原位自生7715D钛基复合材料等轴与层片组织力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,具有高比强、高比模的钛基复合材料,尤其是耐高温的钛基复合材料,有望成为最具潜力的新一代航空航天用轻质高温结构材料。利用原位自生技术制备的颗粒或短纤维增强钛基复合材料避免了外加增强体的污染和熔铸过程中陶瓷颗粒与基体合金润湿性导致的问题,不仅工艺简单,生产成本低而且制得的钛基复合材料增强体与基体界面规整结合良好,从而引起人们广泛关注。
     颗粒或短纤维增强钛基复合材料的力学性能除了与添加粒子的性质、尺寸、体积分数、粒子间距以及粒子与基体间的界面状态等因素有关之外,基体的组织状态对力学性能的影响也不容忽视。钛合金基体蠕变性能、热稳定性以及室温塑性等性能的最优化往往难以兼得,复合材料中增强体的加入往往会对基体的组织结构产生较大的改变,因而希望通过控制复合材料增强体的种类、含量以及相应的热加工热处理工艺等因素来从一定程度上缓解钛合金高温蠕变与室温塑性难以兼容的矛盾,实现较好的综合性能。关于对比复合材料等轴组织与层片组织综合性能(室温拉伸、高温拉伸、高温蠕变与热稳定性等性能)的研究,目前仍较少。如何通过对基体组织状态的控制,使得在基体同增强体协调作用过程中,二者的优势互补,这是值得深入研究的问题。因而研究热加工热处理工艺、增强体种类及含量、力学环境等综合因素对复合材料等轴与层片组织形貌的影响,以及其对性能的影响是非常有必要的。
     本文利用钛合金生产所用的真空电弧炉熔炼技术,通过热加工原位合成了TiB、TiC和La_2O_3三种不同含量的7715D钛基复合材料(TMCs),即TMC1(0.39vol%TiB+0.11vol% La_2O_3)、TMC2(1.42vol%TiB+0.4vol% La_2O_3)和TMC3(3.09vol%TiB+1.21vol%TiC+0.4vol% La_2O_3)。分别选择在β相区与α+β相区退火,获得层片和等轴两种组织。初步探索了热加工及热处理工艺下不同基体组织对复合材料综合性能的影响,对比分析了等轴与层片两种基体组织对增强体增强效果的影响。实验测试了7715D钛基复合材料(TMCs)三种成分,即TMC1、TMC2和TMC3的等轴与层片两种组织状态的室温力学性能、不同应变速率下的复合材料高温拉伸性能,蠕变性能以及热稳定性,同时利用X射线衍射仪、光学显微镜、扫描电镜、透射电镜等对其物相、微观组织、增强体TiB及TiC的微结构等进行了观察和分析,希望为今后实现钛基复合材料组织和综合性能的进一步的优化提供一定的参考依据。本文的研究主要包括以下几个方面:
     (1)通过金相法测得了TMC1、TMC2和TMC3的β转变温度,经1050℃热锻,1000℃热轧后分别进行了热处理制度HT1(980℃固溶1小时570℃时效3小时)和热处理制度HT2(β转变点温度以上20℃固溶1小时570℃时效3小时)两种处理,观察了TMC1、TMC2和TMC3的微观组织形貌。得出经HT1处理后,TMCs均获得等轴组织,经HT2处理后,TMCs均获得层片组织。钛基复合材料的短纤维增强体沿加工方向形成了定向排布,增强体分布均匀,TiB大部分呈针状,TiC则为颗粒状,而La_2O_3主要为纳米级的细小颗粒,弥散的分布在基体中,增强体与基体之间没有明显界面反应。增强体体积分数的增加,使得β转变温度升高,而C元素的添加使其提高尤为显著。β转变温度的升高,使得α+β两相区扩大,使得同一热加工制度下,β转变温度高的TMC3组织中α相体积分数显著增加。并且在同样的冷却速率下,TMC3层片组织的α片变宽。
     (2)研究了TMC1、TMC2和TMC3等轴与层片组织室温拉伸性能,得出随着增强体含量的增多,复合材料的屈服强度和抗拉强度均明显提高。主要来源于TiB短纤维的承载和TiC、La_2O_3颗粒弥散强化。TiB增强体含量的增加在提高强度的同时并不一定意味着塑性的降低,这主要取决于TiB晶须熔炼及加工过程中的初始显微缺陷程度,适当的显微缺陷对良好塑性的获得是有利的。C元素的加入引起的β相变点提高,使复合材料的α相比例提高,进而会显著提高材料的抗拉强度,但却相应导致塑性的严重丧失。与钛合金粗大层片组织塑性低于等轴组织不同,增强体的加入使得复合材料的层片组织往往较为细小,加上层片组织对裂纹有更好阻碍效果使得复合材料的层片组织保持有良好的塑性。
     (3)研究了TMC1、TMC2和TMC3等轴与层片组织高温拉伸以及高温蠕变性能,得出增强体含量的增加有利于复合材料高温拉伸性能的提高。增强体有利于改善等轴组织的蠕变性能,而层片组织的蠕变性能除了与增强体含量有关外,也受α片宽度的影响,α片宽度小的层片组织有利于获得良好的蠕变性能。高温拉伸时,TMCs对10-4 /s-10-3 /s之间应变速率的变化较为敏感,应变速率的降低,使得高温抗拉强度降低,断裂延伸率提高,而室温塑性较差的TMC3在10-4 /s时也获得了极高的断裂延伸率。温度上升、应变速率降低,使得短纤维的临界长径比提高,低于临界长径比的TiB短纤维在高温拉伸时容易界面脱粘。对于脱粘处的孔洞或裂纹,层片组织比等轴组织更好的阻碍其扩展,因而表现出更好的高温力学性能。
     (4)研究TMC2在550℃-650℃热稳定性能发现,在550℃热暴露120小时后室温塑性未损失,在600℃热暴露后室温塑性有明显降低,而650℃热暴露后塑性又有所回升。引起600℃热暴露后室温降低的主要因素是硬质颗粒相在边界附近的大量析出,该硬质相在650℃时又发生了较多的重新固溶。与等轴组织相比,600℃热暴露后层片组织的损失更加严重,主要是层片组织边界较多,硬质颗粒使其脆化更甚。
Recently;; titanium matrix composites (TMCs);; especially the high temperature titanium matrix composites would become the most promising structural materials for aero-space engines because of their high strength and elastic module compared to their weight;; especially their good mechanical properties at elevated temperature. Particles or fibers reinforced TMCs fabricated by in situ synthesis technology attracted more and more attention because the reinforcements were distributed uniformly and the matrix-reinforcements interfaces were clean;; well bonded;; and thermodynamically stable which caused excellent properties of TMCs at elevated temperature. Moreover;; they were cost-efficient and easy fabricated.
     With the incorporation of reinforcements;; the mechanical properties of TMCs were dependent on the reinforcement’s properties;; the reinforcement’s size;; the reinforcement’s volume fraction;; the reinforcement’s distribution and the interface between matrix and reinforcements. The microstructure of matrix also played a critical role on the mechanical property of TMCs. Due to different advantages of different microstructures;; the excellent comprehensive properties;; such as room temperatures tensile test;; creep resistance;; and solid thermal stability;; used to be hard to reach for titanium alloys. With the incorporation of reinforcements;; the microstructure evolution would happen and influence the comprehensive properties. In order to obtain superior comprehensive mechanical properties;; the kinds of reinforcements and volume fraction of them;; as well as factor of thermal treatment;; have been studied. Recently;; the research on comparison of comprehensive properties between equiaxed structure and lamellar structure of TMCs are limited;; so the study on mechanical properties of 7715D with equiaxed and lamellar structures are necessary.
     In this thesis;; three types of TMCs reinforced by TiB、TiC andLa2O3 with different fraction of volume were synthesized by common casting and hot-forging technology. They are TMC1(0.39vol%TiB+0.11vol% La2O3)、TMC2(1.42vol%TiB+0.4vol% La2O3)和TMC3(3.09vol%TiB+1.21vol%TiC+0.4vol% La2O3). Heat treatments were carried atβfield for lamellar microstructure andα+βfield for equiaxed Microstructure. After two kinds of solution-treatment;; researches on the effect of microstructure of matrix on the comprehensive mechanical properties of TMCs were conducted. Moreover;; how to make the strengthening effect of reinforcements be given full play were also discussed. The tensile test at ambient temperature;; high-temperature tensile test with different velocity and temperature;; creep deformation properties and thermal stability were tested. Micro-structures of the composites and reinforcements were investigated by X-Ray Diffraction (XRD);; Optical Microscopy (OM);; Scanning Electronic Microscope (SEM) and Transmission Electronic Microscope (TEM) to provide some suggestion about optimizing the microstructure of matrix and comprehensive mechanical properties. In this research;; the main work was done as following:
     (1) Theβ-transus temperatures of TMCs have been obtained by the method of metallographic analysis. After casting;; the ingots were hot-forged at 1050?C and rolled at 1000 ?C. After heat-working;; two kinds of different heat treatments (HT1 and HT2) were carried out for the TMCs. The microstructures of TMCs via HT1 and HT2 were observed by optical microscope. TMCs obtained equiaxed and fully lamellar microstructures via HT1 and HT2 respectively. The reinforcements were uniformly distributed along forging direction in the TMCs. TiB whiskers were of needle-like and TiC was of granular;; and sizes of La2O3 particles were in the nano-scale. They distributed in the matrix with no apparent reaction layer between the matrix and reinforcement. Increasing volume fraction of reinforcement could significantly lead to the rise ofβ-transus temperature;; especially for TMC3 with the addition of element C. Consequently;; the critical temperature of TMCs thermal-processing also increased;;α+βtwo-phase region expanded. With the addition of C;;α-phase content increased significantly and the width ofαlath in fully lamellar microstructures broadened under the same cooling rate.
     (2) The tensile properties of TMCs with equiaxed and lamellar structures at ambient temperature are studied. The yield strength and tensile strength improved significantly with the increase of reinforcement content due to TiB short fibers bearing and TiC;; La2O3 particle dispersion strengthening. The improvement of strength by increasing TiB reinforcements did not necessarily mean the reduction of plasticity. It depended on the degree of initial micro-flaws on TiB whiskers during the process of casting and processing. The appropriate micro-flaws were beneficial to the acquisition of good plasticity. Adding the element C caused the increase ofβ-phase transition point;; leading to the increase ofαphase fraction;; which caused significantly improvement of the tensile strength of materials and significantly reduction of plasticity. Coarse lamellar microstructure of matrix alloys usually display poor plasticity compared with equiaxed microstructure. However;; with the addition of reinforcements;; the lamellar microstructures became fine which had better effect on plasticity. Lamellar microstructure can more effectively retard the crack propagation from whiskers;; which is also conducive to good plasticity.
     (3) The high-temperature tensile properties and creep resistance have also been studied. Increasing the content of reinforcement in TMCs was conducive to the improvement of high-temperature tensile properties;; but the effect of fineαlath of matrix with lamellar structure on the creep properties were much greater than that of the reinforcements. At high-temperature tensile tests;; TMCs were very sensitive to strain rate at the range of 10-4 /s-10-3/s. With the decrease of strain rate;; the high-temperature tensile strength decrease;; elongation increase. TMC3 obtained a high elongation in 10-4 /s compared with the poor room temperature tensile test. At high temperature and low strain rate;; the critical aspect ratio of TiB short fibers increased. TiB short fibers whose aspect ratio was lower than the critical aspect ratio would be easily debonding at the interface. Lamellar microstructure were much more effective in retarding the propagation of micro-voids or cracks caused by debonding and showed better high temperature mechanical properties.
     (4) Thermal stability test on TMCs were carried out at 550 ?C -650 ?C. The result showed that heat exposure at 550 ?C after 120 hours caused little reduction of room temperature ductility;; heat exposure at 600 ?C led significantly reduction of room temperature ductility;; while after heat exposure at 650 ?C the ductility at room temperature recovered. A large number of precipitates phase appeared along the boundary ofαphase at 600 ?C were the principle reason for ductility loss at room temperature;; while at 650 ?C the re-solution of hard particle phase occurred. Compared with equiaxed microstructure;; the lamellar microstructure were serious affected mainly due to larger area of boundary ofαlath and more precipitation of these hard phases.
引文
[1]莫畏,邓国珠等.钛冶金.北京:冶金工业出版社,1998
    [2]余文华,邓君等.钛精矿火法富集及直接还原方法的评价.攀钢技术,2001,(2):25-29
    [3]高敬,张震,世界有色金属, 1998, 4: 40-43
    [4]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社. 2005.
    [5] Carter R.V, The science, technology and application of Titanium, 1970: 1143-1147
    [6]马图哈K H主编.材料科学与技术丛书.第8卷.非铁合金的结构与性能.丁道云等译.北京:科学出版社,1999
    [7] Eylon D. Titanium Technology. Ohio: Titanium Development Association, 1985.
    [8]萧今声,许国栋.提高高温钛合金性能的途径.中国有色金属学报. 1997,7(4):97-105
    [9] Sridhar G, Sarma D.S. Structure and properties of aβsolution treated, quenched, and aged Si-bearing near-αtitanium alloy [J]. Metall. Mater. Trans. A. 20 (1989): 55-62.
    [10]张力,高技术时代的钛合金技术发展战略及对策剖析,金属学报,1997,33(1):85-89.
    [11]罗国珍,钛基复合材料的研究与发展,稀有金属材料与工程,1997,26(2):1-7.
    [12]邓炬.我国钛科学的发展动向和新进展.稀有金属材料与工程. 1997,26(1):7-10.
    [13] Larsen J.M, Russ S.M, Jones J.W, An evaluation of fiber reinforced titanium matrix composites for advanced high temperature aerospace applications [J]. Metall. Mater. Trans. A. 26 (1995): 3211–3223.
    [14] Ramamurty U, Dary F.C, Zok F.W, A method for measuring residual strains in fiber-reinforced titanium matrix composites. Acta Mater. 44(1996) 3397-3406.
    [15] Leyens C, Hausmann J, Kumpfert J, Continuous fiber reinforced titanium matrix composites: fabrication, properties and applications [J]. Adv. Eng. Mater. 5 (2003): 399-410.
    [16] Gorsse S, Petitcorps Y.L, A new approach in the understanding of the SiC/Ti reaction zone composition and morphology [J]. Composites Part A. 29 (1998): 1221-1227.
    [17] Tjong S.C., Ma Z.Y, Microstructure and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering, Reports, 2000, R29: 49-113.
    [18] Maity P. C , Panigrsahi S. C. Key. Eng. Mater. 108-110(1995): 313.
    [19]肖代红等,原位合成钛基复合材料的研究现状与展望,材料导报,2007, 21(4): 65-68.
    [20] Godfrey T. M. T, Goodwin P. S, Ward-Close C. M. Titanium Particulate Metal Matrix Composites [J]. Adv. Eng. Mater, 2000, 2: 85-92.
    [21] Tjong S. C, Mai Y. W. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites [J]. Compos. Sci, Technol, 2008, 68(3): 583-601
    [22]于兰兰,毛小南,赵永庆,等.颗粒增强钛基复合材料研究新进展[J].稀有金属快报,2006,25(4): 1-5
    [23] Gorsse S, Chaminade J.P, Petitcorps Y.L. In situ preparation of titanium base composites reinforced by TiB single crystals using a powder metallurgy technique. Composites Part A [J].29 (1998):1229-1234.
    [24] Chandran K.S.R, Panda K.B, Sahay S.S. TiBw-reinforced Ti composites: processing, properties, application prospects and research needs [J]. JOM. 2004, 56 (5):42-48.
    [25] Wang L, Niinomi M, Takahashi S, Hagiwara M, Emura S, Kawabei Y, Kim S.J. Relation between fracture toughness and microstructure of Ti-6Al-2Sn-4Zr-2Mo alloy reinforced with TiB particles [J]. Mater. Sci. Eng. A. 263(1999):319-325.
    [26] Kobayashi M, Funami M, Suzuki S, Ouchi C. Manufacturing process and mechanical properties of fine TiB dispersed Ti–6Al–4V alloy composites obtained by reaction sintering[J]. Mater. Sci. Eng. A. 243 (1998): 279-284.
    [27] Radhakrishna Bhat RV, Subramanyam J, Bhanu Prasad V.V. Preparation of Ti–TiB–TiC & Ti–TiB composites by in situ reaction hot pressing [J]. Mater. Sci. Eng. A. 325(2002): 126-130.
    [28] Panda K.B, Chandra K.S.R, Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta titanium matrix: the nature of TiB formation and composite properties [J]. Metall. Mater. Trans. A. 34 (2003): 1371-1385.
    [29] Suryanarayana S, Mechanical alloying and milling [J]. Prog. Mater Sci. 46 (2001): 1-184.
    [30] Godfrey T.M, Wisbey A, Goodwin P.S, Bagnall K, Ward-Close C.M. Microstructure and tensile properties of mechanically alloyed Ti-6Al-4V alloy with B additions[J]. Mater. Sci. Eng. A. 282 (2000): 240-250.
    [31] Yamamoto T, Otsuki A, Ishihara K, Shingu P.H. Synthesis of near net shape high density TiB/Ti composite[J]. Mater. Sci. Eng. A. 239-240 (1997): 647-651.
    [32] Nakane S, Yamada O, Miyamoto Y, Yoshinaka M, Hirota K, Yamaguchi O. Simultaneous synthesis and densification of TiB/α-Ti(N) composite material by self-propagating combustion under nitrogen pressure. Solid State Communications. 1999, 110 (8): 447-450.
    [33] Fu Z.Y, Wang H, Wang W.M, Yuan R.Z. Composites fabricated by self-propagating high-temperature synthesis. Journal of Materials Processing Technology. 2003, 137 (1-3):30-34.
    [34] Zhang E, Zeng S, Zhu Z. Microstructure of XDTM Ti-6Al/TiC composites. Journal of Materials Science. 2000, 35 (23): 5989-5994.
    [35] Fan Z, Miodownik A.P. Microstructural evolution in rapidly solidified Ti-7.5Mn-0.5B alloy. Acta Materialia. 1996, 44 (1): 93-110.
    [36] Rangarajan S, Aswath P.B, Soboyejo W.O, Mirostructure development and fracture of in-situ reinforced Ti-8.5Al-1B-1Si. Scripta Materialia. 1996, 35 (2): 239-245.
    [37] Ranganath S, Vijayakumar M, Subrahmanyan J. Combustionassisted synthesis of Ti-TiB-TiC composite via the casting route. Materials Science and Engineering A. 1992;149 (2): 253-357.
    [38] Banerjee R, Genc A, Collins P.C, Fraser HL. Comparison of microstructural evolution in laser-deposited and arc-melted in situ Ti-TiB composites. Metallurgical and Materials Transactions A. 2004, 35 (7): 2143-2152.
    [39] Srivatsan T.S, Soboyejo W.O, Lederich RJ. Tensile deformation and fracture behavior of a titanium-alloy metal-matrix composite. Composites A. 1997, 28 (4): 365-376.
    [40] Li B.S, Shang J.L, Guo J.J, Fu H.Z. In situ observation of fracture behavior of in situ TiBw/Ti composites. Materials Science and Engineering A. 2004, 383 (2): 316-322.
    [41] Soboyejo W.O, Lederich R.J, Sastry S.M.L, Mechanical behavior of damage tolerant TiB whisker-reinforced in situ titanium matrix composites, Acta Metallurgica et Materiallia, 1994, 42(8): 2579-2591.
    [42] Dubey S, Li Y, Reece K, etc, Fatigue crack growth in an in-situ titanium matrix composite, Materials Science and Engineering A, 1999, A266: 303-309.
    [43] Dubey S, Srivatsan T.S, Soboyejo W.O, Fatigue crack progation and fracture characteristics of in-situ titanium-matrix composites, Internatinal Journal of Fatigue, 2000, 22:161-174.
    [44] Lin Y, Zee R.H, Chin B.A, Metallurgical Transactons A, 1991, 22A(4): 859-865.
    [45] Ranganath S, Subrahmanyan J. On the in situ formation of TiC and Ti2C reinforcements in combustion-assisted synthesis of titanium matrix composites, Metallurgical and Materials Tranactions A, 1996, 27A: 237-240.
    [46] Zhang X.N, Lu W.J, Zhang D, etc, In situ technique for synthesizing (TiB+TiC)/Ti composites. Scripta. Materialia. 1999,44: 39-46.
    [47]吕微洁,张小农,张荻,等,原位合成TiC和TiB增强钛基复合材料微结构与力学性能,中国有色金属学报,2000,10(2):163-169.
    [48] Lu W.J, Zhang D, Zhang X.N, etc, HREM study of TiB/Ti interfaces in a Ti-TiB-TiC in situ composite, Scripta Mater., 2001, 44: 1069-1075.
    [49] Lu W.J, Zhang D, Zhang X.N, etc, Microstructure and tensile properties of in situ (TiB+TiC)/Ti6264 (TiB:TiC=1:1) composites prepared by common casting technique, Materials Science and Engineering, 2001, A311:142-150.
    [50] Yang Z. F, Lu W.J, Qin J.N, etc, Microstructure and tensile properties of in situ synthesized (TiC + TiB + Nd2O3)/Ti-alloy composites at elevated temperature, Materials Science and Engineering: A, 2006, 425: 185-191.
    [51] Tong W, Ravichandram G, Christman T,etal. Processing SiC-Particulate Reinforced Titanium Based M etal M atrix Composites by Shock W ave Consolidation [J].Acta M etall Mater,1995,43( 1):235~250.
    [52] Ranganath S. A., Review on Particulate-Reinforced Titanium Matrix Composites [J], J. Mater Sci., 1997,32( 1):1~16.
    [53] Banerjee R, CollinsP C, Genc A, etc. Direct Laser Deposition of In-Situ Metal Matrix Composites Based on Titanium Boride, [C], In: Lutjering G., Albrecht J eds. Titanium 2003 Science and Technology, Hamburg: WILEY-VCH, 2003:2547~2554.
    [54] Feng Haibo,Jia Dechang,Zhou Yu.Spark Plasma Sintering Reaction Synthesized TiB Reinforced Titanium M atrix Composites, [J]. Composites, 2005,36:558~563.
    [55] Loretto M.H, Konitze D.G, The effect of matrix reinforcement reaction on fracture in Ti-6Al-4V base composites, Metallurgical and Materials Tranactions A, 1990,21A(6): 1579-1587
    [56] Konitzer D.G, Loretto M.H., Microstructure assessment of Ti-6Al-4V-TiC metal-matrix composites, Acta Metallurgica et Materialia, 1989, 37(2): 397-406
    [57] Choi S.K, Chandrosekaran M, Brabers M.J., Interaction between titanium and SiC, Journal of Materials Science, 1990, 25(4): 1957-1964
    [58] Lu Y.C., Sass S.L., Bai Q. ect, The influence of interfacial reactions on the fracture toughness of Ti-Al2O3 interfaces, Acta Metallurgica et Materialia, 1995, 43(1): 31-41
    [59]李亚国,张少卿,李春志,张体信,RE铸造Ti合金显微组织的研究,金属学报,1984,20(2): A131-A137
    [60] David B.S. Structure and mechanical properties of laser-consolidated Ti-6AL-4V and Ti-6Al-2Sn-4Zr-6Mo with rare earth element additions, 1985, Laser prosessing of materials. Proseeding of a symposium held at the 113th metallurgical Soc od AIME, Physical Metallurgical committee, Warrendale, PA,USA,:83-98
    [61] David B.S., Anthony F.G., Rare earth oxide dipersions in rapid solidified titanium-aluminum alloys, 1986, Titanium: Rapid solidification technology. Proceeding for the symposium held at the 1986 TMS-AIME annual meeting : 153-164
    [62] Konitzor D.G., Stanley J.T., Loretto M.H., Fraster H.L, The nature of dispersed phase in Ti-0.7 at.% Er prepare by rapid solidification processing, Acta Metallurgica et Materialia, 1986, 34(7): 1269-1277
    [63] Ulyakova N.M., The influence of rare earth metals on mechanical properties and structure of heat resistant titaniumα-alloy, Metallovedenie I Termicheskaya Obrabotka Metallov ,1994, 3: 30-31
    [64] Yang Z. F, Lv W. J, Xu D, et al. In situ synthesis of hybrid and multiple-dimensioned titanium matrix Composites [J]. Journal of Alloys and Compounds 2006, 419: 76-80.
    [65] Xiao L, Lv W. J, Qin J.N, et al. Steady state creep of in situ TiB plus La2O3 reinforced high temperature titanium matrix composite [J]. Mater. Sci. Eng. A, 2009, 499: 500-506.
    [66]耿珂,吕维洁,张荻,等.原位合成TiB和Nd2O3增强钛基复合材料[J].上海交通大学学报,2004,38(2):300-303
    [67] Hiltz R.H., Grant N.J., Trans AIME, 1958, 21(2): 383
    [68] Li D.X, Ping D.H, Lu Y.X, Ye H.Q, Characterization of the microstructure in TiB-wishker reinforced Ti alloy matrix composites, Materials Letters, 1993, 16: 322-326
    [69] Sargent P.M, Ashby M.F, Scripta Met. 16 (1982) 1415–1422.
    [70] Walsoedereca N.E, Libarati C.M, Acta Metall. 16 (1968) 1297.
    [71] Liu Y, Baker T.N, Mater. Sci. Eng. A197 (1995) 125–131.
    [72] Bania P.J, Lacombe P, Tricot R, Be’ranger G (Eds.), Proceedings of the Sixth WorldConference on Titanium, Societe
    [73] Francaise de Metallurgie, Les Ulis Cedex, France, 1988, pp.826–830.
    [74] O’Connell T.E, Bania P.J, Proceedings of the 1990 International Conference on Titanium Products and Applications, Titanium Development Association, Denver, 1990, pp. 794–803.
    [75] Kim Y.W.Micro structural evolution and mechanical properties of a forgedα-Ti alloy [J].ActaMetall, 1992,40(6):11-21.
    [76] Boyer R, Welsch G, Collings E.W, Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, OH, 1994, pp.411–414.
    [77] Weinem D, Kumpfert J, Peters M, Kaysser W.A, Mater. Sci. Eng. A206 (1996) 55–62.
    [78]周义刚,张宝昌.钛合金近β锻造研究[J].航空学报,1989,10 (1):A60.
    [79]俞汉清,曾卫东.Ti-17合金β锻造研究[J].西北工业大学学报,1995,13 (3):341.
    [80]朱知寿. Ti-15Mo-2.7Nb-3A1-0.2Si钛合金强度与韧性匹配关系研究[J].金属学报,1999, 35(Suppl 1):S159.
    [81] Okadam. In: Froes.F.H, CaplaniLeds., Titanium sciencence and technology, San Diego, California, TMS 1992, 1551
    [82]周义刚.金属学报,1980,16(3):302
    [83] Minomi M, Kobayashi T, ISIJ Int, 1991, 31:488
    [84]周义刚,曾卫东,曹春晓等.金属学报,1999,35(1):45
    [85]曾泉浦,毛小南,张廷杰.热处理对TP-650钛基复合材料组织与性能的影响,稀有金属材料与工程,1997, 26(4): 18-21
    [86] Swain M.V, Cahn R.W, Haasen P, Kramer E.K (Editors.), Materials Science and Technology, Vol. 11. Weinhelm VCH: Verlagsgesellschaft mbH. 1994.
    [87] Kim Y.J, Chung H, Kang S.J. Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas-solid reaction. Materials Science and Engineering A. 2002, 333 (1-2): 343-350.
    [88] Ma Z.Y, Tjong S.C, Geng L. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process. Scripta Materialia. 2000, 42 (4): 367-373.
    [89] Ranganath S, Roy T, Mishra R.S. Microstructure and deformation of TiB+Ti2C reinforced titanium matrix composites. Materials Science and Technology. 1996, 12(3): 219-226.
    [90]张虎,高文理,张二林,金云学,曾松岩.Ti-Al-B合金空心管状初生TiB的生长机制.复合材料学报. 2001,18(4):50-53.
    [91] Xiao.L, Lu W.J, Yang Z.F, et al. Effect of reinforcement on high temperature mechanical properties of in situ synthesized titanium matrix composites. Mater. Sci. Eng. A 491(2008)192-198.
    [92] Weertman J. Natural fifth creep law for pure metals. Creep and Fracture in Engineering Materials and Structures. Swansea: Pinerdge Press. 1984, 1-13.
    [93] Weertman J. Steady state creep of crystals. Journal of Applied Physics. 1957, 28 (10): 1185-1189.
    [94] Takeuchi S, Argon A.S. Steady state creep of alloys due to viscous motion of dislocations. Acta Metallurgica. 1976, 24 (10): 833-899.
    [95] Endo T, Shimada T, Langdon T.G. The deviation from creep by viscous glide in solid solution alloys at high stresses - I. Characteristics of the dragging stress. Acta Metallurgica. 1984, 32 (11): 1991-1999.
    [96] Pahutova M, Cadek J. On two types of creep behavior of F.C.C. solid solution alloys. Physica Status Solidi (a). 1979, 56 (3): 305-313.
    [97] Barrett C.R, Lytton J.K, Sherby O.D. Effect of grain size and annealing treatment on steady state creep of copper. Transactions of AIME. 1967, 239 (1): 170-186.
    [98] Lutjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering A. 1998, 243 (1-2): 32-45.
    [1] Ranganath S. A review on particulate-reinforced titanium matrix composites[J]. J. Mater. Sci. 32(1997): 1~16
    [2] Tjong S. C, Mai Y. W. Processing-structure-property aspects of particulate and whisker reinforced titanium matrix composites [J]. Compos. Sci. Technol. 68(2008): 583-601
    [3]王洪林,耿林,郑镇珠.(TiB+TiC)/Ti复合材料的高温蠕变机制[J].哈尔滨工业大学学报,2008, 40(9): 1412-1415
    [4] Sobovejo W. O, Lederich R. J, Sastry S. M. Mechanical behavior of damage-tolerant TiB whisker-reinforced in situ titanium matrix composites [J]. Acta Metall. Mater. 42(1994): 2579-2591
    [5] Ma Z.Y, Tjong S.C, Gen L. In situ Ti–TiB metal–matrix composite prepared by a reactive pressing process [J]. Scripta Mater. 42(2000): 367-373
    [6] Kim Y. J, Chung H, Kang S. J. Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas–solid reaction [J]. Mater. Sci. Eng. A. 333(2002): 343-350.
    [7] Lu W. J, Zhang D, Zhang X. N, et al. Creep rupture life of in situ synthesized (TiB + TiC)/Ti matrix composites [J]. Scripta Mater. 44(2001): 2449-2455.
    [8]吕维洁,张荻,张小农,等.原位合成TiC和TiB增强钛基复合材料[J ].材料工程,1999,(8): 9-11.
    [9]吕维洁,张小农,张荻,等.原位合成TiB和TiC增强钛基复合材料热力学[J].中国有色金属学报. 1999,9(2):220-224.
    [10] Palty A.E, Margolin H, Nielsen J.P. Trans ASM .46(1954):312.
    [11]Villars P, Prince A, and Okamoto H, Handbook of binary phase diagrams, Materials Park, OH, ASM International, Vol.3, 1994, p.2907.
    [12]朱知寿.Ti-15Mo-2.7Nb-3A1-0.2Si钛合金强度与韧性匹配关系研究[J].金属学报,1999,35(Suppl 1):S159.
    [13]俞汉清,曾卫东,等.Ti-17合金β锻造研究[J].西北工业大学学报,1995,13 (3):341.
    [14] Sheegarev A.S, Glyaooev A.P. Research on high strength alloys and refined grain, Moscow, Academy of Science Press, 1963, 142
    [15]周义刚,张宝昌.钛合金近β锻造研究[J].航空学报,1989,10 (1):A60.
    [16] Boyer R, Welsch G, Collings E.W. Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, OH, 1994, pp.411–414.
    [17] Lutjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Mater. Sci. Eng. A. 243(1998): 32-45.
    [18] Lu W.J, Zhang D, Zhang X.N, et al. Micro structural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloys. Compd. 327(2001): 248-252.
    [19] Lu W.J, Zhang D, Zhang X.N, et al. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloys. Compd. 327(2001): 240-247.
    [20] Tjong S.C, Mai Y.W. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Compos. Sci. Technol. 68(2008): 583-601.
    [21] Ma F.C, Lu W.J, Qin J.N, et al. J. Alloys. Compd. 428 (2007) 332-337.
    [1] KimY.W.Micro-structural evolution and mechanical properties of a forgedα-Ti alloy [J]. Acta. Metall. 40(1992): 11-21.
    [2] Sargent P.M, Ashby M.F. Scripta Mater, 16(1982): 1415–1422.
    [3] Liu Y, Baker T.N, Mater. Sci. Eng. A. 197(1995): 125–131.
    [4] Ray K, Poole W.J, Mitchell A, E.B. Hawbolt, et al. Advances in the Science and Technology of Titanium Alloy Processing, TMS Warrendale, PA, 1997, pp. 201–208.
    [5] Krishna V.G, Prasad Y.V.R.K, Birla N.C, Rao G.S. J. Mater. Process. Technol. 71 (1997) 377–383.
    [6] Croan L.S, Rizzitana F.J. WAL report 401/268, Watertown Arsend Laboratories, Mass, 1958
    [7] Barbos R.A.N.M, Braga H.C, Breme J, in: F.H. Froes, I.L. Caplan (Eds.), Titanium‘92 Science and Technology, Warrendale, PA, 1993, pp. 1701–1708.
    [8] Oikawa H, in: Fujishiro S, Eylon D, Kishi T, (Eds.), Metallurgy and Technology of Practical Titanium Alloys, TMS, Warrendale, PA, 1994, pp. 93–100.
    [9] Bourell D.L, McQueen H.J, Appl. Mater. Shaping Technol. 15 (1987) 53–57.
    [10] Gorsse S, Chaminade J.P, Le Y. Petitcorps. In situ Preparation of Titanium base composites reinforced by TiB Single Crystals Using a powder Metallurgy technique [J]. Composites Part A, 29(1998): 1229-1234
    [11] Tjong S.C, Ma Z.Y. Microstructure and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering, Reports, 2000, R29: 49-113
    [12] Saito T, Takamiya H, Furuta T, Thermomechanical properties of P/Mβtitanium metal matrix composite[J]. Mater. Sci. Eng. A. 243 (1998): 273-278
    [13] Gorsse S, Miracle D.B, Acta Mater 51 (2003): 2427-2442.
    [14] Lu W.J, Zhang D, Zhang X.N, et al. Microstructure and tensile properties of in situ (TiB+TiC)/Ti6264 (TiB:TiC=1:1) composites prepared by common casting technique [J]. Mater. Sci. Eng. A. 311(2001):142-150.
    [15] Yang Z. F, Lu W.J, Qin J.N, et al. Microstructure and tensile properties of in situ synthesized (TiC + TiB + Nd2O3)/Ti-alloy composites at elevated temperature [J]. Mater. Sci. Eng. A. 425(2006): 185-191.
    [16]吕微洁,张小农,张荻,等,原位合成TiC和TiB增强钛基复合材料微结构与力学性能,中国有色金属学报,2000,10(2):163-169.
    [17] Curtin W.A, Zhou J.S, J. Mech. Phys. Solids 43 (1995)343
    [18] Boehlert C.J, Tamirisakandala S, Curtin W. A, et al. Scripta Mater. 61(2009) 245–248
    [19] Atri R.R, Ravichandran K.S, Jha S.K. Elastic properties of in situ processed Ti–TiB composites measured by impulse excitation of vibration [J]. Mater. Sci. Eng. A. 271(1999) 150–159
    [20] Lu W.J, Zhang D, Zhang X.N, et al. Microstructure and tensile properties of in situ synthesized (TiBw + TiCp)/Ti6242 composites [J]. J. Mater. Sci. 36(2001):3707–3714.
    [21] J.Cook, J.E. Gordon, Proc. R. Soc. Lond. A. 282(1964)508-520
    [22] C.J. Boehlert, C.J.Cowen, S. Tamirisakandala.et.al. Scripta Mater. 55(2006)465-468
    [23] Lutjering G, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mater. Sci. Eng. A. 243(1998): 32-45.
    [24]刘茵琪,孟祥军,李德勤等.材料开发与应用,2001, (6):16
    [25]毛小南,周廉,曾泉浦. TiCp颗粒增强钛基复合材料的强化机理研究.稀有金属材料与工程. 2000.29(6):378-381
    [26] Maity P.C, Panigrsahi S.C, Metal and intermetallic matrix in situ particle composites [J]. Key. Eng. Mater. 108-110(1995): 313-328
    [27] Chrysanthou, New technologies for the reactive processing of metal composites [J]. Key. Eng Mater. 104-107(1995): 381-386
    [1] Ranganath S., A review on particulate-reinforced titanium matrix composites, Journal of materials science, 1997, 32: 1-16
    [2] Dubey S., Lederich R.J., Soboyejo W.O., Fatigue and fracture of damage-tolerant in situ titanium matrix composites, Metallurgical and materials transactions, 1997, 28A: 2037-2047
    [3] Godfrey T. M. T, Goodwin P. S, Ward-Close C. M. Titanium Particulate Metal Matrix Composites [J]. Adv. Eng. Mater, 2000, 2: 85-92.
    [4] Tjong S. C, Mai Y. W. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites [J]. Compos. Sci, Technol, 2008, 68(3): 583-601
    [5]于兰兰,毛小南,赵永庆,等.颗粒增强钛基复合材料研究新进展[J].稀有金属快报,2006,25(4): 1-5
    [6]Ronald T.M.F., An overview of NASP materials and structures program, in NASP-CP, 10082, 1991
    [7]Saito T., Furuta T., Yamaguchi T., Developments of low-cost titanium matrix composites, The minerals, metals and materials society, Warrendale, Pa, 1995.
    [8] Xiao L, Lu W.J, Qin J.N et al. Mater. Sci. Eng. A 499 (2009) 500-506.
    [9]Xiao L, Lu W. J, Yang Z.F, et al. Mater. Sci. Eng. A 491(2008) 192-198
    [10] Li L, Lu W. J, Qin J. N etal. Mater. Sci. Eng. A 513-514 (2009) 384-388.
    [11]Wang P, Qin J.N, Lu W. J et al. Mater Trans 50 (2009) 1411-1417.
    [12] Lutjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering A. 1998, 243 (1-2): 32-45.
    [13] Xiao L, Lu W. J, Qin J. N, Zhang D, et al. J. Mater. Res. 2008, 23 (11): 3066-3074
    [14] Saal S., Wagner L., Lutjering G., Pillhofer H., Daeubler M. A.: Z. Metallkde. 81, (1990)p. 535
    [15]惠松骁张翥萧今声,等.高温钛合金热稳定性研究进展——组织稳定性[J]稀有金属, 1999,23(2): 125-130
    [16] H.L. Cox, Brit. J. Appl. Phys. 3 (1952) 72-79.
    [17]Curtin W.A., Zhou S.J. J. Mech. Phys. Solids 43 (1995)343
    [18] Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagrams. Ohio: ASM international. 1995.
    [19] Gorsse S, Miracle D. B. Acta Materialia 51 (2003) 2427–2442
    [1] Lutjering G, Weissmann . Mechanical properties of age-hardened titanium-aluminum alloys. Acta Metallurgica. 1970, 18 (7): 785-795.
    [2] Xiao L, Lu W J, Zhang D, et al. Thermal stability of in situ synthesized high temperature titanium matrix composites[J]. Journal of Alloys and Compounds, 2009, 467: 135–141
    [3] Yang Z, Lu W, Qin J, Zhang D. Microstructure and tensile properties of in situ synthesized (TiC + TiB + Nd2O3)/Ti-alloy composites at elevated temperature. Materials Science and Engineering A. 2006, 425 (1-2): 185-191.
    [4] Geng K Lu W, Zhang D, Sakata T, Mori H. Tensile properties of in situ synthesized titanium matrix composites reinforced by TiB and Nd2O3 at elevated temperature. Materials &Design. 2003, 24 (6): 409-414.
    [5] Donlon WT, Allison JE, Lasecki JV. The Influence of Thermal Exposure on Properties and Microstructure of Elevated Temperature Titanium Alloy. In: Froes FH, Caplan I (eds.) Titanium 92’Science and Technology, The Minerals, Metals & Materials Society, USA, 1993: 259-302.
    [6] Gorsse S, Miracle DB. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Materialia. 2003, 51 (9): 2427-2442
    [7]Zhang W.G., Song A.J, Liu R.P, et al. Microstructure and mechanical properties of TiCP/LD7 composite prepared by SHS/HE[J]. Materials Science and Engineering A, 2008, 474: 225-229
    [8] Woodfield A P, Postans P J, Loretto M H et al. Acta Metall. 1988, 36(3):507
    [9]惠松骁张翥萧今声,等.高温钛合金热稳定性研究进展——组织稳定性[J]稀有金属, 1999,23(2): 125-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700