反应喷涂制备Al_2O_3-TiB_2复相涂层的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在铝合金表面制备复相陶瓷涂层是提高铝合金耐磨性的一种方法。等离子喷涂制备Al_2O_3-TiB_2复相涂层的方法是将混合粉末机械合金化后,利用等离子喷涂在基体表面原位合成复相涂层。它的显著优点是陶瓷相颗粒较小,分布均匀,强化效果好。
     本文重点研究铝合金表面反应喷涂制备Al_2O_3-TiB_2复相涂层喷涂粉末特性、反应喷涂制备Al_2O_3-TiB_2复相涂层工艺和涂层形成机理。用X射线衍射仪、扫描电镜分析了机械合金化后混合粉末的物相组成,比较了不同机械合金化时间混合粉末的变化,以及对喷涂所得涂层成分的影响。由于混合粉末熔点差异较大,采用氧-乙炔火焰喷涂(低温条件)和等离子喷涂(高温条件)两种喷涂方法,研究不同温度、喷涂距离及添加粘结剂对涂层组织、涂层和基体间结合强度、涂层致密度的影响,研究反应喷涂、复相涂层的形成机理;在此基础上优化出最佳的反应喷涂制备、复相涂层的成分配比及喷涂工艺并测定了涂层的显微硬度。从上述试验结果得出以下结论:
     未球磨的混合粉末进行喷涂,所得涂层中只含有Al,TiO2,B_2O和B_2O_3,无Al_2O_3和TiB_2相,说明在喷涂过程中没有反应发生;球磨后的混合粉末喷涂可以得到含Al_2O_3和TiB_2的复相涂层。两种喷涂方法都可得到含Al_2O_3和TiB_2相的涂层。氧-乙炔火焰喷涂得到的复相涂层中Al_2O_3及TiB_2颗粒较少,等离子喷涂得到的涂层中Al_2O_3及TiB_2颗粒较多,但涂层的致密度差,自身结合强度不高。喷涂反应发生在混合粉末喷涂飞行过程中,喷涂的最佳距离为350mm。在混合粉末中添加Al粉作为粘结剂,添加20%粘结剂的涂层结合效果好,Al_2O_3及TiB_2颗粒分布均匀,涂层致密度高。复相涂层最佳制备方案为等离子喷涂含20%粘结剂的球磨粉末,所得涂层最高显微硬度可达1300HV_(0.1)。
Prepared multiphase ceramic coatings on the surface of aluminum alloy is a way toimprove wear resistance of aluminum alloy. In this work, the mixed powders wereprepared by mechanical alloying,and the Al_2O_3-TiB_2composite coating was obtainedby plasma spraying.The major excellences exist in small ceramic phase particles, evenlydistributed and high bonding strength in coating.
     In this dissertation, characteristics with spraying powder,prepared process andformation mechanism of Al_2O_3-TiB_2composite coating were studied.The influences ofmechanical alloying and spraying temperature on the phase constituent andmicrostructure of the composite were analyzed by X-ray diffractometry(XRD) andscanning electron microscopy(SEM).The oxygen-acetylene flame spraying (lowtemperature) and plasma spraying (high-temperature conditions) were used to obtainedcoatings because mixture melting points of powders were different. The affect of spraytemperature, spray distance and binder for microstructures and properties of thepreparated coating was analysed. From above mentioned experimental results thefallowing can be concluded:
     There are only Al,TiO_2,B_2O and B_2O_3phases in coating was obtained withunmilled mixed powder by flame spraying.Therefore,no reaction has been happen insparying.It is found that coating obtained with milled powder by flame spraying andplasma spraying results in an Al_2O_3and TiB_2phase,which was confirmed by XRDmeasurements.The coating obtained by flame spraying has little hard particles of Al_2O_3and TiB_2,and the bonding strength of coating obtained by plasma spraying was low.The spray reactions of mixed powder had take place during flight course, and the bestspray distance was350mm.Through the analysis of SEM,coating without binder wasdiscontinuous and difference density; coating with20%binder has a good bondingeffect and grains of Al_2O_3and TiB_2well-distributed. The maximum microhardness ofcoating was1300HV0.1。
引文
[1]潘复生等.铝合金及应用[M].北京:化学工业出版社,2006:1-7.
    [2]刘静安等.铝合金材料应用与开发[M].北京:冶金工艺出版社,2011:7-17.
    [3]潘复生等.铝合金及应用[M].北京:化学工业出版社,2006:60-90.
    [4] Shinoda Takeshi,Kawai Mika.Surface modification by novel friction thermomeeh-anical process of aluminum alloy castings[J].Surface and CoatingsTechnology,2003(169-170):456-459.
    [5]蒋百灵,张先锋.铝合金表面陶瓷层耐磨性能[J].金属热处理,2004,29(1):23-28
    [6] Yerokhin A L,Nie X,Leyland A,et a1.Ultra.hard ceramic coatings fabricated throughmicroarc oxidation on aluminium alloy[J].Applied Surface Science,2005,(252):1545-1552.
    [7] Man H C,Zhang S,Yue T M,et a1.Laser surface alloying of NiCrSiB on A16061aluminiumalloy[J].Surface and Coatings Technology,2001,(148):136-142.
    [8]魏广玲,潘学民.6061铝合金激光熔覆铜基复合涂层组织及磨损性能[J].特种铸造及有色合金,2010,30:372-375.
    [9]符跃春.A6063铝合金表面激光熔覆AlTi涂层[J].特种铸造及有色合金,2010,30(1):15-17.
    [10]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社,2002:211
    [11] Rajendran R,Sha W,Elansezhian R.Abrasive wear resistance of electroless Ni-Pcoated aluminium after post treatment[J].Surface&Coatings Technology,2010,(205):766-772.
    [12] Abdel Hamid Z.Development of electroless nickel phosphorous composite depositsfor weaF resistance of6061aluminum alloy[J].Materials Letters,2002,(57):720-726.
    [13] Delaunois F, Petitjean J P, Lienard P, et a1.Autocatalyric electrolessnickel—boron plating on light alloys[J].Surface&Coatings Technology,2000,(124):201-209.
    [14] Vitry V,Delaunois F.Mechanical properties and scratch test resistance of nicke.boron coated aluminium alloy after heat treatmentsl[J]Surface&CoatingsTechnology,2008,(202)316-324.
    [15] Delaunois F,Lienard P.Heat treatments for electroless nickel-boron platingon aluminium alloys[J].Surface and Coatings Technology,2002,(160):239-248.
    [16]毛祖国,曾月莲,何杰.高硅铝合金电镀工艺[J].材料保护,2001,34(7):29-30.
    [17]吴智勇,黄骁群,陈亨远.铝合金电镀工艺研究[J].材料保护,2003,36(1):42-43.
    [18] Tillous K,Toll Duchanoy T,Bauer Grosse E,et a1.Microstructure and phasecomposition of microarc oxidation surface layers formed on aluminium and itsalloys2214-T6and7050-T74[J].Surface&Coatings Technology,2009,(203):2969-2973.
    [19] Wang Deqing,Shi Ziyuan,Kou Tangshan.Composite plating of hard chromium onaluminum substrate[J].Surface&Coatings Technology,2005,(191):324-329.
    [20] Wen tao Wang.Influences of Ce addition on the microstructures and mechanicalproperties of2519A aluminum alloy plate[J].Journalof Alloys and Compounds,2010,(491):366-371.
    [21]曹华珍等.粉末冶金Ti-Al合金表面多孔氧化膜的制备[J].粉末冶金材料科学与工程,2010(01):49-53.
    [22]余大江.MoAl2O3复合材料的制备及耐磨耐腐蚀性研究[J].山东大学,2009:
    [23]强颖怀等.SiCp增强金属基复合材料的研究进展[J].轻金属,2003(07):49-51.
    [24]吕一中.金属基复合材料的发展趋势[J].防灾技术高等专科学校报,2006(2):109-111.
    [25]胥锴等.原位自生金属基复合材料的制备方法[J].有色金属加工,2008(06):14-18.
    [26]顾琳.ZL301铸造铝合金硬质阳极氧化工艺研究[J].表面技术,2008,37(3):55-57.
    [27]杜春风等.原位制备技术的现状及发展[J].热处理,2010,25(6):11-14.
    [28]张大童等.铝基复合材料研究进展[J].轻合金加工技术,2000(01):5-10.
    [29]任莹.原位合成碳化钨增强金属陶瓷涂层的基础研究[J].天津大学,2008.
    [30]马彦忱.颗粒增强金属基复合材料[J].江苏冶金,2004(01):54-57.
    [31]郝斌等.颗粒增强金属基复合材料制备工艺评述[J].热加工工艺,2005(04):62-66.
    [32]王华明.铸件表面复合合金层组织与性能的研究[D].西安:西安交通大学,1986.
    [33]张树瑜等.原位TiB2颗粒增强铝基复合材料形核机制及转变动力学[J].材料导报,2002(08):68-70.
    [34]阴瑜娟等.(TiB2+Al3Ti)/ZL101原位复合材料的强化机理[J].热加工工艺,2006(12):12-15.
    [35]马强等.TiB2颗粒对铝基复合材料耐磨性的影响[J].材料导报,2003(11):85-86
    [36]张文静等.燃烧合成法制备TiB2-Al2O3复相陶瓷的研究[J].山东陶瓷,2006(11):3-5
    [37]王桂松等.反应热压(Al2O3+TiB2+Al3Ti)/Al复合材料的低周疲劳行为[J].复合材料学报,2004(04):33-35.
    [38]孙牧.LY12铝合金Ni/A1-Al2O3等离子复合涂层组织和性能的研究[J].兵器材料科学与工程,1990(10):6-11.
    [39]徐启明,薛兆栋.铝合金基体等离子喷涂绝热材料中间层的选择研究[J].四川工业学院学报,1991(10):233-237.
    [40]方学锋,王泽华,夏志敏等.铝基体等离子喷涂NiCrAlCo-Y2O3涂层工艺的优化[J].机械工程材料,2006(30):7-9.
    [41]李言祥,马剑.铝基体表面等离子喷涂后激光二次熔覆陶瓷层的研究[J].应用激光,1998(18):245-248.
    [42]梁工英,贺柏龄,苏俊义等.铝合金激光熔覆Ni-WC涂层的组织及耐磨性[J].中国激光,1998(25):950-954.
    [43]赵文轸,苏勋加,王汉功.铝表面激光熔覆硬质合金层的结合强度[J].兵器材料科学与工程,1997(20):41-46.
    [44]王东生等.TiAl合金表面激光重熔Al2O3—13wt%TiO2复合陶瓷涂层组织结构[J].航空材料学报,2008(6):56-59
    [45] Ozkan Sarikaya a,Selahaddin Anik a,Salim Aslanlar et al.Al–Si/B4C compositecoatings on Al–Si substrate by plasma spray technique[J].Materials and Design,28(2007)2443-2449.
    [46] E. Sansoucy a, P. Marcoux b, L. Ajdelsztajn et al. Properties of SiC-reinforcedaluminum alloy coatings produced by the cold gas dynamic sprayingprocess[J].Surface&Coatings Technology,202(2008)3988-3996.
    [47] T.Laha. Interfacial phenomena in thermally sprayed multiwalled carbon nanotubereinforced aluminum nanocomposite[J].Acta Materialia,55(2007)1059–1066.
    [48]时海芳等.铝合金陶瓷涂层的研究进展[J].表面技术,2007(06):74-4-76
    [49]沈国军.等离子喷涂Al2O3基涂层的组织和耐腐蚀性能研究[J].河海大学,2008
    [50] Yijie Zhang,Naiheng Ma.Effect of particulate/Al interface on the dampingbehavior of in situ TiB2reinforced aluminium composite[J].Materialsletters,61(2001):3273-3275.
    [51]谢艳春等.基于自蔓延高温合成技术制备TiB2/Al2O3复相陶瓷[J].新技术新工艺,2006(09):79-81.
    [52]张文静等.燃烧合成法制备TiB2-Al2O3复相陶瓷的组织结构及形成过程分析[J].材料科学与工艺,2007(02):294-296.
    [53]孙红亮.原位合成TiB2-TiCx陶瓷及其氧化性能研究[J].西南交通大学,2005
    [54]马壮等.复相陶瓷涂层Al-TiO2-B2O3体系热力学与动力学分析[J].硅酸盐通报,2010(03):582-587.
    [55]李靓等.自蔓延高温合成Al2O3-TiB2多孔陶瓷[J].科学技术与程,2008(07):1791-1794
    [56]王子翀.反应等离子喷涂Fe-Al2O3-FeAl2O4复合涂层形成机理的研究[J].河北工业大学,2010.
    [57]程正勇等.热喷涂技术及陶瓷涂层[J].热处理,2003(11):5-8.
    [58]程汉池等.轴向送粉等离子喷涂制备TiB2/Al2O3复合陶瓷涂层[J].硅酸盐学报,2007(08):1097-1102.
    [59]程汉池等.纳米粉末对轴向等离子喷涂TiB2-Al2O3复合涂层的影响[J].焊接学报,2008(01):40-44.
    [60]卢果等.6063铝合金表面等离子喷涂Al2O3/TiO2纳米陶瓷涂层组织与性能研究[J].热加工工艺,2009(16):56-59.
    [61]方双全等.自蔓延高温合成TiB2/Al2O3复合材料的力学性能[J].稀有金属材料与工程,2007
    [62]马壮等.热化学反应法制备纳米复合陶瓷涂层及性能研究[J].陶瓷学报,2007(02):112-116.
    [63] Cagri Tekmen,Yoshiki Tsunekawa,.Effect of plasma spray parameters on in-flightparticle characteristics and in-situ alumina formation[J].Surface&CoatingsTechnology203(2008):223-228
    [64]曹芬燕等.热喷涂纳米陶瓷涂层的研究现状及进展[J].陶瓷学报,2011,32(02):302-306.
    [65]刘耀斌等.陶瓷涂层热喷涂制备工艺[J].现代技术陶瓷,2004(01):45-48.
    [66]于加洋.反应热喷涂技术的研究进展[J].黑龙江科技信息,2007
    [67] HuiYuan Liu,Ji Hua Huang. Reactive flame spraying of TiC-Fe cermet coating usingasphalt as a carbonaceous precursor[J]. Surface&Coatings Technology,200(2006):5328-5333.
    [68] Wenran Feng,Dianran Yan.Reactive plasma sprayed TiN coating and its tribologicalproperties[J].Wear,258(2005):806-811.
    [69]刘长松,李志文,黄继华.反应火焰喷涂TiC/Fe复合涂层的动力学[J].中国有色金属学报,2006,16(9):1522-1526.
    [70]刘宏伟,张龙,王建江等.Al-CuO系SHS反应火焰喷涂涂层及副产物的形成与转变[J].热加工工艺,2006,35(30):14-17.
    [71]王建江,杜心康,王俊英等.SHS火焰喷涂Al2O3基复相陶瓷涂层机理[J].复合材料学报,2004,21(3):63-68.
    [72]朱警雷等.反应爆炸喷涂制备TiC/Fe-Ni金属陶瓷复合涂层[J].稀有金属材料与工程,2008(07):1313-1316.
    [73]石春艳等.反应热喷涂法制备陶瓷涂层的研究[J].佳木斯大学学报自然科学版,2011,29(03):392-395.
    [74]马运安等.改善5052合金软状态板材深冲性能的工艺革新[J].轻合金加工技,2005(07):25-26.
    [75]杨建桥等.热喷涂制备纳米涂层的研究进展[J].材料导报,2009(02):45-47.
    [76]刘扬.等离子喷涂提高铸铝压铸模性能的研究[J].河北农业大学,2001
    [77]徐滨士.热喷涂技术的现状和发展[J].中国表面工程,1991(01):1-27.
    [78]王德志,张厚安,刘心宇等.球磨工艺对MoSi2机械合金化过程的影响[J].稀有金属与硬质合金,2001(02):15-19.
    [79]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006:29-41.
    [80]陈振华.现代粉末冶金技术[M].北京:化学工业出版社,2007:159-161.
    [81]徐宾士等.材料表面工程[M].哈尔滨:哈尔滨工业大学出版社,2005:16-29.
    [82]黎樵燊,朱又春.金属表面热喷涂技术[M].北京:化学工业出版社,2009:279-284.
    [83]王建江等.自蔓延反应火焰喷涂TiC-TiB2复相陶瓷涂层的水淬熄试验[J].金属热处理,2006,31(05):28-32
    [84]梁英教,车荫昌.无机物热力学数据手册[K].沈阳:东北大学出版社,1993:241-269.
    [85] Bariowic,Jones H.Rainforth W M.Evolution and microstructure and hardening,andthe role of Al3Ti coarsening,during extended thermal treatment in mechanicallyalloyed Al-Ti-O based materials[J].Acta Mater,2001,1(49):209-224.
    [86] Nakamura M,Kimura K.Elastic constants of TiAls and ZrAl3single crystals[J].Mater.Sci,1991,2(16):208-2222.
    [87] Welham N J.Mechanical activation of the solid state reaction between Al andTiO2[J].Mater.Sci.Eng,1998,A255L:81-90.
    [88] Peng H X,Wang D Z,Geng L,et a1.Evaluation of the microstructure of in situreaction between Al3Ti-A12O3-Al composite[J].Scripta Metall.Mater.1997,37:199-204.
    [89] MA Z Y,LI J H,LI S X,et a1.Property microstructure correlation in in situ formedAl2O3,TiB2and Al3Ti mixture-reinforced aluminum composites [J]. Mater.Sci,1996,31:741-744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700