TiBw/Ti6Al4V复合材料挤压变形与热处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以平均粒径为110μm的Ti6Al4V粉末和5μm的TiB2颗粒做为原材料,采用反应热压法制备了TiB晶须(TiBw)增强钛基复合材料,增强体呈准连续网状分布,体积分数分别为5%和8%。对复合材料进行热挤压变形,并研究挤压比对复合材料组织与性能影响。对挤压后的复合材料进行热处理研究。采用SEM,OM等方法对TiBw/Ti6Al4V复合材料的显微组织进行观察。测试了室温及高温拉伸性能并对结果进行了分析。
     微观组织分析表明,烧结态复合材料中的TiB为棒状或空心管状晶须,分布在原始球形Ti6Al4V颗粒周围,形成准连续网状结构。烧结态复合材料经挤压变形后,网状结构破坏,TiB晶须沿挤压方向分布,同时基体晶粒被拉长。对5vol.%TiBw/Ti6Al4V选取挤压比9:1和16:1进行热挤压研究。从纵截面观察,复合材料在挤压比为16:1时晶须分布更为均匀,且更小横截面晶须所围尺寸更小晶须分布更加离散,说明随着挤压比的提高复合材料局部体积分数降低。对于8vol.%TiBw/Ti6Al4V烧结态和挤压态复合材料,晶须在原始晶粒周围有局部偏聚现象。对挤压态复合材料选取固溶时效热处理,并研究了固溶温度和时效温度对复合材料组织与性能的影响。结果表明复合材料经淬火处理后得到条状初生相和马氏体,并随着固溶温度的提高基体组织中初生相含量降低,经时效处理后马氏体分解为细小弥散和β混合组织,随着时效温度提高,马氏体分解产物尺寸增大,初生相尺寸增加。
     体积分数5%和8%烧结态复合材料抗拉强度达到1030MPa和1232MPa。较采用相同工艺Ti6Al4V合金提高7.2%和27%。其延伸率为3.2%和1.3%。在1100℃选取挤压比16:1进行热挤压变形后,复合材料的强度和塑性都有较大程度提高。体积分数5%和8%挤压态复合材料抗拉强度分别为1206MPa与1311MPa,较烧结态分别提高17.1%和6.5%。延伸率分别为12%与4.8%,较烧结态分别提高275%和269%。对于体积分数5%和8%的复合材料在990℃淬火600℃时效6个小时复合材料具有较好的室温综合力学性能,其室温抗拉强度为1364MPa和1469MPa,延伸率达到7.8%和2.5%。
     通过测试400℃、500℃、600℃和700℃两种体系TiBw/Ti6Al4V热处理态复合材料的高温性能发现。在600℃以下复合材料的具有较高的拉伸性能,并且随着测试温度提高强化效果减弱。其中5vol.%和8vol.%的复合材料在400℃抗拉强度达到1158MPa和1042MPa,在700℃抗拉强度分别为211MPa和224MPa。
TiBw/Ti6Al4V composites with a uniform network microstructure were fabricated by in situ reactive hot processing by the system of Ti6Al4V and TiB2 powers.The average size of the original Ti6Al4V and TiBw powders were 110μm and 5μm respectively. The effects of hot extrusion and heat-treatment on microstructure and properties of composites were studied. The microstructures of the composites were studied with SEM and optical microscope. The tensile properties of composites at both room and high temperatures were measured.
     Microstructure analysis results showed that TiB is rodlike whisker,which distributed around the boundaries of Ti6Al4V matrix particles as-received. The TiB whisker subsequently formed into network structure.After extrusion microstructure analysis results showed that the network structure were damaged.TiB whiskers were broken and rotated distributing along the extrusion direction and local volume fraction of TiB whiskers were decreased. It can be seen in longitudinal section the distribution of TiB whiskers in extruded composites with the extrusion ratio 16:1 were more discrete than the extrusion ratio 9:1,which guaranteed connectivity of matrix alloy. The effects of heat treatment solution temperature and aging temperature on microstructure and mechanical properties of extruded composites were investigated.The results show that with increase of solution temperature primary volume fraction decreases. With the aging temperature increased,the martensite decomposition product size increases,at the same time strip phase grows integration.
     The room temperature tensile strength of 5vol.%TiBw/Ti6Al4V sintered composites was 1030MPa and the elongation of composites was 3.2%.As 8vol.% TiBw/Ti6Al4V sintered composites,tensile strength was 1232MPa and the elongation was 1.3%. After the composites extruded at 1100℃,compared to sintered composites,the tensile strength and especially their elongationt were greatly improved. Tensile strength of 5vol.% and 8vol.% extruded composites were 1206MPa and 1311MPa,compared with sintered 17.1% and 6.5%.The elongation were 12% and 4.8% respectively,compared with sintered composites were increased by 275% and 269%. The strength and ductility of extruded composites were improved with the increase of extrusion ratio. 5vol.% of composite quenched at 990℃aging at 600℃have better mechanical properties,its tensile strength is 1364MPa,elongation 7.8%. The 8vol.% of composite with the same heat treatment tensile strength was 1469MPa,elongation was 2.5%.
     The high temperature tensile results show that with the the increase of testing temperature strengthening effect is weakened.At 400℃,tensile strength of 5vol.% and 8vol.% composites after heat treatment were 1042Mpa and 1158MPa.At 700℃,5% and 8vol.% composites have considerable strength,which were 215Mpa and 223Mpa respectively.
引文
[1] Tjong S C, Ma Z Y. Microstructural and Mechanical Characteristics of In-Situ Metal Matrix Composites[J]. Materials Science and Engineering: R. 2000, (29): 49~113.
    [2]刘莹,曲周德,王本贤. TC4钛合金的研究开发与应用[J].兵器材料科学与工程, 2005, 1:47~52.
    [3]毛小南.颗粒增强钛基复合材料在汽车工业上的应用[J].钛工业进展. 2000, 2: 5~12.
    [4]彭艳萍.军用新材料的应用现状及发展趋势[J].材料导报. 2000,14:13~16.
    [5] Saito T. The Automotive Application of Discontinuously Reinforced TiB-Ti Composites[J]. JOM. 2004, 56: 33~36.
    [6]肖代红,黄伯云.原位合成钛基复合材料的最新进展[J].粉末冶金技术. 2008. 6:217~222.
    [7] Chandran K S R, Panda K B, Sahay S S, TiBw-Reinforced Ti Composites: Processing, Properties, Application Prospects, and Research Needs[J]. JOM. 2004, 56(5): 42~48.
    [8] Peng H X, Dunne F P E, Grant P S, Cantor B. Dynamic Densification of Metal Matrix-Coated Fibre Composites: Modeling and Processing[J]. Acta Materialia. 2005, (53): 617~628.
    [9] Geng L, Ni D R, Zhang J, Zheng Z Z. Hybrid Effect of TiBw and TiCp on Tensile Properties of In SituTitanium Matrix Composites[J]. J. of Alloys and Compounds. 2008, (463): 488~492.
    [10] Cai L F, Zhang Y Z. Research on development of in situ titanium matrix composites and in situ reaction themodynamics of the reaction systems[J]. Journal of University of Science and Technology Beijing. 2006 11:551~560.
    [11] Hashin Z, Shtrikman S. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials[J]. J. of the Mechanics and Physics of Solids. 1963, (11): 127~140.
    [12]黄陆军.增强体准连续网状分布钛基复合材料研究[D].哈尔滨工业大学博士学位论文. 2011: 1~3
    [13] Gorsse S, Miracle D B, Mechanical properties of Ti6Al4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Materialia . 2003,51:2427~2442.
    [14] Lu W J, Zhang D, Zhang X N, Wu RJ, Sakata T, Mori H. Microstructural Characterization of TiB In Situ Synthesized Titanium Matrix Composites Prepared by Common Casting Technique[J]. Journal of Alloys and Compounds. 2001, 327: 240~246.
    [15]朱艳. SiC纤维增强Ti基复合材料界面反应研究[D].西北工业大学博士学位论文. 2003.
    [16] Morsi K, Patel VV. Processing and Properties of Titanium–Titanium Boride (TiBw) Matrix Composites-A Review[J]. Journal of Materials Science. 2007, (42): 2037~2047.
    [17]马凤仓.热加工对原位自生钛基复合材料组织和力学性能影响的研究[D].上海交通大学博士学位论文. 2006:9~12
    [18] Ma F C, Lv WJ, Qin, J N, and Zhang D. Hot Deformation Behavior of In Situ Synthesized Ti-1100 Composite Reinforced with 5vol.% TiC Particles[J]. Materials Letters. 2006, 60(3): 400~405.
    [19]梁亚静.激光原位合成TiC和TiB增强钛基复合材料的研究[D].北京科技大学, 2006:1~3.
    [20]冯海波. SPS原位TiB增强Ti基复合材料的组织结构与TiB生长机制[D].哈尔滨工业大学博士学位论文. 2005: 1~5.
    [21] Feng H B, Zhou Y, Jia D C, Meng Q C. Microstructure and Mechanical Properties of In Situ TiB Reinforced Titanium Matrix Composites Based on Ti–FeMo–B Prepared by Spark Plasma Sintering[J]. Composites Science and Technology. 2004, (64): 2495~2500.
    [22] Soboyejo W O, Shen W, Srivatsan T S. An Investigation of Fatigue Crack Nucleation and Growth in a Ti6Al4V/TiB In Situ Composite[J]. Mech Mater. 2004 ,36: 141~159.
    [23] Wang F, Mei J, Wu X H. Direct Laser Fabrication of Ti6Al4V/TiB[J]. Journal of Materials Processing Technology. 2008, (195): 321~326.
    [24]肖伯律,马宗义,毕敬. TiBw与TiCp原位增强钛基复合材料的高温蠕变特性[J].金属学报. 2002, 138(9): 994~997.
    [25] Patel V V, El-Desouky A, Garay J E, Morsi K. Pressure-less and Current- Activated Pressure-Assisted Sintering of Titanium Dual Matrix Composites: Effect of Reinforcement Particle Size[J]. Materials Science and Engineering A. 2009, (507): 161~166.
    [26]许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属材料科学与工程. 2008,32(6):2~3.
    [27] Welsch G, Boyer R, Collings E W. Materials Properties Handbook: Titanium Alloys[M/OL]. ASM International. 1994: 488~490.
    [28]王金友,傅作义主编.中国航天手册第四卷钛合金[M].中国标准出版社.2001:103~275.
    [29] Johnson M. Applications of advanced materials toaircraft gas turbine engines[J]. AIAA ,1990 : 90~ 2281.
    [30]夏明星,胡锐,李金山,薛祥义,王一川,周廉.自生TiC颗粒增强钛基复合材料的研究进展[J].材料导报. 2007,(21):422~427.
    [31] Lu, Sass, Bai. The influence of interfacial reactions on the fracture toughness of Ti - Al2O3 interfaces[J]. Acta Metallurgicaet Materialia. 1995, 43(1) : 31~ 41.
    [32] Rice R W. Microstructure Aspects of Fabricating Bodies by Self-Propagation Synthesis[J]. Journal of Materials Science. 1991, 26: 6533~6541.
    [33]金云学,曾松岩,王宏伟,张二林,朱兆军.硼化物颗粒增强钛基复合材料研究进展[J].铸造. 2001, (50): 711~716.
    [34] Cao L, Wang H W, Zou C M, Wei Z J. Microstructural Characterization and Micromechanical Properties of Dual-phase Carbide in Arc-melted Titanium Aluminide Base Alloy with Carbon Addition[J]. Journal of Alloys and Compounds. 2009, (484): 816~821.
    [35] Chung H, Kim Y J, Kim B K, Jiang J Q. Process for Producing Ti/TiC Composites by Hydrocarbon Gas and Ti Powder Reactions[J]. US Patent No. 5, 722, 037. 1998.
    [36] Lu Y X, Bi J, Li D X, Ping D H, Ma Z Y. Proceedings of the Second International Symposium on Composite Materials and Structures[J]. Peking University Press, Beijing, 1992:. 882~980.
    [37]马凤仓,吕维洁,覃继宁,计波,张荻.锻造对(TiB+TiC)增强钛基复合材料组织和高温性能的影响[J].稀有金属. 2006, (30): 236~240.
    [38] Tanaka Y, Yang J M, Liu Y F and Kagawa Y. Surface Nanodeformation of Discontinuously Reinforced Ti Composite by In Situ Atomic Force Microscope Observation[J]. Journal of Material Research. 2007, (22): 3098~3106.
    [39]倪丁瑞.反应热压(TiB+TiC)/Ti复合材料的制备及力学性能研究[D].哈尔滨工业大学博士学位论文. 2007: 1~3.
    [40]杨富尧.原位合成TiB晶须增强Ti60复合材料的组织和性能研究[D].哈尔滨工业大学硕士毕业论文. 2010: 7~10.
    [41]温景林,丁桦主编.有色金属挤压与拉拔技术第3~7章[M].化学工业出版社. 2007:55~250.
    [42]辛社伟,赵永庆.钛合金固态相变的归纳与讨论[J].钛工艺进展. 2007, 24(5):23~27.
    [43]邓安华.钛合金的马氏体相变[J].上海有色金属. 1999, 12(4):193~199.
    [44]周伟,曲恒磊,赵永庆,李辉,冯亮,陈军. TC4合金不同热处理后的组织与性能[J].金属热处理. 2006, 31(6):56~58.
    [45]王群骄.有色金属热处理第5章[M].化学工业出版社. 2007: 260~330.
    [46] Zhang Z G, Qin J N, Zhang Z W, Chen Y F, Lu W J, Zhang D. Effect of heat treatment temperature on microstructure and mechanical properties of in situ titanium matrix composites[J]. Materials and Design. 2010, (31):4269~4273.
    [47]包宪宇.热处理工艺对Ti-6AI-4V合金的组织结构与蠕变性能的影响[D].沈阳工业大学硕士学位论文. 2009: 1~3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700