(TiB_w+TiC_p)/(Ti-4.0Fe-7.3Mo-xCr)原位增强复合材料组织与力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金是具有广泛应用背景的轻质材料,但其耐磨性较差。实验通过引入不同比例的Cr_3C_2,B_4C和石墨,采用球磨混粉和热压烧结方法,在1300℃/20MPa/1h/Ar气氛保护条件下,利用原位反应合成(TiB_w+TiC_p)/(Ti-4.0Fe -7.3Mo-xCr)系列复合材料。利用X射线衍射(XRD)分析,SEM、TEM电镜,力学性能测试等分析手段,系统研究了Cr含量和原位反应生成增强相体积分数对复合材料显微组织结构和力学性能的影响,采用SEM电镜等手段,研究了复合材料的摩擦磨损特性。
     微观组织结构分析表明,TiC颗粒状(TiC_p)增强相的粒径随Cr含量的增加而减小;TiB晶须状(TiB_w)增强相的长径比随Cr含量的增加而增大,随原位反应生成增强相体积分数的提高而减小。复合材料的基体由α-Ti和β-Ti两相组成,基体中β-Ti的含量随Cr含量的增加而提高,随原位反应生成增强相体积分数的增加而降低。
     力学性能测试表明,随Cr含量的增加,材料的抗弯强度、断裂韧性上升,弹性模量下降,维氏硬度基本保持不变,保持在580kg·mm-2;随原位反应生成增强相体积分数的提高,材料的抗弯强度和断裂韧性先上升后降低。15vol%( TiB_w+TiC_p)/(Ti-4.0Fe-7.3Mo-5.2Cr)复合材料具有优异的强韧性,其抗弯强度为1070.5MPa,断裂韧性为15.11MPa·m1/2,弹性模量为160.9 MPa,维氏硬度为696.4 kg·mm-2;复合材料的弹性模量和硬度随增强相体积分数的增加而提高,40vol% (TiB_w+TiC_p)/(Ti-4.0Fe -7.3Mo-5.2Cr)复合材料的硬度最高,达1102.5 kg·mm-2,其抗弯强度为867.4MPa,断裂韧性为11.65MPa·m1/2,弹性模量为200.6MPa。
     滑动摩擦试验表明,基体材料的磨损以犁削和微切削磨损为主;引入Cr合金元素,可以有效提高复合材料的加工硬化和抗剪切磨损能力,使复合材料的磨损类型由犁削和微切削磨损向磨粒磨损转变;原位反应生成增强相体积分数的增加,提高了复合材料的弹性模量,从而导致复合材料抗塑性剪切能力的提高,主要以磨粒磨损为主。40vol%( TiB_w+TiC_p)/(Ti-4.0Fe-7.3Mo-5.2Cr)复合材料在摩擦过程中产生的磨屑起到固体润滑剂的作用,可有效降低材料的摩擦系数和磨损量。
Titanium alloy has a wide application as its low density,but with the bad abrasion resistance. The in situ titanium matrix composites, (TiB_w+TiC_p) / (Ti-4.0Fe -7.3Mo-xCr) composites, have been produced by hot pressing sintering utilizing the reaction between B_4C, C, Cr_3C_2 and titanium powders, in 1300℃/ 20MPa/1h/Ar atmosphere protective conditions. Microstructure and mechanical properties of the composites have been investigated. The influence of Cr content and the volume fraction of TiB_w+TiC_p in the composites on microstructure have been studied to obtain a better understanding on the strengthening mechanisms and abrasion resistance.
     Microstructure analysis shows that particle size of TiC_p decreases with the increasing of Cr content. TiB whisker aspect ratio increases with the increasing of Cr content, but decreases with the volume fraction increased by in situ reaction. Matrix of the composite is comprised of theα-Ti andβ-Ti phase and the content ofβ-Ti phase increases with the increasing of the Cr content, but decreases with the volume fraction increased by in situ reaction.
     Mechanical properties test shows that with the increasing of Cr content, both the bending strength and fracture toughness increase, the Young’s modulus decreases and hardness remained unchanged at 580kg·mm-2. With increasing of the volume fraction of the in situ formed TiB_w and TiC_p, the flexural strength and fracture toughness first increase and then decrease. 15vol% (TiB_w+TiC_p) / (Ti-4.0Fe-7.3Mo-5.2Cr) composite has excellent strength and toughness. The bending strength is 1070.5MPa, the fracture toughness is 15.11MPa·m1/2, the Young’s modulus is 160.9MPa and the hardness is 696.4kg·mm-2. With the increasing of the volume fraction, the flexural strength and toughness improve. 40vol% (TiB_w+TiC_p)/(Ti-4.0Fe-7.3Mo-5.2Cr) composite has the maximum hardness, which is 1102.5 kg·mm-2, and the flexural strength is 867.4MPa.
     Sliding friction tests show that wear plowing and micro-cutting are the two wear modes of the matrix. The introduction of Cr by adding Cr_3C_2 raw materials effectively raises the work hardening and shear abrasion, which makes the wear type of composite from wear plowing and micro-cutting to abrasive wear. The increasing of the volume fraction of the in situ formed TiB_w and TiC_p improves the Young’s modulus of the composite, which results in resistance to plastic shear capacity of composite to improve, mainly abrasive wear. 40vol% (TiB_w+TiC_p)/ (Ti -4.0Fe-7.3Mo-5.2Cr) composite generate debris in the process of friction wear, which plays the role of solid lubricant. In the wear scar, there is the oxidation layer acting as a lubricant, which plays a role in a ball’s grinding and polishing in order to reduce the contact area.
引文
[1]高静微,屈树岭.金属基复合材料的应用现状与市场前景[J].稀有金属, 1997, 21(4): 277-296.
    [2] Bhaskar S. M. Development and Characterization of New Coatings for Improved Balance of Mechanical Properties of Titanium Matrix Composites[J]. Materials Science and Engineering A, 1999, 259(2): 171-188.
    [3] Zhang P, Li F G. Effects of Particle Clustering on the Flow Behavior of SiC Particle Reinforced Al Metal Matrix Composites[J]. Rare Metal Materials and Engineering, 2009, 39(9):1525-1531.
    [4] Takekawa J, Sakurai N. Effect of the Processing Conditions on Density, Strength and Microstructure of Ti-12Mo Alloy Fabricated by PIM Process[J]. Journal of the Japan Society of Powder and Powder Metallurgy , 1999, 46(8): 877-881.
    [5] Arcella F G, Froes F H. Producing Titanium Aerospace Components from Powder Using Laser Forming[J]. JOM(Journal of the Minerals Metals and Materials Society), 2004, 52(5): 28-30.
    [6] Zhang B Y, Chen X B, Li P. Discussion of Compression Strength After Impact (CAI) of BMI/Carbon Fiber Composites[J]. Journal of Advanced Materials, 2001, 33(1):17-23.
    [7] Sherman A M, Allision J E.―Potential for Automotive Applications of Titanium Alloys,‖SAE International congress and Exposition[C]. Warrendale, PA: SAE, 1986.
    [8] Abkowitz S, Abkowitz S M, Fisher H, et al. Cerme Ti Discontinuously Reinforced Ti-matrix Composites: Manufacturing, Properties and Applications[J]. JOM, 2004, 56(5): 37-41.
    [9] Saito T. The Automotive Application of Discontinuously Reinforced TiB-Ti Composites[J]. JOM. 2004, 56(5): 33-36.
    [10]汪涛,鲁玉祥,祝美丽,等.颗粒增强金属基原位复合材料的制备技术回顾与展望.宇航材料工艺, 2000, (1): 12-18.
    [11] Alman D E, Hawk J A. The Abrasive Wear of Sintered Titanium Matrix–Ceramic Particle Reinforced Composites[J]. Wear, 1999, 225-229(1):629-639.
    [12] Abkowitz S, Weihrauch P F, Abkowitz F H, et al. The Commercial Application of Low-Cost Titanium Composites[J]. JOM, 1995, 47(8): 40-41.
    [13]吕维洁.原位自生钛基复合材料研究综述[J].中国材料进展, 2010, 29(4): 41-48.
    [14] Gorsse S, Chaminade J P, Petitcorps Y Le. In Situ Preparation of Titanium Base Composites Reinforced by TiB Single Crystals Using A Powder Metallurgy Technique[J]. Composites Part A. 1998, 29A: 1229-1234.
    [15] Ma X Y, Li C R, Du Z M, et al. Thermodynamic Assessment of the Ti-B System[J]. Journal of Alloys and Compounds, 2004, 370: 149-158.
    [16]高文理. Ti-Al-B合金中硼化物组成及形貌变化规律[D].哈尔滨:哈尔滨工业大学工学博士学位论文, 2003.
    [17] Ravi Chandran K S, Panda K B, Sahay S S. TiBW Reinforced Ti Composites: Processing, Properties, Application Prospects and Research Needs[J]. JOM(Journal of the Minerals Metals and Materials Society), 2004, 4: 42-48.
    [18]唐仁政,田荣璋.二元合金相图及中间相晶体结构[M].长沙:中南大学出版社, 2009.
    [19] Yang Z F, Lu W J, Qin J N, et al. Microstructure and Tensile Properties of in Situ Synthesized (TiBw+TiCp+Nd2O3)/Ti-Alloy Composites at Elevated Temperature[J]. Materials Science and Engineering A, 2006, 425: 185-191.
    [20] Xiao L, Lu W J, Li Y G, et al. Thermal Stability of In-Situ Synthesized High Temperature Titanium Matrix Composites[J]. Journal of Alloys and Compounds, 2009, 467: 135-141.
    [21] Rice R W. Microstructure Aspects of Fabricating Bodies by Self-Propagation Synthesis[J]. Journal of Materials Science, 1991, 26: 6533-6541.
    [22]孟范成,傅正义,张金咏.自蔓延高温合成/快速加压法制备二硼化钛陶瓷的致密化机理[J].硅酸盐学报, 2007, 35(4): 430-434
    [23] Fu Z Y, Wang H, Wang W M, et al. Composites Fabricated by Self-Propagating High-Temperature Synthesis[J]. Journal of Materials Processing Technology, 2003, 137(1-3): 30-34.
    [24] Fleetwood M J. Mechanical Alloying-the Development of Strong Alloys[J]. Materials Science and Technology, 1986, 2: 1176-1182.
    [25] Ranganath S. A Review on Particle-Reinforced Titanium MatrixComposites[J]. Journal of Materials Science, 1997, 32(1): 1-16.
    [26] Li B S, Shang J L, Guo J J, et al. In Situ Observation of Fracture Behavior of In Situ TiBw/Ti Composites[J]. Materials Science and Engineering A, 2004, 383(2): 316-322.
    [27] Tjong S C, Ma Z Y. Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites[J]. Materials Science and Engineering: R: Reports, 2000, 29: 49-113.
    [28] Lima G F, Suzuki P A, Nunes C A, et al. Microstructural Characterization of Rapidly Solidified And Heat-Treated Ti92b8 Eutectic Alloy[J]. Materials Characterization, 2008, 59(12): 1753-1757.
    [29] Rangarajan S, Aswath P B, Soboyejo W O. Mirostructure Development and Fracture of In-Situ Reinforced Ti-8.5Al-1B-1Si[J]. Scripta Materialia, 1996, 35(2): 239-245.
    [30] Godfrey T M, Wisbey A, Goodwin P S, et al. Microstructure and Tensile Properties of Mechanically Alloyed Ti-6Al-4V Alloy with B Additions[J]. Materials Science and Engineering A, 2000, 282(1-2): 240-250.
    [31] Juang X J, Trunov M A, Schoenitz M, et al. Mechanical Alloying and Reactive Milling In A High Energy Planetary Mill[J]. Journal of Alloys and Compounds, 2009, 478(1-2): 246-251.
    [32] Feng H B, Jia D C, Zhou Y. Influence factors of ball milling process on BE pewder for reaction sintering of TiB/Ti-4.0Fe-7.3Mo composite[J]. Journal of Materials Processing Technology, 2007, 182(1-3): 79-83.
    [33] Suryanarayana C. Mechanical Alloying and Milling[J]. Progress in Materials Science, 2001, 46: 1-184.
    [34] LuW J, ZhangD, ZhangX N, etal. Microstructure and Tensile Properties of In-Situ (TiBw+TiCp)/Ti6242 (TiB∶TiC=1∶1) Composites Prepared by Common Casting Technique[J]. Materials Science and Engineering A, 2001, 311: 142-150.
    [35] Yang Z, LuW, Zhao L, etal. Microstructure and Mechanical Property of In-Situ Synthesized Multiple-Reinforced (TiBw+TiCp+La2O3)/Ti Composites[J]. Journal of Alloys and Compounds, 2008, 455: 210-214.
    [36] Xiao L, LuW, Qin J, et al. High-Temperature Tensile Properties of In-Situ Synthesized Titanium Matrix Composites with Strong Dependence on StrainRates[J]. Journal of Materials Research, 2008, 23: 3066-3074.
    [37] Lu W J, Zhang D, Zhang X N, et al. Creep Rupture Life of In-Situ Synthesized (TiBw+TiCp)/Ti Matrix Composites[J]. Scripta Materialia, 2001, 44: 2449-2455.
    [38]张幸红,徐强,赫晓东. TiB/Ti基金属陶瓷的自蔓延高温合成与耐磨性研究[J].硅酸盐学报, 2002, 30(1): 36-39.
    [39]张松,王茂才.激光熔覆TiC/Ti复合材料的组织及摩擦学性能[J].摩擦学学报, 1999, 19(1): 18.
    [40]李邦盛,尚俊玲,郭景杰,等.原位TiB晶须增强钛基复合材料的磨损机制,摩擦学学报, 2005, 25(1): 18-21.
    [41]曹阳,李国俊,陈复民.金属基复合材料的摩擦学研究进展[J].机械工程材料, 1992, 16(4): 1-3.
    [42]卢德宏,蒋业华,周荣,等.内部因素对金属基复合材料磨损性能的影响[J].材料导报, 2000, 1(8): 17-18.
    [43]尚俊玲,李邦盛,任明星,等.原位TiB-Ti复合材料的磨损性能及磨损机制[J].铸造. 2008, 57 (5): 465-469.
    [44]胡丽娟.原位自生铁基复合材料耐磨性能的研究[D].南宁:广西大学硕士学位论文, 2005: 66-70.
    [45]汤慧萍.汽车用粉末冶金Ti-Fe-Mo-Al合金的研究[D].长沙:中南大学工学博士学文论文, 2004: 59-61.
    [46]冯海波. SPS原位TiB增强Ti基复合材料的组织结构与TiB生长机制[D].哈尔滨:哈尔滨工业大学工学博士学位论文, 2005: 26-27.
    [47]莫畏.钛的金属学和热处理[M].北京:冶金工业出版社, 2009: 115-122.
    [48] Zhang X N, Lu W J, Zhang D, et al. In Situ Technique for Synthesizing (TiBw+TiCp)/Ti Composites[J]. Scripta Mater, 1999, 41(11): 39-41.
    [49] Panda K B, Ravi K S. Synthesis of Ductile Titanium–Titanium Boride (Ti-TiB) Composites with a Beta-Titanium Matrix: The Nature of TiB Formation and Composite Properties[J]. Metallurgical and Materials Transactions A, 2003, 34A: 1371-1385
    [50]肖旅.原位自生耐热钛基复合材料的高温性能研究[D].上海:上海交通大学工学博士学位论文, 2010: 42-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700