(TiB+La_2O_3)增强高温钛基复合材料组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛基复合材料是指在钛或钛合金中引入增强体的一种复合材料。它把基体的延展性、韧性与增强体的高强度、高模量结合起来,从而获得比钛或钛合金更高的比强度、比刚度和抗高温性能,有望应用在超高音速宇航飞行器和先进航空发动机上。为了更好发挥钛基复合材料的潜力,需要采用合理的热加工工艺和热处理工艺。其中,关于钛基复合材料热处理方面的研究很少。目前常用的α+β热处理工艺的蠕变性能不佳,β热处理工艺的塑性不理想。所以,本文设计了新型的热处理工艺,以期能提高钛基复合材料综合力学性能,主要开展了以下研究工作:
     利用Ti与LaB6之间的反应,采用熔铸法成功制备了以IMI834为基体,增强体TiB体积分数为1.26%,La_2O_3为0.582%的原位自生的钛基复合材料。铸锭直径为φ580mm,增强体TiB呈长条状随机分布,La_2O_3以纳米级的小颗粒弥散分布在基体中。热加工采用了等温快锻工艺,在β相区开坯,在两相区终锻为φ70mm的棒材,加工后增强体TiB沿加工方向定向分布。
     研究了近α钛合金的相变规律,设计出了新型的热处理工艺,即β三段热处理工艺,也就是在β相区固溶处理后,在α+β两相区上部进行第二次热处理,然后时效。其中在β相区加热保温后采取了不同的冷却方式:水冷、油冷和空冷。同时还制定了常用的α+β热处理工艺和β热处理工艺。经β三段热处理后材料的组织为α片层组织,α片层长径比较大,并且在β相区热处理时采用的冷却速率越快,α片层宽度越小。α+β热处理后组织为双态组织,β热处理后的组织为魏氏组织。β热处理与β三段热处理相比,α片层宽度从小到大的工艺依次为β三段水冷、β三段油冷、β热处理、β三段空冷热处理。在热处理过程中,增强体稳定,形态上基本没有变化,并且增强体与基体的界面清晰没有界面反应。但是在β相区热处理过程中,增强体TiB和La_2O_3阻碍β晶界运动,从而减弱了β相区加热时β晶粒长大。增强体能促进形核,α相在TiB周围以一定的取向析出长大,增强体密集的区域晶粒较小,取向差较大。
     热处理后的性能比较,经α+β、β三段水冷和β三段油冷热处理后的材料具有良好的室温和高温拉伸性能,β三段空冷热处理的次之,β热处理的较差。室温时,经α+β、β三段水冷和β三段油冷热处理后材料的延伸率较β热处理的约提高了1倍。高温时随着温度升高,材料的抗拉强度都下降,延伸率都升高。β三段水冷热处理后材料的高温延伸率最好,β三段油冷和α+β热处理的次之,β热处理的最差。在700℃拉伸时,β三段水冷热处理后材料的抗拉强度较β热处理的减少30MPa时,延伸率则较β热处理的提高2.06倍。材料高温热暴露100小时后室温抗拉强度稍有提高,延伸率显著下降,热处理对材料热稳定性影响与室温拉伸一致。材料α+β热处理后的蠕变速率最高,β热处理的最低,β三段油冷热处理的较β热处理的稍高,但大部分仍然在一个数量级,α片层越粗大蠕变速率越低。材料β热处理后的断裂韧性值最低,β三段油冷热处理后的最高。β三段油冷热处理后的断裂韧性较β热处理后的提高了47%。双态组织由于初生α相分布在β转变组织上,所以其塑性好,蠕变性能差。β热处理和β三段热处理得到的魏氏和α片层组织,α片层越粗大蠕变性能越好,而α片层、α+β集束宽度和β晶粒越小,塑性越好。
     钛基复合材料中增强体TiB短纤维在室温和高温拉伸时的断裂机理为大于临界长径比的TiB短纤维承载断裂。由于临界长径比随着温度升高而增大,高温时有很少量的TiB短纤维端部脱粘现象。在高温热暴露100h后增强体形态基本没有变化,界面依然整洁,增强体稳定。蠕变后观察到大量的晶间断裂和TiB增强体与基体脱粘,说明在长时间高温暴露服役后,晶界强度和增强体与基体界面强度都降低,增强体与基体界面强度同晶界强度相近。La由于吸收了基体合金中的氧生成了的La_2O_3小颗粒弥散分布在材料中,起弥散强化作用。La_2O_3小颗粒有利于提高材料的强度、热稳定性和蠕变抗力。
Titanium matrix composites (TMCs), reinforced with ceramic particles, haveconsiderable potential for improving properties and service temperature and can beextensively applied in areas such as aerospace, advanced weapon systems, because oftheir high specific strength, good specific modulus and resistance to elevated temperatures.With the development of titanium matrix composites, the researches on improving alloy’schemical composition, reinforcement choice and prepared of titanium matrix compositesare much more than heat treatment about titanium matrix composites. However, it iswell-known that heat treatments can improve effectively Ti alloys’ properties. Therefore,improving the comprehensive properties of TMCs by heat treatment becomes much moreimportant. A new heat treatment method, TRIPLEX heat treatment, is adopted and theeffects of it on microstructure and properties of TMCs are investigated in my paper.
     In situ synthesized (TiB+La_2O_3)/IMI834composites were prepared in a consumablevacuum arc-remelting furnace as reaction between Ti and LaB6. The theoretical volumefraction of TiB and La_2O_3is1.82%and0.58%respectively. The ingots (Φ580mm) werehot-forged into rods with a diameter of Φ70mm. The majority of the TiB whiskerreinforcements were aligned along the direction of forging. The size of La_2O_3paticals arein the nano-scale. The reinforcements were uniformly distributed in the TMCs.
     TRIPLEX heat treatment (β_3HT) is β solution (WQ, OQ, AC), α+β solution, andthen aging. TRIPLEX heat treatment, β heat treatment (βHT) and α+β heat treatment (α+βHT) were adopted in my paper. The microstructure of specimens after β_3HT heattreatment is laminar structure, that of βHT is widmanst tten, and α+βHT is bimodalstructure. The faster the cooling speeds are in β phase district, the thinner α laminar is.The width of α laminar after β_3(WQ, OQ)HT is thinner than that of βHT. The width of αcolony is more; the low angle grain boundaries are more. After heat treatment, theinterface between reinforcement and matrix is clear, so both the TiB whiskers and La_2O_3particles are stable without interfacial reaction. Reinforcements prevent grain boundarymigration during grain growth, β grain decrease. The different of matrix orientationincreases around of reinforcements.
     Tensile properties of TMCs after α+βHT, β_3(WQ) HT and β_3(OQ) HT are best, andβ_3(AC) HT the better, and β(AC) the worst one. The elongation of specimens after β_3(OQ,WQ) HT and α+βHT is increase as twice as that of β(AC). With temperature increasing,ultimate strength of specimens decreases, but elongation increases significantly. Theelongation of specimens after β_3(WQ) HT is best, β_3(OQ)HT and α+βHTi is better, thenβ(AC)HT is worst. At700℃, elongation of specimens after β_3(WQ) HT improves no lessthan200%compared with that of β(AC)HT. After thermal exposure, only a slight changeof ultimate strength has been found, however the ductility of specimens is sharply reducedafter thermal exposure. The ductility of all specimens is the worst at650℃thermalexposure. Compared with specimens treated by thermal exposure at600℃and650℃, theductility of specimens thermal exposured at700℃shows an abnormal increase. Afterthermal exposure, the ductility of specimens treated by β_3HT and α+βHT heat treatmentis better than that of β heat treatment. With temperature and stress increasing, the steadystate creep rates increase. The steady state creep rates of specimens treated by α+βHT isfastest, that of β_3(OQ) HT increases slightly compared with β HT. The fracture toughnessof α+Βht, β_3(OQ)HT, β_3(WQ)HT and β_3(AC)HT increases22%,34%,50.5%and34%respectively compared with β HT.
     The fracture mechanism of TMCs is that if a short fiber with AR(AR: length-to-diameter ratio) is higher than critical aspect ratio (ARc), TiB whiskers bear tensile stress inthe processing of tensile. Most TiB whiskers of the TMCs are higher than ARc. Withtemperature increasing, ARcof TiB whiskers increase, so few debonding TiB whiskers areobserved. Both the TiB whiskers and La_2O_3particles are stable without interfacial reactionafter hermal exposure at600℃,650℃and700℃for100h, the stable reinforcements can ensure the stability of TMCs. After creep fractured, large numbers of interface debondingsbetween TiB whiskers and matrix are observed. This is attributed to both the interfacestrength and grain boundary strength decrease at high temperature for long time. La canreduce oxygen concentration, depress precipitate of Ti3Al. The reinforcement of La_2O_3canimprove the strength, thermal stability and creep properties of TMCs.
引文
[1]萧今声,许国栋,提高高温钛合金性能的途径,中国有色金属学报,1997,7:97-105.
    [2]许国栋,王凤娥,高温钛合金的发展和应用,稀有金属,2008,32(6):775-780.
    [3]王攀,原位自生7715d基复合材料高温蠕变性能研究,硕士论文,上海:上海交通大学,2009.
    [4]黄伯云,李成功,石力开等,中国材料工程大典,北京:化学工业出版社,2006,4,523.
    [5]杨冠军,赵永庆,邓炬等,高温钛合金研究现状与发展趋势,S先进高温金属基结构材料,2000,6:1897-1902.
    [6]魏寿庸,贾栓孝,王鼎春等,550℃高温钛合金的性能,钛工业进展,2000,2:25-29.
    [7]胡清熊,刘振球,魏寿庸,宝鸡钛的35年,金属学报,1999,35: S15-S21.
    [8]赵永庆,奚正平,曲恒磊,我国航空用钛合金研料研究现状,航空材料学报,2003,23: S215-S219.
    [9]赵永庆,高温钛合金研究,钛工业进展,2001,(1):33-39.
    [10]Eylon D., Titanium Technology, Ohio: Titanium Development Association,1985.
    [11]肖平安,曲选辉,雷长明等,高温钛合金和颗粒增强钛基复合材料的研究和发展,粉末冶金材料科学与工程,2001,06:279-285.
    [12]曲选辉,肖平安,祝宝军等,高温钛合金和颗粒增强钛基复合材料的研究和发展,稀有金属材料与工程,2001,30:161-165.
    [13]郭宏岩,稀土Y对铸造Ti-6Al-3Sn-3Zr-0.5Mo-0.35Si高温合金组织性能的影响,硕士论文,哈尔滨:哈尔滨工业大学,2008.
    [14]于杰,陈敬超,闫杏丽,钛合金中硅化物析出相性能研究进展,云南冶金,2003,32(6):33-36.
    [15]Gorsse S., Chaminade J.P., Le Petitcorps Y., In situ preparation of titanium basecomposites reinforced by TiB single crystals using a power metallurgy technique,Composites Part A,1998,29A:1229-1234.
    [16]Gorsse S., Miracle D.B., Mechanical properties of Ti-6Al-4V/TiB composites withrandomly oriented and aligned TiB reinforcements, Acta Materialia,2003,51:2427-2442.
    [17]Xiao L., Lu W.J., Li Y.G., et al., Thermal stability of in situ synthesized hightemperature titanium matrix composites, Journal of Alloys and Compounds,2009,467:135-141.
    [18]吕维洁,肖旅,覃继宁等,原位合成多元增强耐热钛基复合材料,稀有金属材料与工程,2008,37(s3):107-110.
    [19]Radhakrishna Bhat B.V., Subramanyam J., Bhanu Prasad V.V., Preparation ofTi-TiB-TiC&Ti-TiB composites by in-situ reaction hot pressing, Materials Scienceand Engineering A,2002,325:126–130.
    [20]吕维洁,原位自生钛基复合材料研究综述,中国材料进展,2010,29(1):41-48.
    [21]Abkowitz S., Abkowitz S.M., Fisher H., et al., CermeTi Discontinuously ReinforcedTi-Matrix Composites: Manufacturing, Properties and Applications, JOM,2004,56:37-41.
    [22]Saito T., Automotive Application of Discontinuously Reinforced TiB-Ti Composites,JOM,2004,56:33-36.
    [23]Huang L.J., Geng L., Xu H.Y., et al., In situ (TiBw+TiCp)/Ti6Al4V composites witha network reinforcement distribution, Materials Science and Engineering A,2010,528:6723-6727.
    [24]王沛培,原位自生7715D钛基复合材料等轴与层片组织力学性能研究,硕士论文,上海:上海交通大学,2010.
    [25]Wang H.W., Qi J.Q., Zou C.M., et al, High-temperature tensile strengths of in situsynthesized TiC/Ti-alloy composites, Materials Science and Engineering A,2012,545:209-213.
    [26]Zhang Z.G., Qin J.N., Zhang Z.W., et al., Microstructure effect on mechanicalproperties of in situ synthesized titanium matrix composites reinforced with TiB andLa2O3, Material. Letter,2010,64:361-363.
    [27]王颖,化学气相沉积原位合成碳纳米管增强钛基复合材料,硕士论文,天津:天津大学,2008.
    [28]Ranganath S., Vijayakumar M., Subrahmanyan J., Combustionassisted synthesis ofTi-TiB-TiC composite via the casting route, Materials Science and Engineering A,1992,149(2):253-357.
    [29]刘阳,NdB6合成及多元(TiB+TiC+Nd2O3)/Ti的粉末冶金工艺制备技术,硕士论文,上海:上海交通大学,2007.
    [30]Swain M.V., in: Cahn RW, Haasen P, Kramer EK (Editors.). Materials Science andTechnology, Vol.11. Weinhelm VCH: Verlagsgesellschaft mbH.1994.
    [31]Tsang H.T., Chao C.G., Ma C.Y., Effects of volume fraction of reinforcement ontensile and creep properties of in-situ TiB/Ti MMC. Scripta Materialia.1997,37(9):1359-1365.
    [32]Tsang H.T., Chao C.G., Ma C.Y., In situ fracture observation of a TiC/Ti MMCproduced by combustion synthesis. Scripta Materialia.,1996,35(8):1007-1012.
    [33]肖代红,宋旼,陈康华,原位合成钛基复合材料的研究现状与展望,材料导报,2007,21(4):65-68.
    [34]Dubey S., Soboyejo W.O., Srivatsan T.S.,Deformation and fracture properties ofdamage tolerant in-situ titanium matrix composites, Applied Composite Materials,1997,4:361-374.
    [35]吕维洁,张小农,张荻,颗粒增强钛基复合材料研究进展,材料导报,1999,(6):15-18.
    [36]Ranganath S., A review on particulate-reinforced titanium matrix composite. Journalmaterials Science,1997,32(3):1-16.
    [37]Dubey S., Fatigue and fracture of damage-tolerant in situ titanium matrix composites,Matallurgical and Materials Transactions A,1997,28(10):2037-2047.
    [38]Subrahmanyam J, Review self-propagating high-temperature synthesis, Journal ofmaterials Science,1992,27(23):6249-6273.
    [39]肖旅,原位自生耐热钛基复合材料的高温性能研究,博士论文,上海:上海交通大学,2010.
    [40]Loretto M.H., The effect of matrix reinforcement reaction on fractures in Ti-6Al-4Vbase composite, Matallurgical Transactions A,1990,21(6):1579-1587.
    [41]Smith P. R., Developments in titanium matrix composites, J Mat,1984,36(3):19-25.
    [42]张国定,赵昌正,金属基复合材料,上海,上海交通大学出版社,1996.
    [43]李丽,原位自生颗粒增强7715D基复合材料的超塑性研究,硕士论文,上海:上海交通大学,2008.
    [44]蔡海斌,樊建中,左涛等,原位合成TiB增强钛基复合材料的微观组织研究,稀有金属,2006,30(6):807-812.
    [45]李伟,宋卫东,宁建国等,应变速率对TP-650钛基复合材料拉伸力学行为的影响,中国有色金属学报,2010,20(6):1131-1136.
    [46]Tsang H.T., Chao C.G., Ma C.Y., Effects of volume fraction of reinforcement ontensile and creep properties of in situ TiB/Ti MMCs, Scrpta Materialia,1997,37(9):1359-1365.
    [47]Dubey S., Lederich R.J., Soboyejo W.O., Fatigue and fracture of damage-tolerant insitu titanium matrix composites, Metallurgical and Materials Transactions, A,1997,28(10):2037-2047.
    [48]Banerjee R., Genc A., Collins P.C., et al., Comparison of microstructural evolution inlaser-deposited and arc-melted in situ Ti-TiB composites, Metallurgical and MaterialsTransactions A,2004,35(7):2143-2152.
    [49]Srivatsan T.S., Soboyejo W.O., Lederich R.J., Tensile deformation and fracturebehavior of a titanium-alloy metal-matrix composite. Composites A,1997,28(4):365-376.
    [50]Li B.S., Shang J.L., Guo J.J., et al. In situ observation of fracture behavior of in situTiBw/Ti composites, Materials Science and Engineering A,2004,383(2):316-322.
    [51]Gorsse S., Chaminade J.P., Petitcorps Y.L., In situ preparation of titanium basecomposites reinforced by TiB single crystals using a powder metallurgy technique,Composites A.1998,29(9-10):1229-1234.
    [52]Ni D.R., Geng L., Zhang J., et al., Effect of B4C particle size on microstructure of insitu titanium matrix composites prepared by reactive processing of Ti–B4C system,Scripta Materialia,2006,55:429-432
    [53]Chandran K.S.R., Panda K.B., Sahay S.S., TiBw-reinforced Ti composites: processing,properties, application prospects and research needs, JOM.,2004,56(5):42-48.
    [54]Wang L., Niinomi M., Takahashi S., et al., Relation between fracture toughness andmicrostructure of Ti-6Al-2Sn-4Zr-2Mo alloy reinforced with TiB particles. MaterialsScience and Engineering A,1999,263(2):319-325.
    [55]Kobayashi M., Funami M., Suzuki S., et al., Manufacturing process and mechanicalproperties of fine TiB dispersed Ti–6Al–4V alloy composites obtained by reactionsintering, Materials Science and Engineering A,1998,243(1-2):279-284.
    [56]Bhat B.V.R., Subramanyam J., Bhanu Prasad V.V., Preparation of Ti–TiB–TiC&Ti–TiB composites by in situ reaction hot pressing. Materials Science and EngineeringA.2002,325(1-2):126-130.
    [57]Fan Z., Niu H.J., Miodownik A.P., et al., Microstructure and mechanical properties ofin situ Ti/TiB MMCs produced by a blended elemental powder metallurgy method,Key Engineering Materials,1997,127-131(1):423-430.
    [58]Jiang J.Q., Lin T.S., Kim Y.J., et al., In situ formation of TiC-(Ti-6Al-4V)composite.Materials Science and Technology,1996,12(4):362-365.
    [59]Panda K.B., Chandra K.S.R., Synthesis of ductile titanium-titanium boride (Ti-TiB)composites with a beta titanium matrix: the nature of TiB formation and compositeproperties. Metallurgical and Materials Transactions A.2003,34(6):1371-1385.
    [60]Yamamoto T., Otsuki A., Ishihara K., et al., Synthesis of near net shape high densityTiB/Ti composite, Materials Science and Engineering A,1997,239-240:647-651.
    [61]Nakane S., Yamada O., Miyamoto Y., et al., Simultaneous synthesis and densificationof TiB/α-Ti(N) composite material by self-propagating combustion under nitrogenpressure, Solid State Communications,1999,110(8):447-450.
    [62]Fu Z.Y., Wang H., Wang W.M., et al., Composites fabricated by self-propagatinghigh-temperature synthesis. Journal of Materials Processing Technology,2003,137(1-3):30-34.
    [63]Zhang E., Zeng S., Zhu Z., Microstructure of XDTM Ti-6Al/TiC composites. Journalof Materials Science,2000,35(23):5989-5994.
    [64]Fan Z., Miodownik A.P., Microstructural evolution in rapidly solidified Ti-7.5Mn-0.5B alloy, Acta Materialia,1996,44(1):93-110.
    [65]Rangarajan S., Aswath P.B., Soboyejo W.O., Mirostructure development and fractureof in-situ reinforced Ti-8.5Al-1B-1Si, Scripta Materialia.1996,35(2):239-245.
    [66]Godfrey T.M., Wisbey A., Goodwin P.S., et al., Microstructure and tensile propertiesof mechanically alloyed Ti-6Al-4V alloy with B additions. Materials Science andEngineering A.2000,282(1-2):240-250.
    [67]Suryanarayana S., Mechanical alloying and milling, Progress in Materials Science.2001,46(1-2):1-184.
    [68]吴人洁,复合材料,天津:天津大学出版社,2000.
    [69]赵大伟,热处理对TC4/TA15焊接接头组织和力学性能影响的研究,硕士论文,大连:大连交通大学,2008.
    [70]李金华,TC21钛合金热加工过程的微观组织演变及模拟研究,硕士论文,南京:南京航空航天大学,2007.
    [71]辛社伟,赵永庆,曾卫东,钛合金固态相变的归纳与讨论(I)-同素异构转变,钛工业进展,2007,24(5):23-28.
    [72]张翥,王群骄,莫畏,钛的金属学和热处理,北京:冶金工业出版社,2009:46.
    [73]常辉,周廉,张廷杰,钛合金固态相变的研究进展,稀有金属材料与工程,2007,9(36):1505-1510.
    [74]鲍利索娃E A等著,陈石卿译.钛合金金相学.北京:国防工业出版社,1986:143-156.
    [75]Zhang X.D., Wiezorek J.M.K., Baeslack III W.A., et al., On the stability of ω phase inTi-6-22-22S and Ti-6-4alloys, Scripta Materialia,1999,6(41):659-665.
    [76]孙中刚,置氢钛合金亚稳相变及其室温变形行为的研究,博士论文,大连:大连理工大学,2009.
    [77]瓦利金N.莫依谢耶夫著,董宝明,张胜,郭德伦等译,钛合金在俄罗斯飞机及航空航天上的应用.北京:航空工业出版社,2008,16.
    [78]王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社,1985:133-161.
    [79]魏幸,热处理对Ti-62222s钛合金组织结构及性能的影响,硕士论文,西安:西安建筑科技大学,2011.
    [80]辛社伟,赵永庆,曾卫东,钛合金固态相变的归纳与讨论(Ⅱ)-共析和有序化转变,钛工业进展,2008,25(1):40-44.
    [81]王志辉,Ti62421s高温钛合金组织性能的研究,硕士论文,湖南:中南大学,2010.
    [82]崔玉林,细晶粒TC4钛合金焊接温度场模拟及晶粒长大规律研究,硕士论文,哈尔滨:哈尔滨工业大学,2007.
    [83]蔡学章, D. Eyfon, Ti-1100合金热处理组织特性,稀有金属材料与工程,1994,23(3):27-32.
    [84]李建民,铸造Ti1100-xNb高温钛合金组织与性能,硕士论文,哈尔滨:哈尔滨工业大学,2009.
    [85]蔡学章,冷却速率对-退火Ti-6Al-4V合金循环变性的影响,稀有金属快报,2004,23(5):37-38.
    [86]Blenkinsop P.A,高温钛合金的发展,稀有金属材料与工程,1986,4:52-60.
    [87]Andres C., Gysler A., Lutjering G., Correlation between microstructure and creepbehavior of the high-temperature Ti alloy IMI834, Zeitschrift fur Metallkunde.1997,88(3):197-203.
    [88]张廷杰,曾泉浦,毛小南等, TiC颗粒强化钛基复合材料的高温拉伸特性,稀有金属材料与工程,2001,30(2):85-88.
    [89]Tang F., Satosh E., Masuo H., Reinforcing effect of in situ grown TiB fibers on Ti-22Al-11Nb-4Mo alloy, Scrpta Materialia,2000,43:573-578.
    [90]龙迪凯,BT20-xB-yY高温钛合金组织及性能的研究,硕士论文,哈尔滨:哈尔滨工业大学,2010.
    [91]曾泉浦,毛小南,张廷杰,热处理对TP-650钛基复合材料组织与性能的影响,稀有金属材料与工程,1997,26(4):18-21.
    [92]Riaz S., Flower H.F., Changes inγ-TiC stoichiometry during heat treatment of TiCreinforced Ti composites, Materials Science and Technology,1999,115:1341-1348.
    [93]倪丁瑞,金晓鸥,耿林等,非连续增强钛基复合材料的热处理研究进展,材料科学与工艺,2007,15(2):173-176.
    [94]金云学, TiCp/Ti复合材料TiC生长形态及其控制,博士论文,哈尔滨:哈尔滨工业大学,2002.
    [95]尹来胜, TiC颗粒增强高温钛合金基复合材料组织与性能研究,硕士论文,哈尔滨:哈尔滨工业大学,2010.
    [96]张茂胜, TiC+TiB增强高温钛合金基复合材料的组织和性能研究,硕士论文,哈尔滨:哈尔滨工业大学,2011.
    [97]Fan Z., Chandrasekaran L., Ward-Close C.M., et al., The effect of pre-consolidationheat treatment onTiB morphology and mechanical properties of paridly solid fied Ti-6Al-4V-xB alloys, Scripta Metallurgical and Material,1995,132(6):833-838.
    [98]邓炬,杨冠军,稀土元素在钛及钛合金中的作用,稀有金属材料与工程,1993,22(5):1-11.
    [99]汤海芳,赵永庆,洪权等,稀土元素对高温钛合金组织和性能的影响,钛工业进展,2010,27,16-21.
    [100]刘羽寅,李阁平,李东等,高温钛合金中稀土相的热稳定性,中国稀土学报,1998,16(2):162-165.
    [101]李阁平,李东,刘羽寅等,稀土相对Ti-5.6Al-4.8Sn-2Zr-1Mo-0.32Si-1Nd钛合金晶粒长大的阻碍作用,中国稀土学报,2000,18(4):341-343.
    [102]朱绍祥,刘建荣,王青江等,高温钛合金Ti-60与IMI834的晶粒长大规律,金属热处理,2007,32(11):11-14.
    [103]崔文芳,周廉,罗国珍等,钇对Ti-1100高温钛合金热稳定性和蠕变行为的影响,中国稀土学报,1998,16(3):237-241.
    [104]Rath B.B., Proceedings of the fourth international conference on Titanium[C].Warrendal AIMS.1980:1185-1196.
    [105]赵永庆,周廉,钛合金基础性问题研究,金属学报,2002,38:25-29.
    [106]Hotta S.,Yamada K., Murakami T., et al. Grain refinement dueto small amounts ofyttrium addition in α+β type titanium alloy, SP-700. ISIJ International,2006,46(1):129-137.
    [107]Es-Souni, M., Creep behaviour and creep microstructures of a high-temperaturetitanium alloy Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal834) Part I.Primary and steady-state creep, Materials Characterization,2001,46:365-379.
    [108]Wanjara P., Jahazi M., Monajati H., et al., Influence of thermomechanical processingon microstructural evolution in near-α alloy IMI834, Materials Science andEngineering A,2006,416:300-311.
    [109]Wang X., Jahazi M., Yue S., Substructure of high temperature compressed titaniumalloy IMI834, Materials Science and Engineering A,2006,434:188-193.
    [110]Hardt S., Maier H.J., Christ H-J, High-temperature fatigue damage mechanisms innear-a titanium alloy IMI834, International Journal of Fatigue,1999,21:779-789.
    [111]Kumar A., Singh N., Singh V., Influence of stabilization treatment on low cyclefatigue behavior of Ti alloy IMI834, Materials Characterization,2003,51:225-233.
    [112]Neal D.F., Optimization of creep and fatigue resistance in high temperature Ti alloysIMI829and IMI834[C]//Ti’84: Science and Technology, Deutsche Gesellschaft fürMetallkunde,1984:2419-2424.
    [113]Wang M.M., Lu W.J., Qin J.N., et al, Effect of volume fraction of reinforcement onroom temperature tensile property of in situ (TiB+TiC)/Ti matrix composites,Materials and Design,2006,27:494-498.
    [114]Gorsse S., Petitcorps Y. Le, Matar S., et al., Investigation of the Young’s modulus ofTiB needles in situ produced in titanium matrix composite, Materials Science andEngineering A,2003,340:80-87.
    [115]Bilous O.O., Artyukh L.V., Bondar A.A., et al., Effect of boron on the structure andmechanical properties of Ti–6Al and Ti–6Al–4V, Materials Science and EngineeringA,2005,402,76–83.
    [116]Hill D., Banerjee R., Huber D., et al., Formation of equiaxed alpha in TiB reinforcedTi alloy composites, Scrpta Materialia.2005,52:387-392.
    [117]Zhang C.J., Kong F.T., Xiao S.L., et al., Evolution of microstructural characteristicand tensile properties during preparation of TiB/Ti composite sheet, Materials andDesign,2012,36:505-510.
    [118]Huang L.J., Geng L., Wang B., et al., Effects of extrusion and heat treatment on themicrostructure and tensile properties of in situ TiBw/Ti6Al4V composite with anetwork architecture, Composites: Part A,2012,43:486-491.
    [119]Min Young Koo, Jae Sung Park, Min Kyu Park, et al., Effect of aspect ratios of insitu formed TiB whiskers on the mechanical properties of TiBw/Ti-6Al-4Vcomposites, Scripta Materialia,2012,66:487-490.
    [120]Song K., Yang J., Qiu T., et al., In situ synthesis of (TiB2+SiC)/Ti3SiC2compositesby hot pressing, Materials Letters,2012,75:16-19.
    [121]Huang L.J., Geng L., Peng H.X., et al., High temperature tensile properties of in situTiBw/Ti6Al4V composites with a novel network reinforcement architecture,Materials Science and Engineering A,2012,534:688-692.
    [122]Huang L.J., Xu H.Y., Wang B., et al., Effects of heat treatment parameters on themicrostructure and mechanical properties of in situ TiBw/Ti6Al4V composite with anetwork architecture, Materials and Design,2012,36:694-698.
    [122]Ranganath S., Mishra R.S., Steady state creep behaviour of particulate reinforcedtitanium matrix composites, Acta Materialia,1996,44:927-935.
    [124]de Castro V., Leguey T., Munoz A., et al., Microstructure and tensile properties ofY2O3-dispersed titanium produced by arc melting. Materials Science andEngineering A,2006,422(1-2):189-197.
    [125]李四清,刘瑞民,马济民等,钕化物颗粒增强钛基复合材料的组织和性能,航空材料学报,1997,17(3):51-56.
    [126]Tamirisakandala S., Bhat R.B., Miracle D.B., et al., Effect of boron on the betatransus of Ti–6Al–4V alloy, Scrpta Materialia.2005,53:217-222.
    [127]李亚国,张少卿,李春志等,RE铸造Ti合金显微组织的研究,金属学报,1984,20(2):131-137.
    [127]Karal M.V., Hofmeister W.H., Witting J.E., Precipitate crystallography andmorphology in undercooled, rapidly solidified titanium rare earth alloys. ScriptaMaterialia.1997,36(2):157-163.
    [1]张小农,吕维洁,张荻等,不连续增强钛基复合材料的原位制备技术研究,宇航材料工艺,1998,6:38-41.
    [2]吕维洁,原位自生钛基复合材料研究综述,中国材料进展,2010,29(1):41-48.
    [3]吕维洁,张小农,张荻,颗粒增强钛基复合材料研究进展,材料导报,1999,(6):15-18.
    [4]肖代红,黄伯云,原位合成钛基复合材料的最新进展,粉末冶金技术,2008,26(3):217-223.
    [5]孙拴利,原位自生(TiC+TiB)/Ti-1100复合材料的热氢处理研究,硕士论文,上海:上海交通大学,2011.
    [6]肖旅,原位自生耐热钛基复合材料的高温性能研究,博士论文,上海:上海交通大学,2010.
    [7]马凤仓,热加工对原位自生钛基复合材料组织和力学性能影响的研究,博士论文,上海:上海交通大学,2006.
    [8] Tsang H.T., Chao C.G., Ma C.Y., Effects of volume fraction of reinforcement ontensile and creep properties of in-situ TiB/Ti MMC, Scripta Materialia,1997,37(9):1359-1365.
    [9] Dubey S, Lederich R J, Soboyejo W O. Fatigue and fracture of damage-tolerant in situtitanium matrix composites. Metallurgical and Materials Transactions, A,1997,28(10):2037-2047.
    [10]Lu W., Zhang D., Zhang X., et al., Microstructure and tensile properties of in situ(TiB+TiC)/Ti6264(TiB:TiC=1:1) composites prepared by common casting technique,Materials Science and Engineering A,2001, A311:142-150.
    [11]Zhang X., Lu W., Zhang D., et al., In situ technique for synthesis (TiB+TiC)/Ticomposites, Scripta Materialia,1999,41(1):39-46.
    [12]Wanjara P., Yue S., Drew R.A.L., et al., Titanium-base composites produced bypowder metallurgy, Key Engineering Materials,1997,127-131:415-422.
    [13]Fan Z., Niu H.J., Miodownik A.P., et al., Microstructure and mechanical properties ofin situ Ti/TiB MMCs produced by a blended elemental powder metallurgy method,Key Engineering Materials,1997,127-131(1):423-430.
    [14]Gorsse S., Chaminade J.P., Petitcorps Y.L., In situ Preparation of Titanium basecomposites reinforced by TiB Single Crystals Using a powder Metallurgy technique,Composites Part A,1998,29A:1229-1234.
    [15]Takahashi T, In-situ synthesis of TiB whisker-reinforced titanium by mechanicalalloying (in Japanese), Nippon Kinzoku Gakkaishv Journal of the Japan Institute ofMetals,1995,59(3):244-250.
    [16]Ye L.L., Liu Z.G.,.Quan M.X, et al., Different reaction mechanisms duringmechanical alloying Ti50C50and Ti33B67, Journal of Applied Physics,1996,80(3):1910-1912.
    [17]Iizumi K., Iizami H., Sasaki T., et al., Reative sintering of TiC-TiB2compositeprepared with mechanochemically-processed precursor,粉体および粉末冶金2000,47(12):1247-1252.
    [18]王攀,原位自生7715D基复合材料高温蠕变性能研究,硕士论文,上海:上海交通大学,2009.
    [19]张珍桂,耐热钛基复合材料(TiB+La2O3)/Ti的微结构及力学性能研究,硕士论文,上海:上海交通大学,2010.
    [20]吕维洁,肖旅,覃继宁等,原位合成多元增强耐热钛基复合材料,稀有金属材料与工程,2008,37(s3):107-110.
    [21]吕维洁,张小农,张荻等,原位合成TiB和TiC增强钛基复合材料热力学,中国有色金属学报,1999,9(2):220-224.
    [22]杨志峰,多元增强钛基复合材料的微结构及性能研究,博士论文,上海:上海交通大学,2007.
    [23]Xiao L., Lu W.J., Qin J.N., et al., Effect of reinforcemen on High temperature tensileproperties of in situ synthesized titanium matrix composites, Materials Science andEngineering A,2008,491(1-2):192-198.
    [24]Wang M.M., Lu W.J., Qin J.N., et al, Effect of volume fraction of reinforcement onroom temperature tensile property of in-situ (TiC+TiB)/Ti matrix composites,Materials and design,2006,27(6):494-498.
    [25]Konitzor D.G., Stanley J.T., Loretto M.H., et al., The nature of dispersed phase inTi-0.7at.%Er prepare by rapid solidification processing, Acta Metallurgica,1986,34(7):1269-1277.
    [26]Geng K., Lu W.J., Zhang D., Microstructure and tensile properties of in situsynthesized (TiB+Y2O3)/Ti composites at elevated temperature, Materials Scienceand Engineering A,2003,360:176-182.
    [27]Geng K., Lu W.J., Zhang D., In situ synthesized (TiB+Y2O3)/Ti composites, Journalof Materials Science Letters,2003,22:877-879.
    [28]高扬,张德昭,曹春晓,TC11钛合金新β晶粒的形成和变化,航空材料,1983,3(2):60-66.
    [29]Yang Z.F., Lu W.J., Xu D., et al., In situ synthesis of hybrid and multiple dimensionedtitanium matrix composites, Journal of Alloys and Compounds,2006,419(1-2):76-80.
    [30] Ma Z.Y., Tjong S.C., Geng L., In-situ Ti-TiB metal-matrix composite prepared by areactive pressing process, Scripta Materialia,2000,42(4):367-373.
    [31]Ni D.R., Geng L., Zhang J., et al., Effect of B4C particle size on microstructure of insitu titanium matrix composites prepared by reactive processing of Ti-B4C system,Scripta Materialia,2006,55(5):429-432.
    [1]王攀,原位自生7715D基复合材料高温蠕变性能研究,硕士论文,上海:上海交通大学,2009.
    [2] Huang L.J., Geng L,Wang B.,et al., Effects of extrusion and heat treatment on themicrostructure and tensile properties of in situ TiBw/Ti6Al4V composite with anetwork architecture, Composites: Part A,2012,43:486-491.
    [3] Huang L.J., Xu H.Y., Wang B.,et al., Effects of heat treatment parameters on themicrostructure and mechanical properties of in situ TiBw/Ti6Al4V composite with anetwork architecture, Materials and Design,2012,36:694-698.
    [4]倪丁瑞,金晓鸥,耿林等,非连续增强钛基复合材料的热处理研究进展,材料科学与工艺,2007,15(2):173-176.
    [5]杨勇,细晶钛合金超塑性扩散连接的微观组织及元素扩散行为,硕士论文,大连:大连理工大学,2009.
    [6]鲍利索娃EA等,陈石卿译,钛合金金相学,北京:国防工业出版社,1986:243-272.
    [7]黄陆军,TC11钛合金等轴化处理及高温变形行为的研究,硕士论文,哈尔滨:哈尔滨工业大学,2007.
    [8]孟强,新型钛合金工艺试验及组织性能研究,硕士论文,西安:西安建筑科技大学,2006.
    [9]李金华,TC21钛合金热加工过程的微观组织演变及模拟研究,硕士论文,南京:南京航空航天大学,2007.
    [10]王金友,葛志明,周彦邦,航空用钛合金,上海:上海科学技术出版社,1985:199-231.
    [11]赵永庆,陈永楠,张学敏等,钛合金相变及热处理,长沙:中南大学出版社,2011:128-130.
    [12]张翥,王群骄,莫畏,钛的金属学和热处理,北京:冶金工业出版社,2009:220-232.
    [13]Zhang Z.G., Qin J.N., Zhang Z.W., et al., Effect of β heat treatment temperature onmicrostructure and mechanical properties of in situ titanium matrix composites,Materials and Design,2010,31:4269–4273.
    [14]Wood J.R., Russo P.A., Welter M.F., et al., Thermomechanical processing and heattreatment of Ti–6Al–2Sn–2Zr–2Cr–2Mo–Si for structural applications, MaterialsScience and Engineering A,1998,243:109–118.
    [15]Li X., Lu S.Q., Fu M.W., et al., The optimal determination of forging processparameters for Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy with thick lamellar microstructurein two phase field based on P-map, Journal of Materials Processing Technology,2010,210:370-377.
    [16]Leyens C.,Peters M.,Kaysser W.A., Influence of microstructure on oxidationbehaviour of near-α titanium alloys, Materials Science and Technogy,1996,12(3):213-218.
    [17]汤海芳,赵永庆,洪权等, Ti600合金的高温氧化行为研究,稀有金属材料与工程.2012,41(07):1226-1230.
    [18]陈伶辉,贺跃辉,曹鹏等,显微组织对TiAl基合金高温抗氧化性能的影响,热加工工艺,1996,(6):1-3.
    [19]黄定辉,洪权,卢亚锋等,钛合金的高温抗氧化性及其影响因素分析,钛工业进展,2012,29(3):1-4.
    [20]龙迪凯,BT20-xB-yY高温钛合金组织及性能的研究,硕士论文,哈尔滨:哈尔滨工业大学,2010.
    [21]Phelps H.R., Wood J.R., in: F.H. Froes, I.L. Caplan (Eds.), Titanium’92: Science andTechnology, vol.1,1992:193-200.
    [22]Zhang X.D., Bonniwell P., Fraser H.L., et al., Effect of heat treatment and siliconaddition on the microstructure development of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloy,Materials Science and Engineering A,2003,343:210-226.
    [23]Zhang X.D., Evans D.J., Baeslack W.A., et al., Effect of long term aging on themicrostructural stability and mechanical properties of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloyMaterials Science and Engineering A,2003,344:300–311.
    [24]Zhang X.D., Wiezorek J.M.K., W.A. Baeslack, et al., On the stability of ω phase inTi-6-22-22S and Ti-6-4alloys, Scripta Materialia,1999,6(41):659–665.
    [25]Zhang X.D., Wiezorek J.M.K., Baeslack W.A., et al., Precipitation of ordered α2phasein Ti-6-22-22alloy, Acta materialia,1998,13(46):4485–4495.
    [26]辛社伟,赵永庆,曾卫东,钛合金固态相变的归纳与讨论(I)-同素异构转变,钛工业进展,2007,24(5):23-28.
    [27]张茂胜,TiC+TiB增强高温钛合金基复合材料的组织和性能研究,硕士论文,哈尔滨:哈尔滨工业大学,2011.
    [28]Tamirisakandala S., Bhat R.B., Tiley J.S., et al., Grain Refinement of Cast TitaniumAlloys via Trace Boron Addition, Scripta Materialia,2005,53:1421-1426.
    [1] Ranganath S., A review on particulate-reinforced titanium matrix composites, Journalof materials science,1997,32:1-16
    [2]肖旅,原位自生耐热钛基复合材料的高温性能研究,博士论文,上海:上海交通大学,2010.
    [3] Dubey S., Lederich R.J., Soboyejo W.O., Fatigue and fracture of damage-tolerant insitu titanium matrix composites, Metallurgical and materials transactions A,1997,28:2037-2047
    [4]张旺峰,曹春晓,李兴无等,β热处理TA15钛合金对力学性能的影响规律,稀有金属材料与工程,2004,33(7):768-770.
    [5]张翥,王群骄,莫畏,钛的金属学和热处理,北京:冶金工业出版社,2009:224-229.
    [6]鲍利索娃EA等著,陈石卿译,钛合金金相学,北京:国防工业出版社,1986:143-156.
    [7]马凤仓,热加工对原位自生钛基复合材料组织和力学性能影响的研究,博士论文,上海:上海交通大学,2006.
    [8]戴世娟,亚微米颗粒增强铝基复合材料的制备技术研究,硕士论文,镇江市:江苏大学,2007.
    [9]毛小南,周廉,曾泉浦等,TiCp颗粒增强钛基复合材料的强化机理研究,稀有金属材料与工程,2000,20(6):378-381.
    [10]束德林,工程材料力学性能,北京:机械工业出版社,2011:242-246.
    [11]郑修麟,材料的力学性能,西安:西北工业大学出版社,2005:212-217.
    [12]朱大胜,顾伯勤,陈晔,含粘弹性界面相短纤维/弹性体复合材料的纤维临界长径比数学模型,航空材料学报,2009,29(5):88-93.
    [13]Thiehsen K.E., Kassner M.E., Pollard J., et al., Manufacturing process andmechanical properties of fine TiB dispersed Ti-6Al-4V alloy composites obtained byreaction sintering, Metallurgical and Materials Transaction A,1993,24:1819-1993.
    [14]Fan Z, Chandrasekaran L., Ward-Close C. M., et al., The effect of pre-consolidationheat treatment onTiB morphology and mechanical p roperties of paridly solid fied Ti-6Al-4V-xB alloys. Scripta Metallurgica et Materialia,1995,132(6):833-838.
    [15]Gorsse S., Miracle D.B., Mechanical properties of Ti-6Al-4V/TiB composites withrandomly oriented and aligned TiB reinforcements, Acta Materialia,2003,51:2427-2447.
    [16]Boehlert C.J., Tamirisakandala S., Curtinc W.A., et al., Assessment of in situ TiBwhisker tensile strength and optimization of TiB-reinforced titanium alloy design,Scripta Materialia,2009,3(61):245–248.
    [17]Boehlert C.J., Cowen C.J., Tamirisakandala S., et al., In situ scanning electronmicroscopy observations of tensile deformation in a boron-modified Ti–6Al–4V alloy,Scripta Materialia,2006,5(55):465-468.
    [18]张珍桂,耐热钛基复合材料(TiB+La2O3)/Ti的微结构及力学性能研究,上海:上海交通大学,2010.
    [19]Xiao L., Lu W.J., Li Y.G., et al., Thermal stability of in situ synthesized hightemperature titanium matrix composites, Journal of Alloys and Compounds,2009,467:135-141.
    [20]Nardone V.C., Prewo K.M., On the strength of discontinuous silicon carbidereinforced aluminum composites, Scr. Metall. Mater.,1986,20:43-48.
    [21]Nardone V.C., Assessment of models used to predict the strength of discontinuoussilicon carbide reinforced aluminum alloys, Scr. Metall. Mater.,1987,21:1313-1318.
    [22]Xiao L., Lu W.J., Qin J.N., et al., High temperature tensile properties of in situsynthesized titanium matrix composites with strong dependence on strain rates,Journal Material Research,2008,11(23):3066-3074.
    [23]李九霄,王立强,覃继宁等,热处理对原位TiB和La2O3增强IMI834拉伸性能的影响,中国有色金属学报,2010,20: s606-s610.
    [24]卢8H7斌,杨8H8锐,热处理对650℃短时用Ti650板材显微组织和力学性能的影响,宇8H9航材料工艺,2007,6:77-81.[25]王蕊宁,Ti53311S、TP650和Zr-4合金热加工性的研究,博士论文,西安:西安
    建筑科技大学,2008.[26]王金友,葛志明,周彦邦,航空用钛合金,上海:上海科学技术出版社,1985:208
    -228.[27]李锋,林立,董晓旻等,镁合金及其复合材料超塑性的研究现状,铸造,2003,52(7):
    455-462.[28]柴东朗,李晓军,曹利强等,增强相形态对复合材料微区力学状态影响的有限元
    分析,应用力学学报,2004,21(3):145-148.
    [1]闫伟,Ti-55钛合金板材的CO2激光焊与电子束焊的实验研究,硕士论文,沈阳:东北大学,2006.
    [2]彭娜,高温钛合金中α2相的临界尺寸效应研究,硕士论文,沈阳:沈阳大学,2007.
    [3]惠松骁,张翥,萧今声等,高温钛合金热稳定性研究进展-I.组织稳定性,1999,23(2):125-130.
    [4]肖旅,原位自生耐热钛基复合材料的高温性能研究,博士论文,上海:上海交通大学,2010.
    [5]白保良,耐热钛合金的热稳定性,钛工业进展,2001,5:13-17.
    [6] Guan S.X., Kang Q., Wang Q.J., et al., Influence of long-term thermal exposure on thetensile properties of a high-temperature titanium alloy Ti-55, Materials Science andEngineering A,1998,243:182-185.
    [7] Neal D.F., Fox S.P., The Influence of Silicon and Sulicides on the PropertiesNear-alpha Titanium Alloys. In: Froes F H, Caplan I, Eds. Titanium92Science andTechnology, The Minerals, Metals&Materials Society, USA,1993:287-294.
    [8] Ramachandre C., Singh Vakil., Effect of Silicide Precipitation on Tensile Propertiesand Fracture of Alloy Ti-6Al-5Zr-0.5Mo-0.25Si, Materials. Transaction,1985,16(2A):227-231.
    [9] Madesen A., Ghonem H., Separating the Effects of Ti3Al and Silicide Precipitates onthe Tensile and Crack Growth Behavior at Room Temperature and593℃in aNear-alpha Titanium Alloy, Journal of Materials Engineering and Performance,1995,4(6):301-306.
    [10]Woodfield A.P., Postans P.J., Loretto M.H., The Effect of Long-term HighTemperature Exposure on the Structure and Properties of the Titanium Alloy Ti-5331S,Acta Meterialia,1988,36(3):507-515.
    [11]李娟,蔡建明,段锐,近α型TG6高温钛合金中硅化物的沉淀析出行为,航空材料学报,2012,32(5):32-36.
    [12]贾蔚菊,曾卫东,刘建荣等,Ti60高温钛合金氧化行为研究,稀有金属材料与工程,2010,39(5):781-786.
    [13]Ramachandra C., Singh V., On Silicides in High Temperature Titanium Alloys, DefSci J,1986,36(2):207-220.
    [14]王金友,葛志明,周彦邦,航空用钛合金,上海:上海科学技术出版社,1985:216-220.
    [15]Madsen A., Ghonem H., Separating the effects of Ti3Al and silicide precipitates on thetensile and crack growth behavior at room temperature and593℃in a near α alphatitanium alloy, Journal Material Engineering and Performance,1995,4:301-307.
    [16]Woodfield A.P., Postans J.P., Loretto M.H., et al., The effect of long-term hightemperature exposure on the structure and properties of the titanium alloy Ti5331S,Acta Meterialia,1988,36:507-515.
    [17]Gleiter H., Hornbogen E., Precipitation hardening by coherent particles, MaterialsScience and Engineering A,1968,2:285-302.
    [18]Jata K.V., Starke E.A., Fatigue crack growth and fracture toughness behavior of anAl-Li-Cu alloy, Metallurgical and Materials Transaction A,1986,17:1017-1026.
    [19]Zhang X.D., Evans D.J., Baeslack III W.A., et al., Effect of long term aging on themicrostructural stability and mechanical properties of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloy,Materials Science and Engineering A,2003,344:300-311.
    [20]Srinadh K.V.S., Singh N., Singh V., Role of Ti3Al/silicides on tensile properties ofTimetal834at various temperatures, Bulletin. Materials. Science.,2007,30:595-600.
    [21]Blackburn M.J., Trans of the Metal Society of AIME,1967,236:1200-1208.
    [22]Xiao L., Lu W.J., Li Y.G., et al., Thermal stability of in situ synthesized hightemperature titanium matrix composites, Journal of Alloys Compounds,2009,467:135-141.
    [23]Ankem S., Banerjee D., Mcneish D.J., et al., Silieide formation in Ti-3Al-8V-6Cr-4Zr-4Mo, Metallurgical and Materials Transaction A,1987,18A:2015-2025.
    [24]Flower H.M., Swann P.R., West D.R.F., Silicide precipitation in the Ti-Zr-Al-Sisystem, Metallurgical and Materials Transaction A,1971,2:3289-3297.
    [25]徐栋,原位合成多元增强钛复合材料(TiB+TiC+Y2O3)/Ti的微结构研究,硕士论文,上海:上海交通大学,2006.
    [26]肖代红,(TiB+Nd2O3)/Ti复合材料的显微组织与力学性能,铸造技术,2007,28(6):791-795.
    [27]万晓景,经开良,史文等,稀土Nd在Ti合金中的存在形态及其对Ti3X相析出的影响,材料科学进展,1992,1:6-11.
    [28]Smallman R. E., Mod. Phys. Metal,3rd ed. Butter2worths, London,1970,140.
    [29]Li D., Liu Y.Y., Wan X.J., On the thermal stability of Ti alloys I. the electronconcentration rule for formation of Ti3X-phase, Acta Meterialia, Sinica,1984,20A:375-383.
    [30]Rosenberg H.W., The Science, Technology&Application of Titanium, PergamonPress, Oxford,1970.851.
    [31]吕健,Ta的添加及热处理制度对7715D钛合金组织和性能的影响,上海:上海交通大学,2010.
    [32]张珍桂,耐热钛基复合材料(TiB+La2O3)/Ti的微结构及力学性能研究,上海:上海交通大学,2010.
    [1] Gorsse S., Miracle D.B., Mechanical properties of Ti-6Al-4V/TiB composites withrandomly oriented and aligned TiB reinforcements, Acta Materialia,2003,51:2427-2447.
    [2] Man H.C., Zhang S., Cheng F.T., et al. Microstructure and formation mechanism of insitu synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding, Scriptamaterialia,2001,44:2801-2807.
    [3] Tsang H.T., Chao C.G., Ma C.Y., Effects of volume fraction of reinforcement ontensile and creep properties of in-situ TiB/Ti MMC, Scripta Materialia,1997,37:1359–1365.
    [4] Ma Z.Y., Mishra R.S., Tjong S.C., High-temperature creep behavior of TiC particulatereinforced Ti–6Al–4V alloy composite, Acta Material,2002,50:4293–4302.
    [5] Zhu SJ, Mukherji D, Chen W, Lu YX, Wang ZG, Wahi RP. Steady state creepbehaviour of TiC particulate reinforced Ti–6Al–4V composite. Materials Science andEngineering A,1998,256:301-307.
    [6] Tjong S.C., Mai Y.W., Processing-structure-property aspects of particulate-andwhisker-reinforced titanium matrix composites, Composite Science and Technology,2008,68:583-601.
    [7] Ranganath S., Mishra R.S., Steady state creep behavior of particulate-reinforcedtitanium matrix composites, Acta Materialia,1996,44:927-935.
    [8] Barboza M.J.R., Perez E.A.C., Medeiros M.M., et al., Creep behavior of Ti–6Al–4Vand a comparison with titanium matrix composites. Materials Science andEngineering A,2006,428:319-326.
    [9] Xiao L., Lu W.J., Qin J.N., et al. Steady state creep of in situ TiB plus La2O3reinforced high temperature titanium matrix composite. Materials Science andEngineering A,2009,499:500-506.
    [10]Li Y.G., Xiao L., Lu W.J., et al., Creep rupture property of in situ synthesized (TiB+La2O3)/Ti composite, Materials Science and Engineering A,2008,488:415-419.
    [11]王攀,原位自生7715D基复合材料高温蠕变性能研究,硕士论文,上海:上海交通大学,2009.
    [12]肖旅,原位自生耐热钛基复合材料的高温性能研究,博士论文,上海:上海交通大学,2010.
    [13]Mohamed F.A., Park K.T., Lavernia E.J., Creep behavior of discontinuous SiC-Alcomposites, Materials Science and Engineering A,1992,150(1):21-35.
    [14]张珍桂,耐热钛基复合材料(TiB+La2O3)/Ti的微结构及力学性能研究,硕士论文,上海:上海交通大学,2010.
    [15]段锐,张华,蔡建明等,显微组织对近α型TG6钛合金高温蠕变变形行为的影响,中国有色金属学报,2010,20(1): s11-s15.
    [16]Es-Souni M., Creep deformation behavior of three high-temperature near α-Ti alloys.Metallurgical and Materials Transaction A,2001,32(2):285-293.
    [17]Andres C., Gysler A., Lutjering G., Correlation between microstructure and creepbehavior of the high-temperature Ti alloy IMI834, Zeitschrift fur Metallkunde.1997,88(3):197-203.
    [18]洪德华,难变形GH4049合金热轧棒材的研制,硕士论文,上海:上海交通大学,2009.
    [19]韩鹏,李伯龙,尹嘉明等,Er对一种近α型高温钛合金蠕变性能的影响,科学技术与工程,2012,12(17):4124-4127.
    [20]Miller W.H., Chen R.T., Starke E.A.,M9H0icrostructure, creep, and tensile deformation inTi-6Al-2Nb-1Ta-0.8Mo, Metallurgical Transactions. A,1987,18:1451-1468.
    [21]Mishra H., Ghosal P., Nandy T.K., Sagar P.K., Influence of Fe and Ni on creep of nearα-Ti alloy IMI834, Materials Science and EngineeringA,2005,399:222-231.
    [22]Es-Souni M.,Primary, secondary and anelastic creep of a high temperature near α-Tialloy Ti6242Si, Materials Characterization,2000,45(2):153-164.
    [23]Wang X., Jahazi M., Yue S., Substructure of high temperature compressed titaniumalloy IMI834, Materials Science and Engineering A,2006,434:188–193.
    [24]Sastry S.M.L., Pao P.S., Sankaran K.K., in: H. Kimura, O. Izumi (Eds.), TitaniumScience and Technology, vol.2, Metall. Soc. AIME, Kyoto,1980,873-886.
    [25]Pitt F., Ramulu M.,9H1Labossiere P., et al.,P9H2ostprocessing effect on the ductility andflexural behavior of three titanium alloys under simulated superplastic formingconditions, Journal Materials Engineering and Performance,2004,13:735-743.
    [26]Koike J., Egashira K., Maruyama K., Oikawa H., High temperature strength of αTi-Al alloys with a locally ordered structure, Materials Science and Engineering A,1996,213:98-102.
    [27]Zhu S.J., Mukherji D., Chen W., Lu Y.X., Wang Z.G., Wahi RP.S9H3teady state creepbehaviour of TiC particulate reinforced Ti–6Al–4V composite, Materials Science andEngineering A,1998,256:301-307.
    [28]Ranganath S,, Mishra R.S., Steady state creep behavior of particulate-reinforcedtitanium matrix composites, Acta Materialia,1996,44:927-935.
    [1]李荣,李正佳,平面应变断裂韧度的试验原理与过程控制,理化检验(物理分册),2012,10:24-26.
    [2]钟飞,航空轻合金薄板激光焊接头的断裂韧性研究,硕士论文,北京:北京工业大学,2005.
    [3]蔡亮亮,云纹干涉法高温实验技术与残余应力的测量研究,硕士论文,南昌:南昌航空大学,2008.
    [4]王慧敏,严红革,平面应变断裂韧性KIC的研究,材料导报,2002,16(11):11-13.
    [5]王慧敏,7475铝合金断裂韧性的研究,硕士论文,长沙:中南大学,2001.
    [6]储武扬,断裂与环境断裂,北京:科技出版社,2000,231-138.
    [7]张旺峰,曹春晓,李兴无等,钛合金断裂韧性与屈强差的关系初探,稀有金属材料与工程,2005,4(34):549-551.
    [8] Lutjering G., Influence of Processing on Microstructure and Mechanical Properties ofα+β TitaniumAlloys, Materials Science EngineeringA,1998,243:32-45.
    [9] Wanhill R.J.H., Ambient Temperature Crack Growth in Titanium Alloys and itsSignificance for Aircraft Structures, Aeornautical Journal,1977,81:68-82.
    [10]GB/T4161-2007,金属材料准静态断裂韧度的统一试验方法,2008.
    [11]陈棣华,贾安东,单平等,第四讲断裂韧性的测试,焊接技术,1987,4:8-15.
    [12]张旺峰,曹春晓,李兴无等,热处理TA15钛合金对力学性能的影响规律,稀有金属材料与工程,2004,33(7):768-770.
    [13]王勇,郭喜平,定向凝固Nb-Ti-Si基超高温合金的组织与室温条件断裂韧性,稀有金属材料与工程,2011,40(12):2197-2202.
    [14]王晓燕,刘建荣,雷家峰等,初生及次生α相对Ti-2023合金拉伸性能和断裂韧性的影响,金属学报,2007,11(43):1129-1137.
    [15]赵9H4建生,断裂力学及断裂物理,武汉:华9H5中科技大学出版社,2006,130-142.
    [16]王9H6自强,陈9H7少华,高等断裂力学,北京:科学出版社,2009,30-36.
    [17]Irwin G.R., Plastic zone near a crack tip and fracture toughness, Proceeding of theSeventh Sagamore Ordnance Material Conference,1960,4:63-78.
    [18]王斌,TA15钛合金等温锻造工艺参数优化研究,硕士论文,西安:西北工业大学,2006.
    [19]Li Y., Wei Q., Ma C.L., et al., Phase Transformation in α β-Ti Alloy with GoodBalance Between High Strength and High Fracture Toughness, Chin. J. Aeronaut,2009,22:535-539.
    [20]王金友,葛志明,周彦邦,航空用钛合金,上海:上海科学技术出版社,1985:208-228.
    [21]Naji H., Zebarjad S.M., Sajjadi S.A., The effects of volume percent and aspect ratio ofcarbon fiber on fracture toughness of reinforced aluminum matrix composites,Materials Science and Engineering A,2008,486:413–420.
    [22]Zeng W.D., Peters P.W.M., Tanaka Y., Interfacial bond strength and fracture energy atroom and elevated temperature in titanium matrix composites (SCS-6/Timetal834),Composites: Part A,2002,33:1159-1170.
    [23]Lee W.S., Sue W. C., Lin C.F.,T9H8he effects of temperature and strain rate on theproperties of carbon-fiber-reinforced7075aluminum alloy metal-matrix composite,Composites Science and Technology,2000,60:1975-1983.
    [24]Wang L., Niinomi M., Takahashi S., et al., Relationship between fracture toughnessand microstructure of Ti–6Al–2Sn–4Zr–2Mo alloy reinforced with TiB particles,Materials Science and Engineering A,1999,263:319-325.
    [25]Neal D.F., Optimization of creep and fatigue resistance in high temperature Ti alloysIMI829and IMI834[C]//Ti’84: Science and Technology. Deutsche Gesellschaft fürMetallkunde,1984:2419-2424.
    [26]Wang M.M., Lu W.J., Qin J.N., et al, Effect of volume fraction of reinforcement onroom temperature tensile property of in situ (TiB+TiC)/Ti matrix composites,Materials and Design,2006,27:494-498.
    [27]Huang L.J., Geng L., Wang B., et al., Effects of extrusion and heat treatment on themicrostructure and tensile properties of in situ TiBw/Ti6Al4V composite with anetwork architecture, Composites: Part A,2012,43:486–491.
    [28]Zhang C.J., Kong F.T., Xiao S.L., et al., Evolution of microstructural characteristicand tensile properties during preparation of TiB/Ti composite sheet, Materials andDesign,2012,36:505-510.
    [29]Xiao L., Lu W.J., Qin J.N., et al., High-temperature tensile properties of insitu-synthesized titanium matrix composites with strong dependence on strain rates,Journal Material Research,2008,11(23):3066-3074.
    [30]Min Y. K., Jae S. P., Min K. P., et al., Effect of aspect ratios of in situ formed TiBwhiskers on the mechanical properties of TiBw/Ti–6Al–4V composites, ScriptaMaterialia,2012,66:487-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700