反应合成Al_2O_3颗粒增强铝基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铝基复合材料因具有密度低、比强度与比模量高、耐磨及耐高温等优点,在航空航天、电子和汽车制造等行业中具有广阔的应用前景。其制造方法一般分为外加法与内生法。外加法制备工艺简单,但颗粒表面容易污染,而内生法增强颗粒是在基体内部原位反应生成,颗粒细小,表面洁净,与基体结合良好。
     本课题分别采用粉末冶金、熔体原位反应合成方法,在Al-SiO_2体系制备了Al_2O_3颗粒增强铝基复合材料。利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)、差热扫描量热分析仪(DSC)等现代分析手段分析了复合材料的凝固组织,并探讨了Al-SiO_2体系的反应动力学以及影响颗粒大小和分布的因素,研究了复合材料的硬度和拉伸性能,分析了复合材料的断裂行为。
     对Al-SiO_2体系反应的研究表明:根据热力学计算,Al-SiO_2体系的反应是自发进行的放热反应。只要加热到一定温度,就会引发反应,而反应放出的反应热将会导致体系温度上升,更有利于反应的进行。在660℃时,SiO_2与Al开始反应,生成Al_2O_3和Si,但反应未完全。直到920℃-950℃时反应完全,最终反应合成以Al-Si合金为基体,Al_2O_3颗粒为增强体的复合材料。对SiO_2颗粒进行球磨预处理可使粉体颗粒变得细小,平均粒径为1μm,从而改善SiO_2与Al的润湿性,降低反应的温度。Al-SiO_2体系的反应动力学过程可以分为浸渗阶段、反应和扩散阶段、完全反应阶段和弥散阶段。
     Al-SiO_2体系熔体直接反应制备复合材料的最佳工艺参数为:反应温度850℃、反应时间30min,SiO_2在室温时放置在铝锭中间然后一起加热至850℃。X射线衍射和扫描电镜分析表明:Al-SiO_2体系原位反应生成的颗粒增强相为Al_2O_3颗粒,且颗粒尺寸细小,均匀分布于基体中。在反应过程中,对熔体施加高能超声,可提高Al_2O_3颗粒的体积分数,并使颗粒更细小、分布更均匀。
     力学性能测试表明:反应合成的Al_2O_3/Al复合材料,与纯铝相比硬度有较大的提高,抗拉强度略有提高,伸长率则略有下降。SiO_2加入量为铝熔体的10wt%时,Al_2O_3/Al复合材料的硬度为62.6HV,较纯铝提高102.6%;抗拉强度为112.3MPa,较纯铝提高22.1%;伸长率为10.1%,较纯铝下降1.9%。
Particle reinforced metal matrix composites possess several advantages such as low density,high specific strength and stiffness,good wear-resistance and thermal stability.These composites can be applied to aerial and aerospace industries, electronic industry,automotive industry,etc.According to the source difference of reinforcements,the fabrication methods of metal matrix composites can be divided into traditional and in situ ones.The advantage of the traditional method is the simple process,but the particles will be polluted easily.As the reinforcement is formed from the metal matrix,in situ composites has advantages such as fine reinforcement paticles,clean reinforcement surface,and well-bonded interface between the reinforcement and the matrix.
     In this paper,Al_2O_3 particle reinforced aluminum matrix composites have been prepared by powder metallurgy and diect melt reaction methods,respectively.The solidification microstructure,reaction kinetics and factors influencing the particulate size and distribution have been investigated by modem analysis equipments such as optical microscope(OM),scanning electron microscope(SEM),X-ray diffractometor (XRD),differential scanning calorimeter(DSC)and so on.The mechanical properties of composites are tested and the fracture behavior has been analyzed.
     It is indicated that the exothermic chemical reaction in Al-SiO_2 system can proceed in aluminum melt spontaneously.If the reactants are heated to certain temperature,the chemical reaction will be triggered.The heat released from the reaction can lead a temperature rising and accelerate the reaction.The chemical reaction can start as the temperature is 660℃and the products are Al_2O_3 and Si. However,the reaction is not complete until 920℃to 950℃.It is proposed that the reaction process consists of infiltration,reaction and diffusion,reaction terminal,and particle dispersion.It is shown that the size of SiO_2 powders after ball milling is much smaller,which is about 1μm.Smaller size of SiO_2 powder can improve the wettability between SiO_2 and aluminum melt and decrease the reaction temperature.
     The optimum parameters of composite fabrication in Al-SiO_2 system are that the reaction temperature is 850℃and the reacton time is 30 minutes.The prefered adding method of SiO_2 powders is to put them between aluminum ingots and heat to 850℃with aluminum directly.XRD and SEM analysis indicates that the reaction synthesized particles are Al_2O_3.These particles are finer and well-distributed in the aluminum matrix.Ultrasonic treatment during the in-situ synthesis process can increase the volume fraction of in-situ particles,and make them smaller and better distributed in the matrix.
     The hardness and tensile strength of Al_2O_3/Al composites are higher than those of the corresponding matrix alloy,while the elongation of the composite is lower,than that of the matrix alloy.When the SiO_2 addition content is 10wt%,the hardness of composites is 62.6HV,102.6%more than that of pure aluminum.The tensile strength of the composite is 112.3MPa,22.1%more than that of pure aluminum.The elongation of the composite is 10.1%,1.9%less than that of pure aluminum.
引文
[1]韩延峰等.原位生成TiB_2/Al-Si-Mg复合材料的组织与性能.中国有色金属学报,2001,11(5):35-37.
    [2]严有为等.反应铸造工艺及原位颗粒增强金属基复合材料.铸造,1997,11:加1-3.
    [3]廖恒成等.铝原位合成复合材料的反应模式与机理.铸造,1999,1:43-47.
    [4]O.Gingu et al.In-situ production of Al/SiCp composite by laser deposition technology.Journal of Materials Processing Technology,1999,89-90:187-90.
    [5]K.L.Tee.In-situ processing of Al-TiB_2 composite by the stir-casting technique.Journal of Materials Processing Technology,1999,89-90:513-519.
    [6]A.Bergman et al.In-situ formation of carbide composites by liquid/solid reaction.Key Engineer Materials.1993,79-80:213-234.
    [7]P.Sahoo and M.J.Koczac.Microstructure property relationship of in situ reacted TiC/Al-Cu metal matrix composites.Materials Science and Engineering A,1991,131:69-76.
    [8]赵玉涛,戴起勋,陈刚.金属基复合材料.机械工业出版社,2007:35.
    [9]杨滨等.搅拌对熔铸.原位反应TiB_2/Al和TiC/Al复合材料微观组织的影响.航空材料学报,1999,19(4):16-21.
    [10]C.F.Feng et al.Microstructures of in situ Al/TiB_2 MMCs prepared by a casting route.J.Mat.Sci.2000,35:837-850.
    [11]欧阳柳章等.原位生成制备Al_2O_3.增强铝基复合材料.中国有色金属学报.1999,10(2):159-162.
    [12]D.Lewis.Metal Matrix Composites:Processing and Interface.San Diego.Academic.U.S.A,1991:121-128.
    [13]R.A.Vafin.Intermetallic-reinforced light-metal matrix in-situ composites.Metallurgical and Materials Transaction A,2002,33(1):193-201.
    [14]王渠东等.固液反应合成铝基自生复合材料.特种铸造及有色合金,1998,6:11-13.
    [15]彭华新等.反应自生Al_3Ni-Al_2O_3-Al复合材料.材料科学与工艺,1996,4(3):11-16.
    [16]赵玉厚,周敬恩,严文.增强相Al_3Ti状态对Al_3Ti/ZL101原位复合材料力学性能的影响.材料工程,2001,5:3-8.
    [17]P.Sahoo,M.J.Koczak.Elevated Temperature Response of In-situ TiC Reforced Aluminium Copper Alloys.Mater.Sci.Eng,1990,A144(1):pp25-30.
    [18]M.K.Aghajanican.Properties and Microstructures of Lanxide Al_2O_3-Al Ceramic Composite Materials.J.Mater.Sci,1989,24(2):658-670.
    [19]V.R.S.Marthy.Microstructural Development in the Directed Melt-Oxidized(DIMOX)Al-Mg-Si Alloy.J.Mater.Sci,1995,30(12):3091-3097.
    [20]M.Hunt.Automotive MMCs:Better and Cheaper.Mater.Eng,1989,10:45-48.
    [21]J.Subrahrnanyarn,M.Vijayakumar.Self-propagating high temperature synthesis.Journal of Materials Science,1992,27(9):6249-6273.
    [22]A.O.Kunrath,T.R.Strohaecker,J.J.Moore.Combusition synthesis of metal matrix composites:part Ⅲ,the A1-TiC-Al_2O_3 system.Scripta Materials,1996,34(2):189-194.
    [23]T.D.Xia,T.Z.Liu,W.J.Zhao,B.Y.Ma.Self-propagating high temperature synthesis of Al_2O_3-TiC-Al composites by aluminothermic reactions.Journal of Materials Science,2001,36(11):5581-5584.
    [24]张二林,曾松岩,曾晓春,李庆春.Al+Ti+C复合系热爆反应合成过程及相组成研究.材料工程,1996,(4):27-31.
    [25]Y Choi,M.E.Mullins,K.Wijayatileke,J.K.Lee.Frbrication of metal matrix composites of TiC-Al through self-propagating synthesis reaction.Metallurgical Transaction A,1992,23A:2387-2392.
    [26]严有为,刘生发,范晓明等.自蔓延高温合成Al-TiC晶粒细化剂及其晶粒细化效果.中国有色金属学报,2002,12(5):977-981.
    [27]L.Christodoulou.U.S.Patent,No.4751048,1988.
    [28]J.M.Brupbacher.U.S.Patent,No.4836982,1989.
    [29]R.Mitra,M.E.Fine,J.R.Weertman.Chemical reaction strengthening of Al/TiC MMCs by isothermal heat treatment at 913K.Journal of Material Research,1993,8(9):2370-2379.
    [30]R.Mitra,M.E.Fine,J.R.Weertman.Interfaces in an Extruded XD Al/TiC and Al/TiB_2MMCs.Journal of Material Research,1993,8(9):2370-2379.
    [31]Z.Y.Ma,J.H.Li,M.Luo,X.G.Ning,Y.X.Lu,J.Bi.In situ formed Al_2O_3 and TiB_2particulates mixture reinforced aluminum composite.Scripta Metallurgica et Materialia,1994,31(5):635-639.
    [32]朱和国,吴申庆,王恒志.XD合成Al_2O_3,TiB_2/Al复合材料的热力学分析.中国有色金属学报,2001,11(3):382-385.
    [33]陈子勇,陈玉勇,舒群,安阁英.熔体反应内生Al基复合材料的制备和凝固组织控制.金属学报,1999,35(8):974-978.
    [34]C.Suryanarayana.Mechanical alloying and milling.Progress in Materials Science,2001,46:1-184.
    [35]L.Takacs.Self-sustaining reaction induced by ball milling.Progress in Materials Science,2002,47:355-414.
    [36]S.Khatri,M.Koczak.Formation of TiC in in situ processed composites via solid-gad,solid-liquid and liquid-gas reaction in molten Al-Ti.Materials Science and Engineering A,1993,162:153-162.
    [37]M.J.Koczak,K.S.Kumar.U.S.Patent,No.4808372,1989.
    [38]P.Sahoo,M.J.Koczak.Microstructure property relationships of in situ reacted TiC/Al-Cu metal matrix composites.Materials Science and Engineering A,1991,131:69-76.
    [39]崔春翔,吴人沽.原位AlN/TiC粒子增强铝基复合材料.金属学报,1996,32(1):101-104.
    [40]Z.J.Huang,B.Yang,H.Cui.Study on the fabrication of Al matrix composites strengthened by combined in situ alumina particle and in city alloying elements.Materials Science and Engineering A,2003,351:15-22
    [41]T.Watari,T.Torikai,W.P.Tai,etal.Fabrication and mechanical properties of α-Al_2O_3/β-Al_2O_3/Al-Si composites by liquid displacement reaction.Journal of Materials Science,2000,35:515-520.
    [42]P.C.Maity,P.N.Chakraborty.Preparation of Al-Al_2O_3 in situ particle composites by addition of Fe_2O_3 particle to pure A1 melts.Journal of Materials Science Letter,1997,16:1224-1226.
    [43]Y.Y.Chen,D.L.Chung.Ductile and strong aluminium matrix titanium aluminide composite formed in situ from aluminium,titanium dioxide and sodium hexafluroaluminate.Journal of Materials Science,1995,30:4609-4616.
    [44]L Christodoulou et al.U.S.Patent 4,751,048,1988,6:14.
    [45]J.M.Bruuphacher et al.U.S.Patent 4,836,982,1989.6:6.
    [46]S.Shivkumar et al.In situ production of ceramic reinforcement in metallic parts by thermal degradation of organometallics.Scripta Metallurgica et Materialia,1993,29(4):439-444.
    [47]过川正人,橘本哲,日野突等.Influence of Magnesium or Calcium on Reaction of Crystalline Quartz Particlesin MoltenAluminum.铸造工学,2003,75(11):737-742.
    [48]马颖,郝远,寇生中等.CuO/Al反应自生复合材料的制备及其力学性能.材料热处理学报,2003,24(1):37-40.
    [49]王庆平,陈刚.反应生成Al_2O_(3P)/Al复合材料的动力学研究.兵器材料科学与工程,2006,29(3):4-6
    [50]张守魁,王丹虹,高洪吾.铝熔体与SiO_2颗粒反应现象分析.上海有色金属,1996,17(3):113-116.
    [51]王桂松,耿林,王德尊等.反应热压(Al_2O_3+TiB_2+Al_3Ti)/Al复合材料的组织形成机制.中国有色金属学报,2004,14(2):228-232.
    [52]D.Wang et al.Novel technique for fabricating in situ Al_2O_3/Ti_xAl_y composites.Journal of Materials Science Letters,1993,12(18):1420-1421.
    [53]桂满昌,王殿斌,张洪.颗粒增强铝基复合材料在汽车上的应用.机械工程材料,1996,20(5):30-33.
    [54]张守魁,王丹虹等.石英玻璃与铝液的反应.机械工程材料,2001,25(1):28-34.
    [55]张守魁,王丹虹,高洪吾.铝液与Si02反应原位形成Al/Al_2O_3(p)复合材料的研究.铸造,1 996(7):4-7.
    [56]周正,陶静梅.SiO_2玻璃原位反应合成Al/Al_2O_3复合材料.复合材料学报,2004(10):74-78.
    [57]孙继兵,李国彬等.原位生成陶瓷相增强铝基复合材料物相组成和反应机制的研究.稀有金属,2002(9):364-369.
    [58]朱正吼.Al_2O_3/Al复合材料反应生成技术.兵器材料科学与工程,1998,21(2):37-41.
    [59]钟涛兴,洁元等.固.液反应自生Al_2O_3/Al复合材料的研究.铸造,1997,12:11-13.
    [60]张守魁,赵红.Al_2O_3/Al基颗粒增强复合材料的凝固组织.铸造设备研究,2001(3):21-23,34.
    [61]程晓敏,陶应龙.SiO_2与液态Al反应生成Al_2O_3/Al复合材料的研究.特种铸造及有色合金,2003(4):8-10.
    [62]王杨,杨立军等.Al_2O_3颗粒增强铝基复合材料激光与辅助切削的切削特性.中国机械工程,2003.
    [63]樊建中,桑吉梅,张永忠.铝基复合材料增强颗粒分布均匀性的研究.金属学报,1998,34(11):1109-1204.
    [64]祝向福,陈大凯.搅拌因素对铸造法颗粒增强复合材料的影响.武汉钢铁学院学报,1993,16(3):250-253.
    [65]J.Hashim,L.Looney,M.S.J.Hashmi.The wettablility of SiC particles by molten aluminium alloy.J Mater processing tech,2001,119:324-328.
    [66]《金属机械性能》编写组,金属机械性能.机械工业出版社,1979:28-30.
    [67]T.W.克莱因.金属基复合材料导论.冶金工业出版社,1996:181.
    [68]钟涛兴,吉元,李英等.固-液反应自生Al_2O_3/Al复合材料的研制[J].铸造,1997(12):11-13.
    [69]廖恒成,张春燕,孙国雄.铝原位合成复合材料的反应模式与机理.铸造,1999,1:43-47.
    [70]J.M.Howe.Bond Structure and properties of Metal/Ceramic Inerface:Part 1.Chemical Bonding,Chemical Reaction and Interface Structure.International Mater.Review,1993,38(5):233-256.
    [71]Y.Gao,J.Jia.Microstucture and Composition of Al/Al_2O_3 Composites Made byReactive Metal Penetration.J.Mater.Sci,1996,31(15):4025-4032.
    [72]M.C.Breslin,J.Ringnalda.Processing Microstructure and Properties of Co-cotinuous Alumina-Aluminum composites.Mater.Sci.Eng.,1995,A 195(1-2):113-119.
    [73]刘佑铭,许伯藩等.Mg在原位形成TiC/Al复合材料中的行为.金属热处理,2002,7(5):1-4.
    [74]扬滨,王锋等.搅拌对熔铸.原位反应TiB_2/Al和TiC/Al复合材料微观组织的影响.航空材料学报,1999,19(4):16-21.
    [75]黄赞军,扬滨,崔华等.原位合金化和原位颗粒共同强化铝基复合材料的微观组织.北京科技大学学报,2001,23(3):253-256.
    [76]冯若,李化茂.声化学及其应用.安徽科技出版社,1990.
    [77]王俊,陈峰,孙宝德.高能超声在制备颗粒增强金属基复合材料中的作用.上海交通大学学报,1999,33(7):813-816.
    [78]王俊,周尧和,舒光冀等.用高能超声制备金属基复合材料的现状与发展.铸造,1997(12):40-42.
    [79]潘进,杨德明,尹新方等.复合材料进展.航空工业出版社,1994.
    [80]胡化文,陈康华.超声波熔体处理对铝合金组织和性能的影响.特种铸造及有色合金, 2004(4):11-13.
    [81]李应龙,高彩茹,王玉贵.铝硅合金的振动变质研究.轻合金加工技术,1999,27(11):8-18.
    [82]李英龙,李宝绵,刘永涛等.功率超声对Al-Si合金组织和性能的影响.特种铸造及有色合金,2003(3):21-22.
    [83]X.Jian,H.B.Xu,T.T.Meek,et al.Effect of Power Ultrasound on Solidification of Aluminum A356 Alloy.Materials Letters,2005,59(2-3):190-193.
    [84]王俊,陈锋,张力宁等.高能超声制备Al_2O_3/ZA22复合材料与性能研究.铸造,1997(5):1-3.
    [85]吕毓雄,毕敬,申红伟等.超声液相复合工艺中对金属熔体与增强颗粒的作用.中国有色金属学报,1993,3(1):58-61.
    [86]A.Polakovic,P.Sebo,J.Ivan et al.The Effect Ultrasound on the Wetting of Graphite by Molten Aluminum.Vltrasonics,1978(9):210-212.
    [87]马立群,陈锋,舒光冀.用高能超声法制备微细颗粒增强金属基复合材料.材料研究学报,1995,9(4):372-375.
    [88]潘蕾,陈锋,吴申庆等.高能超声作用下金属基复合材料的制备.机械工程材料,2003,27(7):1-2,51.
    [89]马立群,陈锋,舒光冀.超声在制备SiC/Al-Mg颗粒增强复合材料中的应用.东南大学学报,1995,25(2):50-53.
    [90]R.J.Arsenault,N,Shi.Dislocation generation due to differences between the coefficients of thermal expansion.Materials Science and Engineering,1986,81A:175-187.
    [91]M.J.Starink,P.Wang,Ⅰ.Sinclaie et al.Micro-structure and strengthening of AI-Li-Cu-Mg alloys and MMCs:Ⅱ modelling of yield strength.Acta mater,1999,47(14):3855-3968.
    [92]P.Gomiero,Y.Brechet,F.Louchet et al.Microstructure and mechanical properties of 2091Al-Li alloy-Ⅱ Mechanical properties:Yield stress and workhardening.Acta metall mater,1992,40(4):857.
    [93]吕维洁,张小农,张荻.原位合成TiC和TiB增强钛基复合材料的微观结构和力学性能.中国有色金属学报,2000,10(4):163-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700