镁锂合金中锂含量对微弧氧化成膜的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于镁锂合金,不同锂含量对应的合金晶相不同,所以合金中锂的含量对微弧氧化膜层成膜的影响有重要意义。针对此问题,利用微弧氧化技术,在Mg-5%Li合金、Mg-8%Li、Mg-11%Li合金Mg-14%Li合金表面原位制备陶瓷膜层,对膜层的成膜过程进行了研究。
     利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子能谱仪(EDS)、分析膜层的物相及元素组成,观察陶瓷膜层表面及截面形貌。利用电涡流测厚仪测量膜层厚度;利用TR200粗糙度仪测量膜层粗糙度。利用电感耦合等离子体质谱(ICP-MS)观察成膜过程中锂元素的析出。
     在单组分硅酸盐体系下,通过电解液浓度范围的考察,确定了一组对四种基体均能稳定成膜的工艺,比较了该工艺下四种基体成膜过程中随氧化时间的增加,电压、膜层厚度、膜层粗糙度以及膜层中的相组成、基体晶相组织、溶液中Li~+浓度的变化规律。研究表明,四种基体微弧氧化过程基本一致。随着锂含量的增加,微弧氧化过程中电压值下降。陶瓷膜层元素涵盖电解液及基体的主要成分,其中MgOMg_2SiO_4为主晶相;四种合金膜层中Mg_2SiO_4的生成时间相对为:α相+β相>β相>α相。在微弧氧化过程中四种基体均有Li+的析出,析出含量次序位14%>11%≈8%>5%。说明不同锂含量的镁锂合金,锂含量越多,微弧氧化过程中析出的锂越多。并且11%Li、14%Li在微弧氧化过程中基体表层与膜层接界处发生基体晶相的转变,即有β相(Li_3Mg_7)→α相(Li0.92Mg_4.08)晶相转变过程发生。
     另外,不同的添加剂对膜层的生长影响的方式不同。本实验所采用的添加剂分别为NaOHNaF,二者均可增加溶液电导率、对膜层有溶解作用,并且对成膜过程物质生成反应影响小。但影响主晶相MgOMg_2SiO_4的生成时间,添加剂NaF使得主晶相生成时间最慢。另外,在本实验中,NaOH在低浓度时主要作用为促进膜层的生长,高浓度时主要作用为对膜层的溶解;而F-在基体表面的富集,抑制了膜层的溶解,从而促进了膜层的生长。
For the Mg-Li alloy, different phase correspond to different content of Li in the alloys. Therefore, the content of Li do a important part for the film coating in the oxidation process. As far as this problem is concerned, the technique of MAO was used for the preperation of coatings on Mg-5% Li alloy, Mg-8% Li, Mg-11% Li and Mg-14% Li alloys. With regard to the result, the mechanism of the MAO coating formation was studied.
     X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDS) were applied for analyze the phase and elemental composition of the ceramic coatings. Scanning electron microscopy (SEM) was employed to observe the surface and section morphology. Ectric eddy current thickness gauge was used to calculate the thicknesses of the ceramic coatings. TR200 roughness was used to calculate film roughness. In addition, inductively coupled plasma mass spectrometry (ICP-MS) was applied to confirm the precipitation of lithium in the process of coating formation.
     Growth process of the ceramic coatings on four kinds of alloy were studied in a single system and the influential factors such as Voltage curve, coating thickness, coating roughness,surface morphology, surface elements, and the changes of Li+ concentration in solution. The probable formulas of MAO process on alloy with various Li content were deduced, and the effect of Li on formation of MAO coating was concluded. The MAO voltage would be drop as the content of Li increased in the alloy. The films were mainly consisted of MgO and Mg2SiO4 crystallized phases, but the growth time of Mg2SiO4 in the coating is different on the different alloys:α-phase +β-phase>β-phase>α-phase. Furthermore, the content of lithium ascended in the electrolyte throughout MAO reaction, and the precipitation of lithium: 14%>11%≈8%>5%. That notes there would be precipitated as more as the content of lithium increased in the alloy. Besides, there will be Li+ segregation in the surface of the alloy during the MAO process, and the crystal phase transition occurs:β-phase (Li_3Mg_7)→α-phase (Li0.92Mg_4.08). In addition, different additives do a different part in the prcocess of films coating
     in MAO. In this research, the additives are NaOH and NaF. Similarities of the two additives are that increasing the conductivity,dissoluting the coating and having little effect on the reaction process. However the two have different influence in the growth rate of crystallized phases such as MgO and Mg_2SiO_4. Specificly, the growth rate is lower in Na_2SiO_3+NaF electrolyte. In this experiment, the presence of OH- would be increasing the growth rate of coating at lower concentrations, but to contrary, the presence of OH- would be dissoluting the coating at higher concentration; F- would be inhibiting the dissolution to promote the growth of the film because of the F- enrichment in the surface of substrate.
引文
1徐用军,李康,姜兆华.镁锂合金表面陶瓷膜的制备工艺及耐蚀性能.材料科学与工艺. 2010, 18(1): 133-136
    2蒋斌,张丁非,彭建. Mg-Li超轻合金的研究与应用.材料导报. 2005, 19(5): 38-40
    3 M. P. Staige, A. M. Pietak, J. Huadmai, et al. Magnesium and its alloys as orthopedic biomaterials: A Review Biomaterials. 2006, (27): 1728-1734
    4 Ling. G.. Synthesis and hydrogen storage properties of Mg-based alloys. Journal of Alloys and Compounds. 2004, 370: 123-128
    5 W. Hiroyuki, D. M. Toshiji, J. Kenji. Deformation mechanism of fine grained supperplasticiyt in metallic materials expected from tne phonomenological constitutive eqution. Materials Transavtions. 2004, (8): 2497-2452
    6 Friedrieh. H, Schurnann. S. Research for a“new age of magneslum”in the automotive industry. Journal of Materials Proeessing Teehnology. 2001, 117: 276-281
    7 Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment. Joumal of Materials Processing Technology. 2001, 117: 381-385
    8乐启炽,崔建忠,李红斌. Mg-Li合金研究最新进展及其应用.材料导报. 2003, 17(12): l-4
    9 Haferkamp H, Niemeyer M, Boehem R, et al. Development processing and applications range of magnesium lithium alloys. Materials Science Forum. 2000, 350: 31-42
    10申泽骥,李玉胜,冯志军.新型铸造镁合金开发现状.铸造. 2003, 50(30): 153-156
    11 W. B. Xue, Z. W. Deng, R. Y. Chen, et al. Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy. Thin Solid Films. 2000, 372: 114-117
    12 H. F. Guo, M. Z. An. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Applied Surface Science. 2005, 241: 22-238
    13 H. P. Duan, C. W. Yan, F. H. Wang. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution. Electrochimica Acta. 2007, 52: 5002-5009
    14钟浩.新型镁锂合金成分设计与性能研究.报价航空航天大学硕士论文.2003
    15 Friedrich H, Schumann S. Research for a“new age of magne-Slum”in the automotive industry. Journal of Materials Processing Technology. 2001, 117: 276~281
    16潘复生,张丁非.铝合金及应用.北京化学工业出版社. 2006, 59-63
    17 T. C. Chang, J. Y. Wang, C. L. Chu, et al. Mechanieal properties and microstructures of various Mg-Li alloys. Materials Letters. 2006, 60: 3272-3276
    18陈振华,严红革,陈吉华.镁合金.北京化学工业出版社, 2004, 11-15
    19 H. L. Zhao, S. K. Guan, F. Y. Zheng, et al. Microstrucnire and properties of AZ31 magnesium alloy with rapid solidifieation. Transactions of Nonferrous Metals Soeiety of China. 2005, 15(l): 144-148
    20王辅忠,李荣华,费英. Mg-Li基复合材料研究进展.材料科学与工程学报. 2003, 21(l): 134-137
    21刘腾,张伟,吴世丁.双相合金Mg-8Li-Al的等通道挤压.金属学报. 2003, 39(8): 790-794
    22韩玉昌,周铁涛,刘培英. Mg-13Li-5Zn合金化学镀镍研究.材料保护. 2006, (10): 38-40
    23 K. T. Rie, J. Whole. Plasma-CVD of TiCN and ZrCN films on light metals. Surface and Coatings Technology. 1999: 226-229
    24 N. Yamauchi, N. Ueda, A. Okamoto, et al. DLC coating on Mg–Li alloy. Surface & Coatings Technology. 2007, 201: 4913-4918
    25 L. H. Yang, M. L. Zhang, J. G. Li. Stannate conVersation coatings on Mg-8%Li alloy. Journal of Alloys and Compounds. 2009, 471(1-2): 197-200
    26高丽丽,张春红,张密林.镁锂合金无铬植酸化学转化膜研究.功能材料. 2008, (07): 33-36
    27 J. F. Li, Z. Q. Zheng, S. C. Li . Preparation and galvanic anodizing of a Mg-Li alloy. Materials science and Engineering. 2006, 1-2: 233-240
    28杨潇薇,王桂香,董国君.镁-锂合金阳极氧化工艺的研究.电镀与环保. 2009, 29 (3): 36-39
    29 Y. H. Wang, J. Wang, J. B. Zhang, et al. Effects of Spark Discharge on the Anodic Coatings on Magnesium Alloy. Materials Letters. 2006, 60: 474-478
    30 Y. J. Xu, K. Li, Z. P. Yao, et al. Micro-arc oxidation coatings on Mg-Li alloy. Rare Matals. 2009, 28(2): 160-163
    31 T. B.Van, S. D. Brown, G. P. Wirtz. Mechanism of Anodic Spark Deposition. Am. Ceram. Soc. Bull.1977, 56(6): 563-566
    32 W. Krysmann, P. Kurze, H. Dittrich, et al. Process Characteristics and Parametersof Anodic Oxidation by Spark Discharge (ANOF). Cryst. Res. Techo. 1984, 19(7): 973-979
    33夏天.镁合金微弧氧化陶瓷层的结合强度及其致密度的研究.西安理工大学硕士论文. 2005
    34房大然.镁合金微弧氧化工艺与膜层性能的研究.天津大学硕士论文. 2003
    35蒋百灵,张先锋.镁合金微弧氧化陶瓷层的生长过程及其耐蚀性.中国腐蚀与防护学报. 2005, 25(2): 97-101
    36蒋百灵,吴建国,张淑芬.镁合金微弧氧化陶瓷层生长过程及微观结构的研究.材料热处理学报. 2002, 23 (1): 5-7.
    37 L. M. Chang. Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation. Journal of Alloys and Compounds. 2009, 468: 462-465
    38薛文斌,邓志威,来永春. ZM5镁合金微弧氧化膜的生长规律.金属热处理学报, 1998, 19 (3): 42-45
    39章志友,赵晴,陈宁.镁合金微弧氧化陶瓷层的生长过程研究.电镀与涂饰, 2007, 26 (7): 5-8.
    40侯亚丽,刘忠德.微弧氧化技术的研究现状.电镀与精饰. 2005, 27(3): 24-28
    41 S. V. Gnedenkov, O. A. Khrisanfova, A. G.. Zavidnaya. Composition and adhesion of protective coatings on aluminum. Surface and Coatings Technology. 2001, 145: 146-151
    42郭洪飞,安茂忠,霍慧彬.电解液组成对AZ91D镁合金微弧氧化的影响.材料科学与工艺. 2006,14(2): 116-119
    43 J. Liang, B. G. Guo, J. Tian, et al. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy . Applied Surface Science. 2005, 252 (2): 345-351.
    44黄岳山,赵修华,吴源青.微弧氧化改性二氧化钛生物活性膜的研究进展.医疗卫生装备. 2004, (4): 22-23
    45贺子凯,唐培松.电流密度对微弧氧化膜层厚度硬度的影响.表面技术. 2003, 32(3): 21-23
    46唐培松.铝合金表面微弧氧化工艺条件研究.昆明理工大学硕士学位论文. 2001: 11-15
    47郝建民,陈宏,张荣军.电参数对镁合金微弧氧化陶瓷层致密性电化学阻抗的影响.腐蚀与防护. 2003, 24(6): 249-251
    48材料耐磨抗蚀及其表面技术丛书编委会,材料耐磨抗蚀及其表面技术概论.机械工业出版社.北京. 1986, 179-182
    49蒋百灵,吴国建,张淑芬.镁合金微弧氧化陶瓷层生长过程及微观结构的研究.材料热处理学报. 2002, 23(1): 5-7
    50刘永珍,刘向东,王晓军. NaOH浓度对ZAlSi12Cu2Mg1微弧氧化陶瓷膜形成及其特性的影响.稀有金属材料与工程. 2007, 36(3): 600-602
    51王永康,郑宏晔,李炳生. NaF添加剂对铝合金等离子电解氧化陶瓷膜形成的影响.电镀与涂饰. 2003, 22(4): 8-10
    52王永康,郑宏晔,李炳生.铝表面制备装饰膜的等离子电解氧化方法.材料保护. 2003, 36(9): 36-37.
    53 H. Kijima, N. Masuko. Microstructure and Voltage-current Characteristics of Anodic Films Formed Magnesium Alloy in Electrolytes Containing Fluoride. Materials Transactions. 2003, 44(4): 539-545
    54易文质,虞觉奇,陈邦迪.二元合金状态图.上海科学技术出版社. 1984:55-66
    55 Q. Z. Cai, L. S. Wang, B. Kang. Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes. Surface & Coatings Technology. 2006, (200): 3727-3733
    56 H. F. Guo, M. Z. An. Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation. Thin Solid Films. 2006, (500): 186-189
    57 Y. K. Lee, K. S. Lee, T. H. Jung. Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution. Electrochemistry Communications. 2008, 10(11): 1716-1719

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700