反应火焰喷涂Mo_2FeB_2金属陶瓷涂层的组织和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反应喷涂是目前制备陶瓷/金属涂层的一项新技术,它是自蔓延高温合成与热喷涂技术相结合而发展起来的。其最大特点是,涂层中的陶瓷相不是预先加入到喷涂原料中,而是喷涂粉末在飞行过程中经历一系列放热反应而获得的。获得的陶瓷相分布均匀,粒度小,不存在陶瓷/金属结合界面污染问题,涂层的性能好,并且工序简单、经济。
     本文基于反应喷涂原理,以FeB、Mo、Fe等粉末为原料,采用反应火焰喷涂在钢表面合成Mo2FeB2金属陶瓷涂层;以Fe、Al粉末为原料喷涂,形成Fe-Al金属间化合物作为粘结底层。用扫描电镜、能谱仪、X射线衍射仪和硬度计分析了不同热处理温度和粘结底层含铝量不同对涂层显微组织和界面结构的影响,研究了涂层的形成机制。用粘结拉伸法,测量了粘结底层与钢基体间的结合强度。比较了三元硼化物基金属陶瓷涂层试样和钢基体的耐磨性,并分析涂层的耐磨机理。用Uddeholm法对三元硼化物基金属陶瓷涂层试样和钢基体进行热疲劳试验,分析和对比有涂层试样和无涂层试样的表面热疲劳裂纹形貌,探讨涂层的热疲劳机理。从上述试验结果得出以下结论:
     经过反应火焰喷涂后,在钢基体表面生成三元硼化物基金属陶瓷涂层,其组织为Mo2FeB2+α-Fe;喷涂所得的粘结底层组织为Fe3Al+FeAl,属于金属间化合物,其作用是起到过渡连接实现三元硼化物基金属陶瓷涂层与钢基体的满意结合。
     三元硼化物(Mo2FeB2)硬质相是在喷涂过程中发生原位反应形成的,所以其形成与热处理工艺无关;热处理有利于粘结底层中的Fe、Al转化为金属间化合物。
     粘结底层与钢基体间产生冶金结合和扩散结合界面,随着热处理温度升高,结合强度先升后降,在550℃时达到最大,为36MPa。三元硼化物基金属陶瓷涂层的显微硬度值达到1400HV 0. 1,粘结底层的显微硬度在800HV 0. 1左右,高于钢基体表面的显微硬度。涂层的耐磨性高于高速钢,是由于表面的Mo2FeB2硬质相具有较高的硬度。三元硼化物基金属陶瓷涂层的抗热疲劳性能大于钢基体,是由于涂层中含有Ni、Mo、Cr等合金元素,具有较强的抗氧化能力。
Reactive spraying is a new technology of the preparation of ceramic/metal coating. It is combined and developed with SHS and the technology of the thermal spraying. Its greatest feature is that the ceramics of the coating rather than adding to the spraying of raw materials, but obtained in the process of a series of the exothermic reaction which the spraying powders experienced during flight. Use this method can obtain ceramics the distribute equally and size small. And this is no ceramic/metal interface pollution problem, and the performance of the coating is good. The process is easy and economic.
     In this dissertation, based on the principle of the reaction spraying, using reaction flame spraying to synthesis Mo2FeB2 metal ceramic coating with the powders of FeB、Mo、Fe as raw materials on the surface of steel. And use the powders of Fe、Al as raw materials to format the Fe-Al intermetallic compounds as the bottom bonding. The effect of the different heat processing temperatures and the different amount of Al on microstructures of the coating and interface morphology are analyzed by SEM、EDS、XRD and hardness tester. The mechanism of their formation was studied. Using bonding tensile test method, the bonding strength between coating and substrate was measured. Wear resistance of the ternary boride based ceramic coating was compared with the substrate, and wear mechanism of the coating was analyzed. Thermal fatigue test of the ternary boride based ceramic coating sample was conducted by the Uddeholm method. An approach to mechanism of the thermal fatigues formation of the coating was performed. Form above mentioned experimental results of the fallowing can be concluded:
     The coating from ternary boride cermet has microstructure of Mo2FeB2+α-Fe after the reaction flame spraying. The ternary boride based ceramic coating can be formatted on the steel substrate surface. The microstructure of the bottom bonding is Fe3Al+FeAl.They belong to the intermetallic compound, and the role is to play a transition connection between the ternary boride based ceramic coating and steel substrate to a satisfaction combination.
     The ternary boride (Mo2FeB2) hard phase are formatted in the reaction spray processing, and the formation has nothing to do with the heat processing; The heat processing do good harm to the translation of the Fe、Al of the bottom bonding to the intermetallic compound.
     The bonding strength on the bottom bonding and steel substrate leads to metallurgical bonding and diffusion bonded. The bond strength increase first and down with the increase of the temperature of heat process. And go to the max 36MPa at the temperature of 550℃.The micro-hardness of the ternary boride based ceramic coating is 1400HV 0. 1, the bottom bonding is 800HV 0. 1.The wear resistance of the coating is higher than the high-speed steel. Because there are many hard phases (Mo2FeB2) on the surface, and the hard phases have a high hardness. The termal fatigue of the coating is higher than the surface of the steel. Because it contains the alloying element of Ni、Mo、Cr. They have strong antioxidant capacity.
引文
[1]许滨士,朱绍华等编著.材料表面工程.哈尔滨:哈尔滨工业大学出版社,2005.
    [2]自然科学基金委员会.金属材料科学.北京:科学出版社,1995.
    [3] United States Environmental Protection Agency.Remanufactured Products:Good as New.EPA530-N-002,1997.
    [4]李金桂主编.现代表面工程技术.北京:国防工业出版社,2000.
    [5]周长华,张孝彬.热喷涂技术的现状和发展[J].材料科学与工程,1998,16(4):71-73.
    [6]钱强,刘克勇.热喷涂技术在国内外的应用[J].焊接,1999,99(5):6-9.
    [7]付俊波,周世魁.热喷涂技术在航空发动机零部件及其维修中的应用[J].失效分析与预防,2006,2(1):61-64.
    [8]孙清玉.火焰喷涂在航空发动机上的应用[J].航空制造工程,12:18-19.
    [9]赖师墨.控制航空发动既运转间隙的热喷涂封严涂层[J].航空工艺技术,1995,3:53.
    [10]李天雷,李春福,姜放等.热喷涂技术研究现状及发展趋势[J].天然气与石油,2007,25(2):25-27.
    [11]刘广海.热喷涂技术在国内重大项目中的应用[J].机械工人,1997,2:31-33.
    [12]高云涛,李翠林,郭维.高速火焰喷涂技术在刘家峡水电长水轮机抗腐蚀方面的应用[J].陕西电力,2008,5:51-53.
    [13] Kingery W D,Bowen H K,Uhlmann D R.Introduction to Creamics[M].New York:John Wiley & Sons,Inc,1976.1-16.
    [14] Padture N P,Gell M,Jordan E H.Thermal barrier coatings for gas turbine engine applications[J].science,2002,296:280-284.
    [15] Kear B H,Skandan G. Thermal spray processing of nanoscale materials[J]. Nanostruct Mater,1997,8(6):765-769.
    [16] lmedo L,Chateau G,Deleuze C.Microwave characterization and modelization of magnetic granular materials[J].J.Appl.Phys,1993,73(10):6992-2994.
    [17]刘广海.国内外热喷涂技术近期的发展概况[J].热加工,1998,2:8-10.
    [18]张丁华,孙皎.牙种植体材料的研究发展[J].口腔材料器械杂志,2006,15(1):1-4.
    [19]王建江,刘宏伟,杜心康等. A1203复相陶瓷涂层的SHS反应火焰喷涂过程[J].中国表面工程,2004,4:28-31.
    [20]刘宏伟,张龙,王建江等.Al-CuO系SHS反应火焰喷涂涂层及副产物的形成与转变[J].热加工工艺,2006,35(3):14-17.
    [21]王建江,杜心康,王俊英等.SHS火焰喷涂Al2O3复相陶瓷涂层机理[J].复合材料学报,2004,21(3):63-68.
    [22]王建江,杜心康,付永信等.Ti-B4C-C系在火焰喷涂时的SHS过程[J].稀有金属材料与工程,2006,35(8):1258-1262.
    [23]王建江,杜心康,刘宏伟等.TiC-TiB2复相陶瓷涂层的反应火焰喷涂制备[J].复合材料学报,2006,23(4):100-105.
    [24]王建江,杜心康,付永信等.自蔓延反应火焰喷涂TiC-TiB2复相陶瓷涂层的水淬熄试验[J].金属热处理,2006,3l(5):28-32.
    [25]刘长松,黄继华,殷声.成分参数对反应火焰喷涂TiC-Fe涂层的影响[J].中国有色金属学报,2002,12(4):658-662.
    [26]刘长松,李志文,黄继华.反应火焰喷涂TiC/Fe复合涂层的动力学[J].中国有色金属学报,2006, 16(9):1522-1526.
    [27] HuiYuan Liu,JiHua Huang.Reactive flame spraying of TiC-Fe cermet coating using asphalt as a carbonaceous precursor[J].Surface & Coatings Technology, 2006,200:5328-5333.
    [28]李晓亮,阎殿然,何继宁.反应等离子喷涂TiN/AIN涂层在润滑状态下摩擦磨损性能的研究[J].热加工工艺,2006,35(11):52-54.
    [29] Wenran Feng,Dianran Yan,Jining He.Reactive plasma sprayed TiN coating and its tribological properties[J].Wear,2005,258:806-811.
    [30]牛二武,阎殿然,何继宁等.反应等离子喷涂Fe-Al2O3-FeAl2O4复合涂层的反应机理研究[J].材料保护,2005,38(6):21-23.
    [31]耿伟,何继宁,阎殿然等.反应等离子喷涂制备FeAl2O4-Al2O3-Fe复合涂层的研究[J].热加工工艺,2005,11:65-67.
    [32]姚海玉,王引真,王海芳等.粉末结构对反应超音速喷涂涂层组织影响的热力学分析[J].中国表面工程,2005,18(3):41-44.
    [33]王海芳,王引真,姚海玉等.Ni对TiC-Ni超音速火焰喷涂层组织和耐磨性的影响[J].材料保护,2006,39(2):14-17.
    [34]姚海玉,王引真,王海芳等.Ti-Ni-C系反应超音速火焰喷涂合成研究[J].石油大学学报(自然科学版),2005,29(5):84-87.
    [35] L.L. Pranevicius , P. Valatkevicius , V. Valincius. Catalytic behavior of plasma-sprayed Al-Al2O3 coatings doped with metal oxides[J].Surface and Coatings Technology,2000,125:392-395.
    [36] M. Diesselberg,H-R. Stock,P. Mayr.Corrosion protection of magnetron sputteredTiN coatings deposited on high strength aluminium alloys[J].Surface and Coatings Technology,2004,177-178: 399-403.
    [37] P.V. Ananthapadmanabhan,Patrick R. Taylor.Titanium carbide–iron composite coatings by reactive plasma spraying of ilmenite[J].Journal of Alloys and Compounds,1999,287:121-125.
    [38] Motohiro Yamada,Yoshihisa Kouzaki,Toshiaki Yasui.Fabrication of iron nitride coatings by reactive RF plasma spraying[J].Surface & Coatings Technology,2006,201:1745-1751.
    [39] F. Casadei,R. Pileggi,R. Valle.Studies on a combined reactive plasma sprayed/arc deposited duplex coating for titanium alloys[J].Surface & Coatings Technology, 2006,201:1200-1206.
    [40]耿伟,何继宁,阎殿然,等.反应等离子喷涂制备FeAl2O4-Al2O3-Fe复合涂层的研究[J].热加工工艺,2005,11:65-76.
    [41] Ide Tsuneyuki, Ando Teiichi. Reaction sintering of an Fe-6wt pct B-48wt pct Mo alloy in the presence of liquid phases[J]. Metallurgical Transactions A, 1989, 20A(1): 17-24.
    [42] ChalkerP,A review of the methods for evaluation of coating-substrate adhesion [J]. Materials Science and Engineering,1991,(140):583-592.
    [43] Matsubara Y., Tomiguchi A. Surface texture and adhesive strength of high velocity oxy-fuel sprayed coatings for rolls of steel mills[C]. Proceedings of 13th International Thermal Spray Conference,Florida,USA,1992:637-645.
    [44]徐滨士,朱邵华,刘世参等.材料表面工程[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [45]王江萍,栗卓新,魏其等.电弧喷涂制备高硬度、耐磨、抗氧化涂层及其性能研究[J].新技术新工艺,2004(6):45-47.
    [46]王吉孝,王志平,霍树斌等.16MnR钢焊接接头表面纳米化及接头抗H2S应力腐蚀性能[J].焊接,2005(2);13-16.
    [47]刘娥.Cr2O3添加量对95铬刚玉瓷耐磨性能的影响[J].陶瓷,2008,2:37~40.
    [48]孙茂才.金属力学性能[M].哈尔滨:哈尔滨工业大学,2005.
    [49] Lugscheider E, Remer P, Herbst C, et al. NiCr-Cr3C2 and NiCr-TiC-High Wear Resistant Coatings for Protective Application in Steam Turbines. Proc of the 14thITSC.Kobe:[s.n.],1995(1)235-240.
    [50]邵荷生,曲敬信,许小隶等.摩擦与摩损[M].北京:煤炭工业出版社,1992.
    [51] Fukuda Y, Kumon M. Application of High Velocity Flame Spraying fort HearExchanger,Tubes in Coal Fired Boilers.Proc of the 14th ITSC, kobe:[s.n.],1995(2):1053-1057.
    [52] wang Hui, xia weiming, Jin Yuanshen. A study on abrasive resistance of Ni2based coating with a WC hard phase[J].WEAR,1996,195:47-52.
    [53] Bahadur S, Yang Chiennan. Friction and wear behavior of tungsten and titanium carbide coatings[J]. WEAR,1996,196,156-163.
    [54]唐新峰,张联盟,袁润章.具有热应力缓和功能的梯度材料的特性评价技术[J].材料科学与工程.1993,11(3):31
    [55]王志平,纪朝辉,贾鹏等.超音速火焰喷涂WC涂层抗热疲劳性能的研究[]J.焊接。2005(11):46-48.
    [56]平修二.热应力与热疲劳[M].北京:国防工业出版社,1984.136-146.
    [57]徐江,揭晓华.电刷镀Ni-W(D)合金对3Cr2W8V钢热疲劳及氧化抗力性能的影响[J].汽车科技,1999,148(1):13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700