原位自生(TiBw+TiCp)/Ti制备及TiCp尺寸对复合材料性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用反应热压法基于Ti-B4C-C系分别在不同温度下制备了TiB晶须(TiBw)与TiC颗粒(TiCp)混杂增强的钛基复合材料,其中增强体的总体积分数为10%,TiBw与TiCp的体积比为1:1。采用DSC方法分析了热压烧结Ti粉、B4C粉、C粉制备钛基复合材料的可行性。采用XRD、SEM、TEM等方法对(TiBw+TiCp)/Ti复合材料的显微组织进行了研究。测试了复合材料的室温拉伸性能、高温拉伸性能,解释了(TiBw+TiCp)/Ti复合材料的混杂强化机理。最后在室温、无润滑条件下,测试了复合材料的摩擦磨损性能,并对复合材料的磨损机制进行了探讨。
     热力学分析和DSC实验结果表明,可以基于Ti-B4C-C反应体系,利用Ti-B4C与Ti-C之间的放热反应制备原位自生TiBw与TiCp混杂增强的钛基复合材料,并通过控制反应温度来调节TiCp的尺寸。微观组织分析表明,复合材料中的TiB为棒状晶须,而TiC为等轴状或近似等轴状颗粒,两种增强体均匀地分布在基体中。由Ti-B4C系原位自生的TiBw与TiCp之间存在共生现象。
     力学分析结果表明,同未增强的纯钛基体相比,复合材料的硬度、抗拉强度有了很大的提高,但延伸率大幅下降。1100℃下制备的复合材料具有最佳增强效果,此种复合材料的室温抗拉强度比纯钛基体提高了47.6%。在550℃、600℃和650℃下,1100℃下制备的复合材料都具有最高的抗拉强度,分别比纯钛基体提高了83%、45.9%和57.9%。在高温下复合材料也具有良好的塑性。TiBw与TiCp混杂增强钛基复合材料的强化机制主要有载荷传递机制,细晶强化机制,弥散强化机制。
     滑动磨损实验结果表明,复合材料的摩擦系数低于未增强材料的摩擦系数。40—100N载荷条件下,纯钛的摩擦系数为0.4左右,复合材料纵向取样时摩擦系数为0.2~0.3。钛基复合材料的耐磨性能远优于基体材料,且TiCp尺寸较小的复合材料具有更好的耐磨损性能。复合材料与纯Ti的磨损机制不同,前者主要为轻微的剥层磨损与磨粒磨损,后者则为严重的剥层磨损。TiBw与TiCp主要对基体起到支撑保护作用、细晶强化作用和弥散强化作用来提高钛基复合材料的抗摩擦磨损性能。
To evaluate the synergistic effect of TiB whisker (TiBw) and TiC particle (TiCp) on mechanical properties of titanium matrix composites (TMCs), 10 vol.% TiBw and TiCp hybrid-reinforced in situ TMCs with TiBw/TiCp volume ratios of 1:1 , respectively at different temperature, were prepared by reactive hot processing of Ti-B4C-C. DSC was used to monitor the chemical reactions within the blended powders of Ti, B4C, and C during the heating progress. The microstructures of composites were studied with XRD, SEM, and TEM. The tensile properties of composites at both room and high temperatures were studied. Finally, the dry sliding wear behavior of the composites was examined using a M-200 type pin-on-disk friction wear tester, with all tests performed at room temperature in air without any lubricants, and the wear mechanisms were investigated, too.
     Thermodynamic analyses and DSC results showed that TiBw and TiCp in situ reinforced TMCs could be prepared based on the Ti-BB4C-C, using both the reaction of Ti-B4C and Ti-C, and the size of TiCp could be changed by adjusting the temperature of the reaction.
     Microstructure analyses showed that TiB owns morphology of rodlike whisker, whereas TiC is equiaxed particle, both of them were uniformly distributed in Ti matrix. The symbiosis structure was found between TiC particle and TiB whisker, which were synthesized from the reaction of Ti-B4C. The position of TiC particle to TiB whisker was relatively fixed. Mechanical properties analyses showed that, compared to unreinforced pure Ti, the hardness, tensile strength and modulus were greatly improved, whereas their elongations were reduced. TiBw and TiCp would achieve optimal hybrid-reinforced effect on TMCs by hot processing temperature 1100℃,and the ultimate tensile strength (UTS) was increased by 47.6% than that of pure Ti, respectively. At 550℃, 600℃and 650oC, this composite owned the best UTS among all the composites, with an increase of 83%, 45.9%, and 57.9% respectively, than that of unreinforced pure Ti. At high temperatures, the composites showed good ductility, too. The strengthened mechanisms of composites hybrid-reinforced by TiBw and TiCp are mainly load transfer strengthening, fine grains strengthening, and dispersion strengthening.
     The dry sliding wear testing results showed that the coefficients of composites were smaller than that of unreinforced pure Ti. Under loads of 40~100N, the coefficient of pure Ti is about 0.4, and those of composites were close: 0.2~0.3 for samples parallel to the extrusion direction. The wear resistance of TMCs is far better than that of pure Ti, and the composite which has smaller size of TiCp possesses better wear resistance. The wear mechanisms of composites are different from that of unreinforced pure Ti, the former are mainly slight delamination and abrasive wear, whereas the latter are mainly severe adhesion and delamination. TiBw and TiCp improved the wear resistance of TMCs by the protection function, fine grains strengthening, dispersion strengthening.
引文
1 M.S. Thompson, V.C. Nardone. In-situ Reinforced Titanium Matrix Composites. Mater Sci Eng A. 1991,144:121~126
    2 S.J. Zhu, D. Mukherji, W. Chen, et al. Steady-State Creep Behavior of Ti-6Al-4V Composite. Mater Sci Eng A. 1998,256:301~307
    3 L. Wang, M. Niimomi, S. Takahashi, et al. Relationship Between Fracture Toughness and Microstructure of Ti-6Al-2Sn-4Zr-2Mo Alloy Reinforced with TiB Particulates. Mater Sci Eng A. 1999,263:319~325
    4 S.M. Russ. Thermal Fatigue of Ti-24Al-11Nb/SCS-6. Metall Trans A. 1990,21:1595~1602
    5 K.T. Chiang, D.H. Loh, P.K. Liaw, E.S. Diaz. Materials Characterization of Silicon Carbide Reinforced Titanium (Ti/SCS-6) Metal Matrix Composites: Part II. Theoretical Modeling of Fatigue Behavior. Metall Trans A. 1995,26:3249~3255
    6 R. Vancheeswaran, D.G. Meyer, H.N.G. Wadley. Optimizing the Consolidation of Titanium Matrix Composites. Acta Mater. 1997,45:4001~4018
    7 M.J. Hadianfard. Effects of Hold-time at a Certain Temperature on LCF Behavior and Failure Mechanism of a Titanium Matrix Composite. Compos Sci Tech. 2005,65:2208~2218
    8 C.H. Weber, Z.Z. DU, F.W. Zok. High Temperature Deformation and Fracture of a Fiber Reinforced Titanium Matrix Composite. Acta Mater. 1996,44:683~695
    9 N. Chandra, H. Ghonem. Interfacial Mechanics of Push-Out Tests: Theory and Experiments. Composite Part A. 2001,32:575~584
    10 D. Osbornea, N. Chandrab, H. Ghonema. Interphase Behavior of Titanium Matrix Composites at Elevated Temperature. Composites Part A. 2001,32:545~553
    11 M.P. Thomas, M.R. Winstone. Effect of Matrix Alloy on Longitudinal Tensile Behaviour of Fibre Reinforced Titanium Matrix Composites. Scripta Mater. 1997,37:1855~1862
    12 K. Chawla. Interface in Metal Matrix Composites. Composite Interfaces. 1997,4(5):287~295
    13 G.D. Zhang, R. Chen. Effects of Interfacial Bonding Strength on the Mechanical Properties of Metal Matrix Composites. Composite Interfaces. 1993,1(4):337~339
    14 P. wanjara, R.A.L. Drew, J. Root, et al. Evidence for Stable Stoichiometric Ti2C at the Interface in TiC Particulate Reinforced Ti Alloy Composites. Acta Mater. 2000,48:1443~1450
    15 S.K. Choi, M. Chandrasekharan, M.J. Brabers. Interaction between Titanium and SiC. J Mater Sci. 1990,25:1957~1964
    16 S.G. Warrier, B.S. Majumdar, D.B. Miracle. Interface Effects on Crack Deflection and Bridging During Fatigue Crack Growth of Titanium Matrix Composites. Acta Mater. 1997,45:4969~4980
    17 S. Mukherjee, C.R. Ananth, N. Chandra. Effects of Interface Chemistry on the Fracture Properties of Titanium Matrix Composites. Composite Part A. 1998,9:1213~1219
    18 P. Mogilevsky, A. Werner, H.J. Dudek. Application of Diffusion Barriers in Composite Materials. Mater Sci Eng A. 1998,242:235~247
    19 S.G. Warrier, B. Maruyama, B.S. Majumdar, D.B. Miracle. Behavior of Several Interfaces during Fatigue Crack Growth in SiC/Ti-6Al-4V Composites. Mater Sci Eng A. 1999,259:189~200
    20 J.Y. Dai. HREM Study of TiB2/NiAl Interfaces in a NiAl-TiB2 In-Situ Composite. Mater Lett. 1994,20:23~27
    21 S.C. Tjong, Z.Y. Ma. Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites. Mater Sci Eng A. 2000,29:49~113
    22 X.N. Zhang, W.J. Lü, D. Zhang, et al. In Situ Technique for Synthesizing (TiB+TiC)/Ti Composites. Scripta Mater. 1999,41(1):39~46
    23 S. Ranganath. A Review on Particulate-Reinforced Titanium Matrix Composites. J Mater Sci. 1997,32(1):1~16
    24 P.A. Blenhinsop. Advanced Alloy and Processes. Titanium 92 Science and Technology. 1993,1:15~26
    25 O.O. Bilous, L.V. Artyukh, A. A Bondar, T.Y. Velikanova, M.P. Burka, M.P. Brodnikovskyi, O.S. Fomichov, N.I. Tsyganenko, S.O. Firstov. Effect ofBoron on the Structure and Mechanical Properties of Ti-6Al and Ti-6Al-
    4V.Mater Sci Eng A. 2005,402(1-2):76~83
    26 S. Tamirisakandala, R.B. Bhat, D.B. Miracle, S. Boddapati, R. Bordia, R. Vanover, V.K. Vasudevan. Effect of Boron on the Beta Transus of Ti-6Al-4V Alloy. Scripta Mater. 2005,53(2):217~222
    27 E. Metcalfe. Composite Materials, Interface in Metal Matrix Composites. New York Academic Press, 1974
    28 S. Gorsse, J.P. Chaminade, Y. Le. Petitcorps. In Situ Preparation of Titanium Base Composites Reinforced by TiB Single Crystals Using a Power Metally Technique. Composites Part A. 1998,29:1229~12334
    29 T. Feng, E. Satoshi, H. Masuo. Reinforcing Effect of In Situ Grown TiB Fiberson Ti-22Al-11Nb-4Mo Alloy. Scripta Mater. 2000,43:573~578
    30 H. Duschek, P. Rogl, H.L. LuKas. A Critical Assessment and Thermodynamic Calculation of the Boron-Carbon-Titanium [B-C-Ti] Ternary System. J Phase Equilib. 1995,16:46~60
    31金云学. TiCp/Ti复合材料TiC生长形态及其控制.哈尔滨工业大学博士学位论文. 2002:1-20
    32 L. Froyen, J. De Wilde. In Situ Synthesis, an Alternative Way to Produce Materials. Advanced Materials Processing II Materials Science Forum. 2003,437-4:141~144
    33 R. Zee, C. Yang, R.X. Lin, B. Chin. Effect of Boron and Heat Treatment on Structure of Dual-Phrase Ti-TiC. J Mater Sci. 1991,26:3853~3861
    34 M.E. Hyman, C. McCullough, J.J. Valencia, et al. Microstructure Evolution in TiAl Alloys with Boron Addition Conventiona Soliditication. Metall Trans A. 1989,20:1847~1859
    35 V. de Castro, T. Leguey, M.A. Monge, A. Munoz, et al. Discontinuously Reinforced Titanium Matrix Composites for Fusion Applications. J Nucl Mater. 2002,307-311:691~695
    36 W.J. Lu, D. Zhang, X.N Zhang, et al. Creep Rupture Life of In Situ Synthesized (TiB+TiC)/Ti Matrix Composites. Scripta Mater. 2001,44:2449~2455
    37 W.J. Lu, D. Zhang, X.N. Zhang, et al. Microstructure and Tensile Properties of In Situ (TiB+TiC)/Ti6242 (TiB:TiC=1:1) Composites Prepared byCommon Casting Technique. Mater Sci Eng A. 2001,311:142~150
    38杨志峰,吕维洁,覃业霞等.石墨添加对原位合成钛基复合材料高温力学性能的影响.复合材料学报. 2004,21(5):1~6
    39 E.L. Zhang, H.W. Wang, S.Y. Zeng. Microstructure Characteristics of In Situ Carbide Reinforced Titanium Aluminide (Ti3Al) Matrix Composites. J Mater Sci Lett. 2001,20(18):1733~1735
    40 E.L. Zhang, Y.X. Jin, S.Y. Zeng, Z.J. Zhu. Preparation and Microstructure of As-Cast In-Situ Ti-6Al/TiB Composites. J Mater Sci Tech Suppl 1. 2001,17:159~162
    41 E.L. Zhang, S.Y. Zeng, B. Wang. Preparation and Microstructure of In Situ Particle Reinforced Titanium Matrix Alloy. J Mater Process Tech. 2002,125:103~109
    42金云学,张二林,王宏伟,朱兆军,曾松岩.自生TiCp/Ti-6Al复合材料中TiC铸钛形貌的形成机制.佳木斯大学学报(自然版) . 2000,18(3):209~213
    43金云学,张二林,曾松岩,朱兆军.热处理对Ti-6Al-2C合金中TiC枝晶形貌的影响.材料工程. 2001,(8):18~21
    44吕维洁,张荻,张小农,吴人洁.原位合成TiB/Ti复合材料的微观结构及力学性能.上海交通大学学报. 2000,34(12):1606~1609
    45吕维洁,张荻,张小农,吴人洁.原位合成TiB/Ti复合材料的微观结构及力学性能.上海交通大学学报. 2000,34(12):1606~1609
    46 W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori. Microstructural Characterization of TiC in In Situ Synthesized Titanium Matrix Composites Prepared by Common Casting Technique. J Alloy Compd. 2001,327(1-2):248~252
    47 X.N. Zhang. Fabrication and Mechanical Properties of In-Situ Synthesized (TiB+TiC)/Ti6242 Metal Matrix Composites. J Adv Mater. 2005,37(1):11~15
    48吕维洁,杨志锋,张荻,吴人洁.原位合成(TiB+Al2O3)/Ti复合材料.铸造. 2002,51(5):277~279
    49耿珂,吕维洁,张荻,杨志锋,臧佳栋.原位合成TiB和Nd2O3增强钛基复合材料.上海交通大学学报. 2004,38(2):300~303
    50 K. Geng, W.J. Lu, Z.F. Yang, D. Zhang. In Situ Preparation of Titanium Matrix Composites Reinforced by TiB and Nd2O3. Mater Lett.2003,57:4054~4057
    51 K. Geng, W.J. Lu, D. Zhang. Microstructure and Tensile Properties of In Situ Synthesized (TiB+Y2O3)/Ti Composites at Elevated Temperature. Mate Sci Eng A. 2003,360:176~182
    52 Y. Choi, M. E. Mullins, K. Wijayatilleke, et al. Fabrication of Metal Matrix Composites of Ti-Al through Self-propagating Synthesis Reaction. Metall Trans A. 1992,23:2387~2392
    53 L. Roberta, O. Roberto, C. Giacomo. Chemically-Activated Combustion Synthesis of TiC-Ti Composites. Mater Sci Eng A. 2004,367:185~197
    54 A.R. Westwood. New Materials for Aerospace Industry. Mater Sci Tech. 1990,(6):958~961
    55 A. Kakitsuji, H. Miyamoto, H. Mabuchi, H. Tsuda, K. Morii. Microstructure and Mechanical Properties of TiAl/Ti2AlN Composites Prepared by Combustion Synthesis. Mater Trans. 2001,42 (9):1897~1900
    56 B. Yang, E.L. Zhang, Y.X. Jin, Z.J. Zhu, S.Y. Zeng. Microstructure Characteristic of In-Situ Ti/TiC Composites. J Mater Sci Tech. 2001,17(1):103~104
    57 A. Chrysanthou, Y.K. Chen, A. Vijayan, J. O'Sullivan. Combustion Synthesis and Subsequent Sintering of Titanium-Matrix Composites. J Mater Sci. 2003,38(9):2073~2077
    58范国江,全明秀,胡壮麒.机械合金化合成Al-Ti系纳米过饱合固溶体.材料研究学报. 1995,9(1):40~43
    59樊建中,左涛,肖伯律,张维玉,徐骏,石力开.高能球磨粉末冶金制备工艺对15%SiCp/2009Al复合材料性能的影响.复合材料学报. 2004,21:(4)92~98
    60 C. Suryanarayana. Mechanical Alloying and Milling. Progress in Mater Sci. 2001,46-184
    61 J.S. Benjamin. Mechanical Alloying-A Perspective. Metal Powder Reports. 1990,45:122~127
    62贾德昌.粉末冶金SiCw/Al-12Ti复合材料的组织结构与性能.哈尔滨工业大学工学博士学位论文. 1997
    63范景莲,黄伯云,汪登龙. PCA对机械合金化纳米粉末的SEM结构与成分分布均匀性的影响.中国有色金属学报. 2003,13(1):116~121
    64刘芳,周科朝,刘咏.原始粉料的球磨工艺对Ti/HA生物复合材料性能的影响.粉末冶金技术. 2005,23(2):116~119
    65肖平安,曲选辉,秦明礼,黄培云.球磨速度和过程控制剂对Ti-Cr合金机械合金化的影响研究.稀有金属材料与工程. 2003,32(9):765~768
    66王成国,吴军,刘玉先,杨俊法.过程控制剂对Fe-C-Ti粉末机械合金化的影响.粉末冶金技术. 1997,15(4):258~261
    67 P.B. Joshi, G.R. Marathe, N.S.S. Murti, V.K. Kaushik, P. Ramakrishnan. Reactive Synthesis of Titanium Matrix Composite Powders. Mater Lett. 2002,56(3):322~328
    68 G. Fanta, R. Bohn, T. Klassen, R. Bormann. High Energy Milling of Si-doped Titanium Aluminides-General Problems and Potential Applications. Metastable, Mechanically Alloyed and Nanocrystalline Mater Sci From. 2002,386-3:521~528
    69冯海波. SPS原位TiB增强Ti基复合材料的组织结构与TiB生长机制.哈尔滨工业大学博士学位论文. 2005:94-108
    70 H.B. Feng, Y. Zhou, D.C Jia, Q.C. Meng. Microstructure and Mechanical Properties of In Situ Reinforced Titanium Matrix Composites Based on Ti-FeMo-B Prepared by Spark Plasma Sintering. Compos Sci Tech. 2004,64(16):2495~2500
    71 H.B. Feng, Y. Zhou, D.C Jia, Q.C Meng. Rapid Synthesis of Ti Alloy with B Addition by Spark Plasma Sintering. Mater Sci Eng A. 2005,390(1-2):344~349
    72 H.B. Feng, Y. Zhou, D.C. Jia, Q.C Meng. Microstructural Characterization of Spark Plasma Sintered In Situ TiB Reinforced Ti Matrix Composite by EBSD and TEM. Mater Trans. 2005,3(46):575~580
    73 H.B. Feng, D.C. Jia, Y. Zhou. Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Composites Part A. 2005,36(5):558~563
    74 Y. Zhou, H.B. Feng, D.C. Jia. In Situ TiB Reinforced Titanium Metal Matrix Composites Prepared by Spark Plasma Sintering. New Frontiers of Process and Eng in Adv Mater, Mater Sci Forum. 2005,(502):189~194
    75 Z.Y. Ma, S.C. Tjong, L. Geng. In Situ Ti-TiB Metal-Matrix Composite Prepared by a Reactive Pressing Process. Scripta Mater. 2000,42:367~373.
    76 B.V. Radhakrishna Bhat, J. Subramanyam. V.V. Bhanu Prasad. Preparation of Ti-TiB-TiC & Ti-TiB Composites by In-situ Reaction Hot Pressing. Mater Sci Eng A. 2002,325:126~130
    77周伟民. (TiB+TiC)/Ti复合材料的反应热压制备及高温性能.哈尔滨工业大学硕士学位论文. 2003:15-55
    78梁英教,车荫昌.无机物热力学数据手册.东北大学出版社. 1996:60-383
    79吕维洁,张小农,张荻,吴人洁,卞玉君,方平伟.原位合成TiC/Ti基复合材料增强体的生长机制.金属学报. 1999,35(5):536~540
    80 T. Nukami, M.C. Flemings. In-situ Synthesis of TiC Particulate-Reinforced Aluminnum-Matrix Composites. Metall Mater Trans A. 1995,26(7):1877~1884
    81 X.C. Tong, H.S. Fang. Al-TiC Composites in situ Processed by Ingot Metallurgy and Rapid Solidification Technology: Part I. Microstructural evolution. Metall Mater Trans A. 1998,29(3):875~891
    82 J. R?sler, M. B?ker. A Theoretical Concept for the Design of High Temperature Materials by Dual-Scale Particle Strengthening. Acta Mater. 2000,48:3553~3567
    83李建明.磨损金属学.冶金工业出版社, 1990
    84 D.F.摩尔.磨擦学原理和应用.黄文治,谢振中,杨明安译.机械工业出版社, 1982
    85孟庆武.钛合金表面激光熔覆复合材料涂层的生成机制与耐磨性能.哈尔滨工业大学博士学位论文. 2006:88-110
    86尚俊玲.原位自生TiBw/Ti复合材料的组织与性能及其成形特性.哈尔滨工业大学博士学位论文. 2004:88-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700