Sea,2000.43.
    [52]马壮,集兴伟,林鹏,董世知,李智超.复相陶瓷涂层Al-TiO2-B2O3体系热力学与动力学分析[J].硅酸盐通报,2010,(3).
    [53]侯永改,彭进,乔桂英,丁春生,邹文俊,廖波.CBN研磨盘用陶瓷结合剂的研究[J].金刚石与磨料磨具工程,2009,(1).
    [54]陈建.合金元素影响铝/陶瓷界面润湿性的研究现状[J].兵器材料科学与工程,1999,22(4),53 ~58.
    [55]侯永改,王改民,荆运杰.金属及合金粉对低温陶瓷结合剂性能影响[J].中国陶瓷,2002,(4).
    [56]邵鑫,毛绍兰,高金堂.耐高温胶粘剂的研究发展概况[J].中国胶粘剂,1999,6:25~29.
    [57]矫彩山,王正平,张伟君.很有发展前途的无机胶粘剂[J].化学与粘合,1999,4:202~205.
    [58]赵越超,高红.料浆法陶瓷涂层用胶粘剂研究现状[J].中国胶粘剂,2006,11(15),5.
    [59] J.S.Benja11in.DisPersion strengthened superalloys by mechanical alloying [J]. Metall.Trans.A,(1970),l(10):2943~2951.
    [60] Woon Tae Jeong,Kyung Sub Lee.Electrochemical Cycling Behavior of LiCoO2 Cathode Prepared By Mechanical Alloying of Hydroxides.Journal of Power Sources, 2002, 104 :195~200.
    [61]蔡艳华,彭汝芳,马冬梅,朱根华,楚士晋.机械力化学应用研究进展[J].无机盐工业.2008,(08):96~100.
    [62] KOSOVA N V,UVAROV N F,DEVYATKINAET,etal.Mechanochemical synthesis of LiMn2O4 cathode material for lithium batteries.Solid State Ionics,2000,13(5):107~114.
    [63]周林玉,刘莹,郭纪林,许增祥,左敬博.金属热喷涂涂层耐酸封孔剂及封孔材料配比的优化[J].南昌大学学报(工科版),2009,(3).
    [64] Y.Wang,W.Tian,Y.Yang. Thermal shock behavior of nanostructured and conventional Al2O3/13wt% TiO2 coatings fabricated by plasma spraying[J].Surface & Coatings Technology, 2007, 201 :7746~7754.
    [65] Du Xinkang,Wang Jianjiang.Study of synthesis of lined ceramic layer in pipes produced by thermit SHS process[J].Interlournal of SHS,2000,9(2):223~230.
    [66]张玉军,张伟儒,(等).结构陶瓷材料及其应用[M].北京:化学工业出版社,2005.3.
    [67]寇生中.XD反应合成Al2O3p-TiCp/Al复合材料的热力学及动力学过程的研究[D].兰州理工大学: 2005,20(04):71~80.
    [68] LI Jing-Feng,MATSUKI Toshiro,WATANABE Ryuzo. Combustion reaction during mechanical alloying synthesis of Ti3SiC2ceramics from3Ti/Si/2C powder mixture .J Am Ceram Soc,2005,5(5) :1318~1320.
    [69] Li Shibo,Zhai Hongxiang. Synthesis and reaction mechanism of Ti3SiC2by mechanical alloying of elemental Ti,Si,and C pow-ders.Journal of the American Ceramic Society,2005,88 (8):2092~2098.
    [70]宋贵宏,杜昊,贺春林.硬质与超硬涂层[M].北京:化学工业出版社,2007.
    [71]邓世均等.高性能陶瓷涂层[M].第一版.北京:化学工业出版社,2004.
    [72]关岩,何平,徐晓伟.各种添加剂对低温陶瓷结合剂性能的影响[J].辽宁科技大学学报,2008,(Z1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700