Al_2O_(3p)/Al-Cu基半固态坯料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原位反应近液相线铸造方法是原位反应与近液相线铸造方法相结合在一起,形成的一种制备半固态坯料的新方法,它将颗粒的生成置于合金熔体中完成,利用半固态坯料的合金相图,在近液相线温度浇铸,得到满足触变成形工艺要求的半固态坯料的一种新型制备方法,它的优点在于原位颗粒表面无污染、在基体中均匀分布、近液相线温度浇铸可以抑制形成枝状晶组织而形成细小的蔷薇状组织,且工艺简单、生产效率高,适用合金品种多。
     本文采用原位反应近液相线铸造方法,制备出Al_2O_3P/Al-Cu基及Al_2O_3P/Al-Cu-Si基半固态坯料,主要研究制备工艺参数的影响规律,同时利用光学显微镜、透射电镜、X射线衍射等对所制备的Al_2O_3P/Al-Cu基半固态坯料进行微观组织研究。通过试验观察和理论分析得出如下结论:
     反应的绝热温度从低稀释剂量、高预热温度的一边向高稀释剂量、低预热温度的一边降低;采用镁粉做引燃剂,随着镁粉量的减少,反应诱导时间延长。
     当原位Al_2O_3颗粒含量达到5.3wt%,熔体温度850℃,预制块的质量成分含量为Al:CuO=1:1,再加入预制块总质量的1/1200的Mg粉时反应进行顺利且不会产生爆炸现象。Al_2O_3P/Al-Cu-Si半固态坯料的反应物配比为Al:CuO:SiO_2=2:3:2,引发剂镁加入量为预制块总质量的1/300,铝熔体温度达到950℃时反应进行彻底。
     原位Al_2O_3颗粒细小,直径小于0.5μm,弥散分布于基体中,且界面干净,无污染;随着原位反应物加入量的增加,生成的Al_2O_3颗粒增多,但是同时生成的合金元素铜也明显增多,随着含量的增大,CuAl_2在晶粒周围呈网状分布。
In-situ reactive Near-liquidus Technology is combined In-situ reactive and near-liquidus method. It is a new method to produce Semi-solid billet. The use of composite alloy phase diagram, Particles will be generated at the completion of alloy melt, then casting in the Near-liqudus temperature. to get the requirements of semi-solid billets of Thixoforming process. Its advantage lies in the surface of the particles in-situ non-polluting, uniformly distributed In the matrix, Dendritic structure is controlled at Near-liquidus casting temperature and some small rose-like organizations are formed,and process is simple, efficiency of the production is high, the multi-alloy of application is varieties.
     In this paper, in-situ reactive near liquidus casting method is used to prepared the Semi-solid billet of Al_2O_3P/Al-Cu matrix Al_2O_3P/Al-Cu-Si matrix. The influence of process parameters are studies, At the same time, the optical microscopy, transmission electron microscopy, X-ray diffraction is used to research the Semi-solid billet of Al_2O_3P/Al-Cu matrix microstructure. The conclusions can be received through experiments and theoretical analysis:
     Adiabatic temperature of reaction decreased from low volume, high pre-heating temperature side to the high diluent volume, low pre-heating temperature side; the use of magnesium ignition as the agents , with the reduction in the amount of magnesium, the reaction induction time Extended;
     When the particle content of in-situ Al_2O_3 come to 5.3wt%, melt temperature 850℃, the quality of block components Content of Al: CuO = 1:1 and then adding the total mass of the preform 1/1200( Mg powder )when the reaction was carried out smoothly and does’nt explode. The Semi-solid billets of Al_2O_3P/Al-Cu-Si reactant ratio for Al: CuO: SiO_2 = 2:3:2, initiator of adding Mg is 1/300 of preform, when the aluminum melt temperature reached 950℃, the reaction is exhaustive . The particle of in-situ Al_2O_3 is fine and diameter is less than 0.5μm, dispersing in the matrix and the interface is clean, pollution-free; the Al_2O_3 particles is increased with the in-situ reaction with the addition of materials to generate, but at the same time generate the alloy Elements of copper also increased significantly, with increased content, CuAl_2 was distributed like network around in the grain.
引文
[1] Spencer D B,Flemings M C Rheocasting[ J].Mater.Sci.Eng,1976,25:103-107
    [2] Fleanings M C. Behavior of alloys in the Semr solid State[J].Metallurgical Transactions B,1991, 22B(5):269-293
    [3]谢水生,黄声宏.半固态加工金属加工技术及其应用[M].北京:冶金工业出版社,1999,12-16
    [4]蒋鹏.半固态金属成形技术的研究概况[J].塑性工程学报,118,5:1-7
    [5]苏华钦,朱鸣芳,高志强.半固态铸造的现状及发展前景[J].特种铸造及有色合金,1998,1(5):1-6
    [6] Errique J, Lavernia, Yue wu.Spray Atomization and Deposition (New York: John Wiley and Sons1996):338-345
    [7]杨霓虹.原位生成增强体金属基复合材料及其应用前景[J].材料导报.1993,32(1):53-54
    [8] A.W.Vrquhart,Novel reinforced ceramics and metals:review of Lanxide’s composite technologies,Materials Science and Engineering,1991,A131(1):75-81
    [9] R.M.Aikin,The mechanical properties of In-situ composites,JOM,1997,8:35-39
    [10]文九巴,宋延沛,杨永顺,等.自生颗粒增强铝复合材料的制备工艺[J].热加工工艺.2001,2: 29-30
    [11]严学华,孙少纯,蒋宗宇.原位反应复合材料研究进展[J].铸造设备研究.2001,1 :27-30
    [12]李劲风,张昭,张鉴清.金属基复合材料(MMCs)的原位制备[J].材料科学与工程.2002,20(3):453-456
    [13]付高峰.原位反应制备Al2O3颗粒增强铝基复合材料的研究[D].沈阳:东北大学,2005,12:1-48
    [14]黄赞军.原位反应法制备三氧化二铝颗粒增强铝基复合材料[D].北京:北京科技大学,2002,6:1-125
    [15]谭京梅.颗粒/铝基复合材料预制件制备工艺的研究进展[J].安徽建筑工业学院学报(自然科学版),2004,12(6):752-754
    [16]朱晓光,王为民.原位反应合成金属基复合材料[J].国外建材科.2005,26(4):213-215
    [17]张发云,闫洪,周天瑞,等.金属基复合材料制备工艺的研究进展[J].锻压技术.2006,33(6):100-104
    [18]王德庆,张建国.原位反应制备Al2O3颗粒增强铝基复合材料[J].大连铁道学院学报.2001,22(12):65-67
    [19]文先哲,渝韦强.原位反应法制备(Al2O3)p/Al复合材料的研究[J].湖南有色金属.1999,15(1):35-38
    [20]吕臣敬,王芬,张希清.原位合成Ai2O3/Ti-Al复合材料的研究[J].宇航材料工艺.2005,4:47-51
    [21]方峰,谈淑咏,江静华,等.金属基复合材料概述[J].金属基复合材料概述.2000,1:46-48
    [22]汪涛,鲁玉祥,祝美丽,等.颗粒增强金属基原位复合材料的制备技术回顾与展望[J].宇航材料工艺.2000,1:12-18
    [23]史玉娟,原位反应制备Al2O3颗粒增强铝基复合材料的研究[D].沈阳:东北大学, 2005,12:1-40
    [24]王俊,孙宝德,周尧和,等.颗粒增强金属基复合材料的发展概况[J].铸造技术.1998,3:37-41
    [25]张元好,曾大新.颗粒增强金属基复合材料的制备及应用[J].湖北汽车工业学院学报.2002,16(4):74-76
    [26]吴时明,郑史烈,李志章.颗粒增强铝基原位复合材料[J].材料导报.1999,13(10):52-54
    [27]樊建中,姚忠凯.颗粒增强铝基复合材料研究进展[J].材料导报.1997,11(6):48-51
    [28]艾利君.颗粒增强Al基复合材料的研究[D].兰州:兰州大学.2007,5:1-20
    [29]戴世娟.亚微米颗粒增强铝基复合材料的制备技术研究[D].镇江:江苏大学,2007,5:1-3
    [30]徐娜,宗亚平,张芳,等.颗粒形状对铝基复合材料力学行为影响的模拟[J].东北大学学报.2007,28(2):213-216
    [31]郝斌,段先进,崔华,等.金属基复合材料的发展现状及展望[J].材料导报.2005,19 (7):64-65
    [32] Srubrahmanyam J,Vi iayakumar M,Self-propagation high-temperature synthesis,Journal of Materials Science,1992,27(23),6249-6274
    [33]寇生中.XD反应合成Al2O3-TiC/Al复合材料的热力学及动力学过程的研究[D].兰州:兰州理工大学,2005,6:1-52
    [34]牛玉超,耿浩然,崔红卫.反应生成Al2O3颗粒增强铝基复合材料[J].山东机械.2001,6:29-30
    [35]黄笑梅,程和法,张勤贤.反应合成法制备Al2O3/Al复合材料[J].新技术新工艺.2001,4:35-36
    [36]吕鲜翠,赵志英,孙启山.氧化铝颗粒的显微形貌与强度的关系分析[J].轻金属.2006,6:20-24
    [37]黄赞军,杨滨,崔华,等.原位铝基复合材料的制备及微观组织[J].材料研究学报.2001,15(4):432-438
    [38]陶春虎.采用XD工艺合成TiAl合金及TiC/TiAl复合材料的研究[J].航空学报.1994,12(12):1445-1449
    [39]文九巴,宋延沛,杨永顺,等.自生颗粒增强铝基复合材料的组织与性能[J].洛阳工学院学报.2000,21(4):10-12
    [40]王庆平,姚明,陈刚.反应自生金属基复合材料制备方法的研究进展[J].江苏大学学报.2003,24(5):108-111
    [41] M.E.Fine,R.Mitra,J.R.Weertman,Interfaces in Al-TiC Composites Prepared by in-situ Processing,Z.Metallkd,1993,84(4):282-285
    [42] W.H.Wang,H.Y.Bai,Carbon-addition-induced bulk ZrTiCuNiBe amorphous matrix composite containing ZrC particles,Materials letters,2004,44(5):59-63
    [43]刘丹,崔建忠,夏克农.液相线铸造铝合金半固态压缩变形特性[J].东北大学学报(自然科学版).1998,19(6):571-573
    [44]白锐,周志敏,宋协青,等.液相线铸造法半固态金属组织特征的相场模拟研究[J].铸造.2006,5:490-492
    [45] LUO Shour jing,J1ANG Jurfu, WANG Y ing, et al. M echanics and forming theory of liquid metal forging[J].Transactions of Nonferrous M etals Society of China,2003,13(2):369-375
    [46]罗守靖.液相线模锻制各半固态坏料方法[P].中国专利:01116406.9,2001
    [47]路贵民,董杰,崔建忠,等.7075铝合金液相线半连续铸造组织及形成机理[J].金属学报,2001,37(10):1045-1048
    [48] M.Maeda,T.Yaheta,K.Mitugi,T.Ikeda,Aluminothermic Reduction of titanium oxide,Materials Transactions,JIM,1993,34(7),599-603
    [49]陈新民.物理化学[M].北京:冶金工业出版社.1997:136-152
    [50]王正烈,周正平.物理化学[M].天津:高等教育出版社,2003:1-155
    [51]梁英教,车荫昌.无机物热力学手册[M].沈阳:东北大学出版社,1993:49-381
    [52]殷声.燃烧合成[M].北京:冶金工业出版社,1999
    [53] Z.A.Munir,Synthesis of high temperature Materials by self-propagating combustion methods,Bull.Amer.Cera.Soc.,1988,67(2),342-349
    [54] E.J.Gonzalez,K.P.Trumble,Spontaneous infiltration of alumina by copper-oxygen alloys,Journal of American Ceramic society,1996,79(1),114-120
    [55] Xia K,Tausing G. Liquidus casting of a wrought aluminum alloy 2618 for thixoforming[J].Materials Science and Engineering,1998,A246:1-9
    [56]刘慧敏,王洪斌,杨滨,等.原位TiC颗粒对喷射成形7075合金组织的影响[J].北京科技大学学报,2003,25:337-341
    [57]刘慧敏,任云,刘军,等.原位反应液相线铸造半固态铝合金的晶粒长大行为[J].材料工程,2006,1:3-7
    [58]龚磊清,鑫长庚,刘发信,等.铸造铝合金相图谱[M].长沙:中南工业大学出版社,1987:1-44
    [59]黄赞军,杨滨,崔华,等.原位合金化和原位颗粒共同强化铝基复合材料的微观组织[J].北京科技大学学报.2001,23(3):253-256
    [60]王自东,胡汉起,李春玉等.金属基内晶型复合材料及其制备[J].金属学报.1995,31,B40-43
    [61]代雄杰,白朴存,张秀云,等.Al2O3P/2024Al基复合材料的界面结构[J].热加工工艺,2007,36:10-13
    [62]权高峰,柴东朗,宋余九,等.增强体种类及含量对金属基复合材料力学性能的影响[J].复合材料学报.1999,16(2):62-65
    [63] E.Arzt,P.Grahle,Dispersion stregthening of disordered and ordered metallic materials:from dislocation mechanism to new alloys,Z.Metallkd,1996,87,874-884
    [64] J.Rosler,R.Joos,E.Arzt,Microstructure and creep propertied dispersion strengthened aluminum alloys,Metallurgical Transactions A,1992,23A,1521-1539
    [65] M.E.Fine,R.Mitra,J.R.Weertman,Interfaces in Al-TiC Composites Preared by in-situ processing,Z.Metallkd,1993,84(4):282-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700