粉末冶金钛基复合材料制备及应用基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金及钛基复合材料由于具有优异的室温、高温力学性能,特别是高比强度、高比模量在航空航天上有着广泛的应用。由于原料价格较高,加工困难等原因,限制了钛材在民用领域的应用。粉末冶金技术可以实现中小零部件生产短流程化,而所需原料钛粉的生产工艺不断革新,生产成本不断下降,因而有望拓宽钛材在民用领域的应用。本文以开发汽车发动机用钛连杆和气门为应用目标展开研究。采用金属碳化物、6A1-4V合金粉、YH2粉、钛粉等为原料粉,通过混料,冷等静压,真空烧结等工艺获得烧结坯,采用热轧、热锻和热挤压等热变形手段实现材料的全致密化和获得必要的尺寸制得粉末冶金钛材。对所制备的材料进行了热变形行为、室温和高温力学性能、抗氧化性能以及耐磨性能等进行了系统研究,并对材料制备过程中的微观组织演化,拉伸断口组织,氧化试验后和摩擦磨损试验后样品表面的微观组织进行了详细分析。探讨了材料制备过程中的组织演化机理,材料的强化机制以及抗氧化性能的影响因素。最终采用优化后的钛材成分和加工工艺,制备出了钛基复合材料连杆和气门,并进行台架试验。通过以上研究得到了如下结论:
     1.金属碳化物的种类和烧结后的热变形对TiC/Ti基复合材料中TiC颗粒的分布影响较大,金属碳化物和6A1-4V合金粉的添加量对TiC颗粒分布影响很小。金属碳化物与钛的反应驱动力大小影响两相区扩张和TiC颗粒形核与长大对C元素的获取能力,从而影响最终TiC颗粒的分布。反应驱动力大,TiC颗粒形核与长大获取C能力强,因而在较窄的区域内形成大量的TiC颗粒,使得其分布不均;反应驱动力小,两相区扩张获取C能力强,因而在较为宽的区域内形成均匀分布的TiC颗粒。热变形能够促进TiC颗粒的均匀分布。
     2.金属碳化物、6A1-4V合金粉添加量以及金属碳化物的种类对TiC/Ti基复合材料的室温和高温力学性能及不同强化机制的强化效果有显著影响。主要强化机制有:Al, Mo, V等合金元素产生的固溶强化,TiC颗粒在热变形过程中促进基体晶粒细化产生的细晶强化以及TiC颗粒在拉伸变形过程中基于载荷转移机制产生的颗粒强化。在室温时,颗粒强化效果随不均匀分布的TiC颗粒体积分数增加而减小,随均匀分布的TiC颗粒体积分数增加而增加;钛基体强度对颗粒强化的影响甚小。在高温时,增加TiC颗粒的体积分数以及在TiC颗粒体积分数一定时通过增加合金元素来提高钛基体的强度有利于延缓钛基复合材料的强度衰退。
     3.基体合金的种类对基体p-Ti相和TiC颗粒在氧化过程中的演化有重要影响。富Mo的p-Ti相在氧的作用下转变成a-Ti相,并且Mo也固溶于相应a-Ti相中,有利于提高材料的抗氧化性能。富V的p-Ti相氧化产物中的V205具有很强的挥发性,使得氧化层产生大量微裂纹加速氧的扩散,同时为TiC颗粒的氧化提供有利条件,降低材料的抗氧化性能。
     4.热加工图表明烧结态Y2O3/Ti基复合材料具有十分优异的热变形行为,理想的变形区间为:700-850℃和应变速率为0.001-0.01s-1的范围内以及温度为900-1000℃和应变速率为0.001-0.1s-1的范围内。前者的变形机制为片层球化或α相的动态再结晶;后者的变形机制为p相的动态再结晶。Y203强化相颗粒在烧结后的热机处理过程中形成,并且能够显著提高材料的强度和塑性。
     5.尽管有残余孔隙的存在,细小的基体组织使得粉末冶金钛基复合材料烧结坯体具有十分优异的热变形性能,可进行进一步的热锻造、热轧制和热挤压等。采用烧结,热挤压,电镦粗和模锻工艺路线制备出了综合性能优异的TiC/Ti基基复合材料气门。通过烧结,预成型和模锻工艺路线制备出力学性能优异的Y2O3/Ti基复合材料连杆。
Titanium alloys and titanium matrix composites have widely application in aerospace due to their excellent mechanical properties at ambient and elevated temperature, especially high specific strength and modulus. The high cost from both alloy materials and metalworking limits titanium parts for civil use. Recently, the cost of the Ti powder becomes effectiveness due innovation of manufacturing process. As a near net forming process, the powder metallurgy may expand the use of titanium in civil application. The present work aims to fabrication automobile parts such as valve and connect rod with good application properties and low cost. The metal carbids,6A1-4V powder, YH2 powder and titanium powder were blended,cold isostatically pressed, sintered, and finally hot deformed such as hot rolled or hot pressed to achieve fully densified titanium matrix composites. The deformation behavior, mechanical properties at ambient and elevated temperature, oxidation and wear behavior of the composites were systematic investigated. The microstructure evolution during fabrication, fracture surface, surface microstructure after oxidation and wear test were obseverd. The mechanism of the microstructure evolution, strengthen and oxidation were discussed. The optimized titanium matrix composites and their deformation process were used to fabrication connect rod and valve. These automobile parts are bench tested. The results show:
     1. The distribution of TiC particles is greatly influenced by the type of metal carbides and hot deformation after sintering and is less dependent on the addition amount of metal carbides and 6A1-4V powder. The carbon element is completely obtained by the expanding of the two-phase reaction zone and precipitation of TiC during reaction sintering. The ability is determined by the driving force for reaction between Ti and metal carbide in the case of Mo2C and VC. The high driving force is benefit to precipitation of TiC, then the particles is formed in a narrow area and inhomogenously distributed. While the low driving force is benefit to the expanding of the two-phase reaction zone, and the homogenous distribution of TiC particles is achieved.
     2.The mechanical properties and the effectiveness of the strengthening mechanism at ambient and elevate temperature are influenced by the addition amount and type of metal carbides and amount of 6Al-4V powder. The main strengthening mechanisms are:solid solution strengthening of Al,Mo and V, grain refinement strengthening and particulate strengthening due to load transformation. At ambient temperature, the strengthening increment is decreased with increasing of inhomogenous distribution of TiC particles and increased with increasing of homogenous distribution of TiC particles. At elevate temperature, increasing the volume fraction of TiC particles and the titanium matrix strength by addition alloy element with constant volume fraction of TiC particles can delay the degration of mechanical properties.
     3.The matrix alloy elements greatly influence the evolution ofβ-Ti and TiC particles during oxidation. The Mo richβ-Ti is transferred to a-Ti promoted by the oxygen and the Mo element is soluted in the correspondeda-Ti, then increasing the oxidation resistance of the composites. The micro-cracks are formed in the oxidation layer due to the volatilization of V2O5, hence the V richβ-Ti is fast passageway of oxidation and oxygen diffusion. On the other hand, the oxidation of TiC is promoted by the micro-cracks. Hence, the V element is detrimental to the oxidation resistance of the composites.
     4.The processing map shows that the as sintered Y2O3/Ti matrix composite has excellent hot deformation properties. Efficiency peaks in the temperature-strain rate regions of 700-900℃and 10-3-10-2 s-1 and of 950-1000℃and 10-3-10-2 s-1 are identified to dynamic recrystallization and grain coarsening, respectively. Y-rich particles with a low content of oxygen form after sintering, instead of oxides. The Y2O3 particles are formed during thermal mechanical treatment and can greatly improve the mechanical properties of the composites.
     5. Despite existing of residual pores, the powder metallurgical titanium matrix composites has good hot deformation behavior due to the fine matrix microstructure and can be further hot forged, rolled and pressed. TiC/Ti matrix composite valve with good application properties is fabricated by sintering, hot pressing, upsetting and mold forging. Y2O3/Ti matrix composite connected rod with good mechanical properties is fabricated by sintering, pre-forming and mold forging.
引文
[1]E. Klenz. Titanium Industry overview:International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA,2008.
    [2]Opportunities for Low Cost Titanium in Reduced Fuel Consumption and Enhanced Durability Heavy-Duty Vehicles. U.S. Department of Energy,2002-7. www. ehktechnologies. com.
    [3]汤慧萍.汽车用粉末冶金Ti-Fe-Mo-Al合金的研究:[博士论文].长沙,中南大学,2004.
    [4]A. D. Vlad, O. Ivasishin, C. Lavender, et al. Innovative powder metallurgy process for producing low cost titanium alloy components, International Titanium Association. TITANIUM 2008[C/D]. LasVegas, USA,2008.
    [5]S. Ranganath, M. Vijayakumar, J. Subrahmanyam. Combustion-assisted synthesis of Ti-TiB-TiC composite via the casting route. Materials Science and Engineering A,1992,149:253-257.
    [6]W. J. Lu, D. Zhang, X. Zhang, et al. Microstructure and tensile properties of in situ synthesized (TiBw+TiCp)/Ti6242 composites. Journal ofMaterials Science,2001, 36:3707-3721.
    [7]W.J. Lu, D. Zhang, X.N. Zhang, et al. Creep rupture life of in situ synthesised (TiB+TiC)/Ti matrix composites. Scripta Materialia,2001,44:2449-2455.
    [8]W.J. Lu, D. Zhang, X.N Zhang, et al. Micro structural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds,2001,327:240-247.
    [9]K. Geng, W.J. Lu, D. Zhang. Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature. Materials and Engineering A,2003,360:176-182.
    [10]K. Geng, W.J. Lu, D. Zhang, et al. Tensile properties of in situ synthesized titanium matrix composites reinforced by TiB and Nd2O3 at elevated temperature. Materials and Design,2003,24:409-414.
    [11]L.Q. Wang, W.J. Lu, J.N. Qin, et al. Tensile properties of in situ synthesized (TiB+La2O3)/β-Ti composite. Materials Science and Engineering C,2009,29: 1897-1900.
    [12]X. Lv, W.J. Lu, J.N. Qin, et al. Steady state creep of in situ TiB plus La2O3 reinforced high temperature titanium matrix composite. Materials Science and Engineering A,2009,499:500-506.
    [13]D. Xu, W.J. Lu, Z.F. Yang, et al. In situ technique for synthesizing multiple ceramic particulates reinforced titanium matrix composites (TiB+TiC+ Y2O3)/Ti. Journal of Alloys and Compounds,2005,400:216-221.
    [14]E.L. Zhang, S.Y. Zeng, B. Wang. Preparation and microstructure of in situ particle reinforced titanium matrix alloy. Journal of Materials Processing Technology,2002,125-126:103-109.
    [15]W.J. Lu, D. Zhang, X.N. Zhang, et al. Micro structural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds,2001,327:248-252.
    [16]W.J. Lu, D. Zhang, X. Zhang, et al. Microstructureand tensile behavior of in situ (TiB+TiC)/Ti6242 (TiB:TiC= 1:1) composites prepared by common casting technique. Materials Science and Engineering A,2001,311:142-150.
    [17]B.S. Li, J.L. Shang, JJ. Guo, et al. In situ observation of fracturebehavior of in situ TiBw/Ti composites. Materials Science and Engineering A,2004,383: 316-338.
    [18]T.S. Srivatsan, W.O. Soboyejo, R.J. Lederich. Tensile deformation andfracture behavior of a titanium-alloy metal-matrix composite. Composites:A,1997,28: 365-376.
    [19]R. Banerjee, A. Genc, P.C. Collins, et al. Comparison ofmicrostructural evolution in laser-deposited and arc-melted in situTi-TiB composites. Metallurgical and materials transaction A,2004,35:2143-2152.
    [20]E.L. Zhang, S. Zeng, B.. Wang. Preparation and microstructure of in situparticle reinforced titanium matrix alloy. Journal of Materials Processing Technology, 2002,125-126:103-112.
    [21]M. Wang, W. Lu, J. Qin, et al. The effect ofreinforcements on superplasticity of in situ synthesized (TiB+TiC)/Ti matrix composite. Scripta Materialia,2006, 54:1955-1964.
    [22]N. Chawla, K.K. Chawla. Metal matrix composites. New York:Springer,2006.
    [23]Z.Y. Ma, Y.L. Li, Y. Liang, et al. Nanometric Si3N4 particulate-reinforced aluminum composite. Materials Science and Engineering A,1996,219: 229-231.
    [24]S.C. Tjong, H. Chen. Nanocrystalline materials and coatings. Materials Science and Engineering R,2004,45:1-88.
    [25]V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, et al. Influence of ECAP routes on the microstructure and properties ofpure Ti. Materials Science and Engineering A, 2001,299:59-63.
    [26]C.F. Yolton, J.H. Moll. Evaluation of a discontinuously reinforced TI-6Al-4V composite. In:Blenkinsop PA, Evans WJ, Flower HM,editors. Titanium'95: science and technology, Vol. Ⅲ. London:The Institute of Materials,1996.
    [27]D. Hu, M.H. Loretto. Microstructural characterization of a gas atomized Ti-6Al-4V-TiC composite. Scripta Metallurgica, 1994,31:543-548.
    [28]D. Hu, T.P. Johnson, M Loretto, H.. Tensile properties of a gas atomized Ti-6Al-4V-TiC composite. In:Blenkinsop PA, Evans WJ, Flower HM, editors. Titanium'95:science and technology, vol.3. London:The Institute of Materials, 1996.
    [29]R. Banerjee, P.C. Collins, H.L. Fraser. Laser deposition of In situ Ti-TiB composites. Advanced Engineering Materials,2002,4:847-851.
    [30]R. Banerjee, A. Genc, D. Hill, et al. Nanoscale TiB precipitates in laser-deposited Ti-matrix composites. Scripta Materialia,2005,53:1433-1437.
    [31]S. Abkowitz, P.F. Weihrauch, F.H. Abkowitz, et al. Commercial application of low-cost titanium composites. JOM,1995,47:40-41.
    [32]S. Abkowitz, S. M. Abkowitz, H. Fisher, et al. CermeTi(?) discontinuously reinforced Ti-matrix composites:Manufacturing, properties, and applications. JOM,2004,56:37-41.
    [33]C. Poletti, M. Balog, T. Schubert, et al. Production of titanium matrix composites reinforced with SiC particles. Composites Science and Technology, 2008,68:2171-2177.
    [34]S. Abkowitz M. Frary, S.M. Abkowitz, D.C. Dunand Microstructure and mechanical properties of Ti/W and Ti-6Al-4V/W composites fabricated by powder-metallurgy. Materials Science and Engineering A,2003,344 103-112.
    [35]H. Choe, S. M. Abkowitz, S. Abkowitz, et al. Effect of tungsten additions on the mechanical properties of Ti-6Al-4V. Materials Science and Engineering A, 2005,396:99-106.
    [36]H. Choe, S.M. Abkowitz, Dunand D.C. Effect of tungsten dissolution on the mechanical properties of Ti-W composites. Journal of Alloys and Compounds, 2005,390:62-66.
    [37]B.R.V. Radhakrishna, J. Subramanyam, P.V.V. Bhanu. Preparation of Ti-TiB-TiC & Ti-TiB composites by in situ reaction hot pressing. Materials Science and Engineering A,2002,325:126-130.
    [38]T.M. Godfrey, A. Wisbey, P.S. Goodwin, et al. Micro structure and tensile properties of mechanically alloyed Ti-6A1-4V alloy with B additions. Materials Science and Engineering A,2000,282:240-250.
    [39]H. Feng, D. Jia, Y. Zhou. Influence factors of ball milling process on BE powder for reaction sintering of TiB/Ti-4.0Fe-7.3Mo composite. Journal of Materials Processing Technology,2007,182:79-83.
    [40]H. Chung, Y.J. Kim, B.K. Kim, et al. Process for producing Ti/TiC composites by hydrocarbon gas and Ti powder reactions. US Patent No.5722037,1998.
    [41]Y.J. Kim, H. Chung, S.J. Kang. In situ formation of titanium carbide in titanium powder compacts by gas-solid reaction. Composites Part A:Applied Science and Manufacturing,2001,32:731-738.
    [42]Y.J. Kim, H. Chung, S.J. Kang. Processing and mechanical properties of Ti-6Al-4V/TiC in situ composite fabricated by gas-solid reaction. Materials Science and Engineering A,2002,333:343-350.
    [43]Y. Liu, L.F. Chen, H.P. Tang, et al. Design of powder metallurgy titanium alloys and composites. Materials Science and Engineering A,2006,418:25-35.
    [44]B. Liu, Y. Liu, X.Y. He, et al. Preparation and mechanical properties of particulate reinforced PM titanium matrix composites. Metallurgical and materials transaction A,2007,38:2825-2831.
    [45]M. Bram, F. Aubertin, A. Venskutonis, et al. Kinetics of the phase transformation and wear resistance of in-situ processed titanium matrix composites based on Ti-Fe-B. Materials Science and Engineering A,1999,264: 74-80.
    [46]M. Kobayashi, K. Funami, S. Suzuki, et al. Manufacturing process and mechanical properties of fine TiB dispersed Ti-6Al-4V alloy composites obtained by reaction sintering. Materials Science and Engineering A,1998,243: 279-284.
    [47]J.Q. Lu, J.N. Qin, WJ. Lu, et al. In situ preparation of (TiB+TiC+Nd2O3)/Ti composites by powder metallurgy. Journal of Alloys and Compounds,2009, 469:116-122.
    [48]S.B. Li, B.S. Zhang, G.W. Wen, et al. Microstructure and mechanical properties of platelet-reinforced Ti-B-C ceramics prepared by reaction hot pressing of B4C and Ti powders. Materials Letters,2003,57:1445-1452.
    [49]D.R. Ni, L. Geng, J. Zhang, et al. Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti-B4C system. Scripta Materialia,2006,55:429-432.
    [50]D.R. Ni, L. Geng, J. Zhang, et al. TEM characterization of symbiosis structure of in situ TiC and TiB prepared by reactive processing of Ti-B4C. Materials Letters,2008,62:686-688.
    [51]L.J. Huang, L. Geng, H.X. Peng. In-situ (TiBw+TiCp)/Ti6A14V composites with a network reinforcement distribution. Materials Science and Engineering A,2010,527:24-25.
    [52]Z.Y. Ma, S.C. Tjong, L. Gen. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process. Scripta Materialia,2000,42:367-373.
    [53]J. Subramanyam B.V. Radhakrishna Bhat, V.V. Bhanu Prasad. Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing. Materials Science and Engineering A,2002,325 126-130.
    [54]D.R. Ni, L. Geng, J. Zhang, et al. Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti-B4C-C. Materials Science and Engineering A,2008,478:291-296.
    [55]A. Chrysanthou, Y.K. Chen, A. Vijayan, et al. Combustion synthesis and subsequent sintering of titanium-matrix composites. JOURNAL OF MATERIALS SCIENCE,2003,38:2073-2077.
    [56]H.T. Tsang, C.G. Chao, C.Y. Ma. In situ fracture observation of a TiC/Ti MMC produced by combustion synthesis. Scripta Materialia,1996,35:1007-1012.
    [57]S. Ranganath, J. Subrahmanyam. On the In Situ Formation of TiC and Ti2C Reinforcements in Combustion-Assisted Synthesis of Titanium Matrix Composites. Metallurgical and materials transaction A,1996,27:237-240.
    [58]H.B. Feng, D.C. Jia, Y. Zhou. Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Composites:Part A,2005,36: 558-563.
    [59]H.B. Feng, Y. Zhou, D.C. Jia, et al. Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti-FeMo-B prepared by spark plasma sintering. Composites Science and Technology,2004, 64:2495-2500.
    [60]G. Lutjering, J.C. Willianms. Titanium (second edition),Heidelberg:Springer, 2007.
    [61]A.O.F. Hayama, H.R.Z. Sandim. Annealing behavior of coarse-grained titanium deformed by cold rolling. Materials Science and Engineering A,2006,418: 182-192.
    [62]Y.B. Chun, S.H. Yu, S.L. Semiatin, et al. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium. Materials Science and Engineering A,2005,398:209-219.
    [63]V.V. Stolyarov, Y.T. Zhu, G.I. Raaba, et al. Effect of initial microstructure on the micro structural evolution and mechanical properties of Ti during cold rolling. Materials Science and Engineering A,2004,385 309-313.
    [64]A.K. Singh, R. A. Schwarzer. Effect of mode of deformation by rolling on the development of texture in binary Ti-Mn alloys. Scripta Materialia,2001,44: 375-380.
    [65]A.K. Singh, R.A. Schwarzer. Evolution of cold rolling texture in the binary alloys:Ti-0.4Mn and Ti-1.8Mn. Materials Science and Engineering A,2001, 307:151-157.
    [66]Y. Todaka, J. Sasaki, T. Moto, et al. Bulk submicrocrystalline co-Ti produced by high-pressure torsion straining Scripta Materialia,2008,59:615-618.
    [67]D. Terada, S. Inoue, N. Tsuji. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. Journal ofMaterials Science,2007:1673-1681.
    [68]I. Kim, W. Jeong, J. Kim, et al. Deformation structures of pure Ti produced by equal channel angular pressing. Scripta Materialia,2001,45:575-581.
    [69]I. Kim, J. Kim, D.H. Shin, et al. Deformation twins in pure titanium processed by equal channel angular pressing. Scripta Materialia,2003,48:813-817.
    [70]I. Kim, J. Kim, D.H. Shin, et al. Effects of equal channel angular pressing temperature on deformation structures of pure Ti. Materials Science and Engineering A,2003,342:302-310.
    [71]V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, et al. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Materials Science and Engineering A,2003,343:43-50.
    [72]V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, et al. Influence of ECAP routes on the microstructure and properties of pure Ti. Materials Science and Engineering A,2001,299:59-67.
    [73]R.K. Islamgaliev, V.U. Kazyhanov, L.O. Shestakova, et al. Micro structure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion. Materials Science and Engineering A,2008,493:190-194.
    [74]V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Materials Science and Engineering A,2001,303:82-89.
    [75]C.C. Chen, J.E. Coyne. Deformation Characteristics of Ti-6AI-4V Alloy Under Isothermal Forging Conditions. Metallurgical Transaction A,1975,7: 1931-1941.
    [76]S.L. Semiatin, V. Seetharaman, I. Weiss. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure. Materials Science and Engineering A,1999,263:257-271.
    [77]G. Luetjering. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering A,1998, 243:32-45.
    [78]R. Ding, Z.X. Guo, A. Wilson. Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing. Materials Science and Engineering A,2002,327:233-245.
    [79]T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, et al. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure. Materials Science and Engineering A,2002,325:112-125.
    [80]F.C. Ma, WJ. Lu, J.N. Qin, et al. Microstructure evolution of near-α titanium alloys during thermomechanical processing. Materials Science and Engineering A,2006,416:59-65.
    [81]W.J. Evans. Optimising mechanical properties in alpha+beta titanium alloys. Materials Science and Engineering A,1998,243:89-96.
    [82]T. Ahmed, H. J. Rack. Phase transformations during cooling in α+β titanium alloys. Materials Science and Engineering A,1998,243:206-211.
    [83]H. Fujii. Strengthening of α+β titanium alloys by thermomechanical processing. Materials Science and Engineering A,1998,243:103-108.
    [84]S.L. Semiatin, S.L. Knisley, P.N. Fangin, et al. Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V. Metallurgical and materials transaction A,2003,34:2377-2386.
    [85]陈慧琴,曹春晓,郭灵等.TC11钛合金片层组织热变形球化动力学过程.航空材料学报,2009,29:37-42.
    [86]T. Gloriant, G. Texier, F. Sun, et al. Characterization of nanophase precipitation in a metastable b titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction. Scripta Materialia,2008,58:271-274.
    [87]H.P. Ng, E. Douguet, C.J. Bettles, et al. Age-hardening behaviour of two metastable beta-titanium alloys. Materials Science and Engineering A,2010, 527:7017-7026.
    [88]S. Komatsu, M. Ikeda, T. Sugimoto, et al. Aging behaviour of Ti-15Mo-5Zr and Ti-15Mo-5Zr-3Al alloy up to 573 K. Materials Science and Eneering A,1996, 213:61-65.
    [89]O.M. Ivasishin, RE. Markovsky, Semiatin S.L., et al. Aging response of coarse-and fine-grained (3 titanium alloys. Materials Science and Engineering A,2005, 405:296-305.
    [90]T. Grosdidier, M.J. Philippe. Deformation induced martensite and superelasticity in a β-metastable titanium alloy. Materials Science and Engineering A,2000,291:218-223.
    [91]Y. Ohmori, T. Ogo, K. Nakai, et al. Effects of ω-phase precipitation on β→α, a "transformations in a metastable β titanium alloy. Materials Science and Engineering A,2001,312:182-188.
    [92]T. Furuhara, T. Maki, T. Makino. Microstructure control by thermomechanical processing in β-Ti-15-3 alloy. Journal of Materials Processing Technology, 2001,117:318-323.
    [93]T. Makino, R. Chikaizumi, T. Nagaoka, et al. Microstructure development in a thermomechanically processed Ti-15V-3Cr-3Sn-3Al alloy. Materials Science and Engineering A,1996,213:51-60.
    [94]J.H. Choi B.H. Choe, S.C. Lee, S.J. Kim, Y.T. Lee. Premartensitic behavior of the supersaturated beta phase in Ti alloys. Scripta Materialia,1998,39:749-754.
    [95]Y. Hibi, T. Murakami. Wear behavior of self-mated Ti-Si-C composites and Ti-Si-N composites slid without lubricant. Tribology,2008,3:185-189.
    [96]马凤仓.热加工对原位自生钛基复合材料组织和力学性能影响的研究:[博士论文].上海:上海交通大学,2006.
    [97]M.J. Tan, X. Zhang. Powder metal matrix composites:selection and processing. Materials Science and Engineering A,1998,244:80-85.
    [98]V.V. B. Prasad, B.V.R. Bhat, Y.R. Mahajan, et al. Structure/property correlation in discontinuously reinforced aluminium matrix composites as a function of relative particle size ratio. Materials Science and Engineering A, 2002,337:179-186.
    [99]A. Slipenyuk, V. Kuprin, Yu. Milman, et al. The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed Al-Cu-Mn/SiCp MMC. Materials Science and Engineering A,2004,381:165-170.
    [100]J. Boselli, P.D. Pitcher, P.J. Gregson, et al. Numerical modelling of particle distribution effects on fatigue in Al-SiCp composites. Materials Science and Engineering A,2001,300:113-124.
    [101]P. Wanjara, R.A.L. Drew, J. Root, et al. Evidence for stable stoichiometric Ti2C at the interface in TiC particulate reinforced Ti alloy composites. Acta Materialia,2000,48:1443-1450.
    [102]吕维杰,张小农,张狄等.原位合成TiC/Ti基复合材料增强体的生长机制.金属学报,1999,35:536-540.
    [103]张二林,金学云,曾松岩等.碳含量对自生TiC增强钛基复合材料组织的影响.材料工程,2000,6:7-12.
    [104]郭继伟,金云学,吕奎龙等.TiC颗粒增强钛基复合材料的制备及其微观组织.中国有色属学报,2003,13: 193-197.
    [105]金云学,曾松岩,张二林等.TiC/Ti合金中共晶TiC形态的形成机制研究.稀有金属材料与工程,2003,32:451-455.
    [106]金云学,李庆芬,曾松岩等TiC/Ti-6Al复合材料中TiC的微观形态及其形成机制.铸造技术,2004,25:47-49.
    [107]E.L. Zhang, X.Y. Jin, S.Y. Zeng, et al. Temperature dependence of morphology of TiC reinforcement in in situ Ti-6Al/TiC composites. Journal ofMaterials Science Letters,2001,20:1063-1065.
    [108]R. Zee, C. Yang, Y. Xing. Effects of boron and heat treatment on structure of dual-phase Ti-TiC. JOURNAL OF MATERIALS SCIENCE,1991,26: 3853-3861.
    [109]X. C. Tong, H. S. Fang. Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology:Part Ⅰ.Microstructural evolution. Metallurgical and Materials Transaction A,1998,29:875-891.
    [110]吕维洁,张狄.原位合成钛基复合材料的制备、微结构及力学性能.北京: 高等教育出版社,2005.
    [111]W.J. Lu, D. Zhang, X.N. Zhang, et al. HREM study of TiB/Ti interfaces in a Ti-TiB-TiC in situ composite. Scripta Materialia,2001,44:1069-1075.
    [112]W.J. Lu, L. Xiao, K. Geng, et al. Growth mechanism of in situ synthesized TiBw in titanium matrix composites prepared by common casting technique. Materials Characterization,2008,59:912-919.
    [113]2006 Valentin N. Moiseyev. Titanium alloys:Russian aircraft and aerospace applications.New York:CRC Press.
    [114]周义刚,曾卫东,李晓芹等.钛合金高温形变强韧化机理.金属学报,1999,35:45-48.
    [115]张延杰,曾泉浦,毛小南等.颗粒增强MMCs中小粒子的强化作用.稀有金属材料与工程,1997,28:26-29.
    [116]张延杰,曾泉浦,毛小南等.TiC颗粒增强钛基复合材料的高温拉伸特性.稀有金属材料与工程,2001,30:35-38.
    [117]C. Schuh, D.C. Dunand. Load transfer during transformation superplasticity of Ti-6Al-4V/TiB whisker-reinfrced composites. Scripta Materialia,2001,45: 631-638.
    [118]H.R. Wang, T.K. Chen, D.J. Lloyd. Stress Distribution in Particulate-Reinforced Metal-Matrix Composites Subjected to External Load. Metallurgical and materials transaction A,1993,24:197-207.
    [119]毛小南,周廉,曾泉浦等. TiCp颗粒增强钛基复合材料的强化机理研究.稀有金属材料与工程,2000,29:378-381.
    [120]H.T. Tsang, C.G. Chao, C.Y. Ma. Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC. Scripta Materialia,1997, 37:1359-1365.
    [121]I. R. Sang, W. N. Soo, M. Hagiwara. Effect of TiBp particle reinforcement on the creep resistance of near a titanium alloy made by blended elemental powder metallurgy. Journal of Alloys and Compounds,2003,359:186-192.
    [122]W.J. Lu, D. Zhang, X.N. Zhang, et al. Creep rupture life of in situ synthesised (TiB+TiC)/Ti matrix composites. Scripta Materialia,2001,44:2449-2455.
    [123]M.J.R. Barboza, E.A.C. Perez, M.M. Medeiros, et al. Creep behavior of Ti-6Al-4V and a comparison with titanium matrix composites. Materials Science and Engineering A,2006,428:319-326.
    [124]V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, et al. Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Materials Science and Engineering A,2000,282:78-85.
    [125]杨志峰,吕维洁,盛险峰等.原位合成钛基复合材料的高温力学性能.机械工程材料,2004,28:22-25.
    [126]马凤仓,吕维洁,覃继宁等.锻造对(TiB+TiC)增强钛基复合材料组织和高温性能的影响.稀有金属,2006,30:236-240.
    [127]X. Lv, W.J. Lu, Y.G. Li, et al. Thermal stability of in situ synthesized high temperaturetitanium matrix composites. Journal of Alloys and Compounds, 2009,467:135-141
    [128]P.K. Mallick. Fiber-reinforced composites:materials manufacturing and Design. New York:Marcel Dekker,1988.
    [129]R.R. Atri, K.S. Ravichandran, S.K. Jha. Elastic properties of in situ processed Ti-TiB composites measured by impulse excitation of vibration. Materials Science and Engineering A,1999,271:150-159.
    [130]C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, et al. In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti-6Al-4V alloy. Scripta Materialia,2006,55:465-473.
    [131]李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003.
    [132]李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001.
    [133]张秋霞.材料腐蚀与防护.北京:冶金工业出版社,2004.
    [134]肖纪美,曹楚南.材料腐蚀学原理.北京:化学工业出版社,2002.
    [135]C. Leyens, M. Peters. Titanium and Titanium Alloys:Fundamentals and Applications,Weinheim:Wiley-VCH,2003.
    [136]R. Boyer, G. Welsch, E.W. Collings. Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH,1994.
    [137]P. Kofstad. High Temperature Corrosion.Essex:Elsevier Applied Science,1998.
    [138]E. Gryorgy, A.P. Del Pino, G. Sauthier, et al. J. Phys. D:Appl. Phys.,2007, 40:5246-5251.
    [139]K.V. SAISRINADH, V. SINGH. Oxidation behaviour of the near a-titanium alloy IMI 834. Bull. Mater. Sci.,2004,27:347-354.
    [140]C Leyens, M. Peters, W.A. Kaysser. Influence of micro structure on oxidation behaviour of near-a titanium alloys. Materials Science and Technology,1996, 12:213-218.
    [141]刘海平,汪晓红,郝杉杉等.Ti60合金在空气中的高温氧化行为及涂层防 护材料工程,1998,7:18-21.
    [142]蔡伯成,刘培英,陶冶等.Ti60合金高温连续氧化行为研究.材料工程,2000,8:34-36.
    [143]贾蔚菊,曾卫东,刘建荣等.Ti60高温钛合金氧化行为研究.稀有金属材料与工程,2010,39:781-786.
    [144]H. Guleryuz, Cimenoglu.H. Oxidation of Ti-6Al-4V alloy. Journal of Alloys and Compounds,2009,472:241-246.
    [145]Y.Q. Zhao, H.L. Qu, K.Y. Zhu, et al. Oxidation behavior of a burn resistant highly stabilized (3 titanium alloy. Materials Science and Engineering A,2001,316:211-216.
    [146]Y. Shida, H. Anada. The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air. Oxidation of Metals,1996,45: 197-219.
    [147]H. Jiang, M. Hirohasi, H. Imanari. Effect of Nb on the high temperature oxidation of Ti-(0-50 at.%)Al. Scripta Materialia,2002,46:639-643.
    [148]叶大伦.实用无机物热力学数据手册.北京:冶金工业出版社,2001.
    [149]Y.X. Qin, W.J. Lu, D. Zhang. Oxidation of in situ synthesized TiC particle-reinforced titanium matrix composites. Materials Science and Engineering A,2005,404:42-48.
    [150]A.P. Majid, C. Zweben. Comprehensive Composite Materials.Amsterdam: Elsevier,2000.
    [151]W. Mo, G. Deng, F.C. Luo. Titanium Metallurgy. Metallurgy Industry Press, 1998.
    [152]李小璀,张小农,李超等.原位自生成TiC/Ti基复合材料的高温氧化.稀有金属材料与工程,2004,33:258-261.
    [153]吕维洁,张小农,吴人洁等.颗粒增强钛基复合材料研究进展.材料导报,1999,13:15-18.
    [154]J.C. Viala, N. Peillon, L. Clochefert, et al. Diffusion paths and reaction mechanism in the high-temperature chemical interaction between carbon and titanium aluminides Materials Science and Engineering A,1995,5:222-237.
    [155]覃业霞,吕维洁,徐栋等.原位合成TiB/Ti基复合材料的氧化行为.中国有色金属学报,2005,15:252-257.
    [156]W. J. Lu, D. Zhang, X.N Zhang. HREM study of TiB/Ti interface in in-situ synthesized Ti-TiB-TiC composites. Scripta Materialia,2001,44:1069-1075.
    [157]吕维洁,张小农,张狄等.原位合成TiB和TiC增强钛基复合材料热力学. 中国有色金属学报,1999,9:220-224.
    [158]S.A. Kekare, J.B. Toney, P. B. Aswath. Oxidation of ductile particle reinforced Ti-48A1 composites Metallurgical and materials transaction A,1995,26: 1835-1845.
    [159]朱安莉,覃业霞,吕维等. TiC、TiB增强钛基复合材料的高温氧化性能及微观结构.机械工程与自动化,2004,5:39-42.
    [160]杨志峰,吕维洁,盛险峰等.原位合成钛基复合材料的高温力学性能.机械工程材料,2004,28:22-24.
    [161]C. Racault, F. Langlais, R. Naslain. Solid state sythesis and characterization of the tenary phase Ti3SiC2. Journal ofMaterials Science,1994,29:3384-3390
    [162]B.Haldar D.Bandyopadhay, R.C.Sharma, N.Chakraborti,. J. Phase Equilib., 1999,120:332-336.
    [163]R.C.Sharma D.Bandyopadhay, and N.Chakraborti. J. Phase Equilib.,2000,121: 199-203.
    [164]J.L. Murray. Monograph Series on Alloy Phase Diagrams:Phase Diagrams Of Binary Titanium Alloys, ASM International, Metal Park, Ohio,1987.
    [165]C. Arvieu, J.P. Manaud, J.M. Quenisset. Interaction between titanium and carbon at moderate temperatures. Journal of Alloys and Compounds,2004,368: 116-122.
    [166]Y. J. Liu, Y. Ge, D. Yu, et al. Assessment of the diffusional mobilities in bcc Ti-V alloys. Journal of Alloys and Compounds,2009,470:176-182.
    [167]L. Feng, J. S. Li, L. Huang, et al. Interdiffusion behavior of Ti-Mo binary system in β phase. Chinese Journal of Nonferrous Metals,2009,19: 1766-1771.
    [168]Y. Paransky, L. Klinger, I. Gotman. Kinetics of two-phase layer growth during reactive diffusion. Materials Science and Engineering A,1999,270:231-236.
    [169]S.J.L. Kang. Sintering:densification grain growth µstructure. Oxford:Elsevier Butterwoth-Heinemann,,2005.
    [170]A.J.W. Johnson, K.S. Kumar, C.L. Briant Deformation mechanisms in Ti-6Al-4V/TiC composites. Metallurgical and materials transaction A,2003,34: 1869-1877.
    [171]Yiu-Wing Mai S.C. Tjong Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites. Composites Science and Technology,2008,68:583-601.
    [172]L. Geng, D.R. Ni, J. Zhang, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites. Journal of Alloys and Compounds,2008,463:488-492.
    [173]P. Sadler S.L. Kampe, L. Christodoulou, D.E. Larsen. Room-temperature strength and deformation of TiB2-reinforced near-y titanium aluminides. Metallurgical and materials transaction A,1994,25:2181-2197.
    [174]A.A. Ilyin B. A. Kolachev, V.A.Volodin, D.V.Ryndenkov. In:Gorynin I V, Ushkov S S. Titanium'99:Science and Technology, Proc 9th World Conf on Titanium Science and Technology, Vol.1, St.Petersburg, Russia:Central Research Institute of Structural Materials.2000.
    [175]T. Christman, A. Needleman, S. Suresh. An experimental and numerical study of deformation in metal-ceramic composites. Acta Metallurgica,1989,37: 3029-3050.
    [176]P.J. Withers T.W. Clyne. An Introduction to Metal Matrix Composites.Cambridge:Cambridge University Press,1993.
    [177]N. Shi, B. Wilnere, R.J. Arsenault. Acta Metall. Mater.,1992,40: 2841-2854.
    [178]V.C. Nardone, K.M. Prewo. On the strength of discontinuous silicon carbide reinforced aluminium composites. Scripta Metallurgica,1986,26:43-48.
    [179]V.C. Nardone. Assessment of models used to predict the strength of discontinuous silicon carbide reinforced aluminum alloys. Scripta Metallurgica, 1987,21:1313-1318.
    [180]A.M.S. Antonio, F.S. Sanos, R.S. Strohaecker. Composite Science and Technology,2005,65:1749-1755.
    [181]C.M. Sellars J.J. Jonas, T.W.J. McG. Metall. Rev.,1969,14:1-24.
    [182]Y.V.R.K. Prasad, S. Sasidhara. Hot Working Guide:A Compendium of Processing Maps, ASM International, Metal Park, OH,1997.
    [183]PA International Centre for Diffraction Data. Powder Diffraction File; ICDD/Newtown Square, USA.
    [184]S.A. Court, J.W. Sears, M.H. Loretto, et al. Effect of liquid phase separation on the micro structure of rapidly solidified titanium-rare earth alloys. Materials Science and Engineering A,1988,98:243.
    [185]S. Naka, H. Octor, E. Bouchaud, et al. Reprecipitation observed in Y2O3 dispersed titanium during heat treatment after cold rolling. Scripta Metallurgica, 1989,23:501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700