Al-ZrO_2、Al-ZrO_2-B系原位反应技术制备铝基复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用放热弥散反应法(XD法)合成Al-ZrO_2和Al-ZrO_2-B系铝基复合材料。根据热力学基本理论对反应过程进行热力学分析;采用金相显微镜、SEM和XRD等现代手段分析反应产物及其微观组织;结合DSC(Differential Scanning Calorimetry)曲线对反应过程进行动力学分析;研究不同工艺参数对反应过程及其结果的影响;并测试材料的常温力学性能,探讨其强化机理和断裂机制。
     机理研究表明:在Al-ZrO_2系中,随着温度的增加,Al液化并与ZrO_2形成液—固界面,当温度升至830℃左右时,界面处反应生成热力学稳定的α-Al_2O_3和活性Zr原子,α-Al_2O_3与液态Al润湿性差,偏聚于反应界面,阻碍Zr原子的扩散;Zr原子在反应热和浓度梯度的作用下扩散进入Al基体,反应生成Al_3Zr。Al-ZrO_2-B反应系中,加入的B首先与Al在700℃结合生成AlB_2,升温至840℃左右时,与ZrO_2结合反应生成α-Al_2O_3和ZrB_2,抑制Al_3Zr形成,B/ZrO_2摩尔比为2时,Al_3Zr基本消失,反应产物仅由α-Al_2O_3和ZrB_2组成;由升温速率分别为10℃/min、20℃/min和30℃/min的DSC曲线和Kissinger方程,计得Al-ZrO_2的反应活化能为358 kJ/mol,B/ZrO_2摩尔比为1时,反应活化能升至393 kJ/mol。
     性能研究表明:增强相体积分数为20%和30%的复合材料,随着B/ZrO_2摩尔比由0增至1和2时,拉伸强度先降后升,分别由135MPa和186MPa降至130MPa和163MPa后又升至189MPa和209MPa。延伸率却随之先增后降,分别从4.7%和14.9%增至10.3%和16.1%后降至8.1%和12.3%。Al-ZrO_2,Al-ZrO_2-B系复合材料的强化机理为弥散强化、细晶强化、位错强化,断裂机制有位错机制和空位形核机制。
In this article,Al-ZrO_2 and Al-ZrO_2-B systems aluminum matrix composites were fabricated by means of exothermic dispersion(XD).Thermodynamic analysis of reaction process was carried out.The reaction products and microstructures of composites were analysed by modern means such as optical microscope(OM),scanning electron microscopy (SEM),and X-Ray diffraction(XRD).The kinetics of the reaction process was investigated based on DSC and the influence of different technical parameters on the reaction process and results;the normal temperature mechanical performance was tested and its strengthening mechanism and fracture mechanism were explored.
     The study of mechanism shows that:with the raise of temperature,Al liquefied and formed fluid-solid interface with ZrO_2;when the temperature reached 830℃,α-Al_2O_3,which has stable thermodynamic properties,and active Zr atoms were produced.In Al liquation, owing to its poor wettability,α-Al_2O_3 particles were prone to segregate at the interface and hindered Zr atoms' dispersion;however,with the effect of concentration gradient and heat,Zr atoms diffused into Al matrix and then Al_3Zr generated.In Al-ZrO_2-B system,firstly B reacted with Al at 700℃to form AlB_2;as warming up to 840℃,AlB_2 reacted with ZrO_2 to generateα-Al_2O_3 and ZrB_2,which inhibited the formation of Al_3Zr.When B/ZrO_2 molar ratio was 2,Al_3Zr basically disappeared in the matrix;the reaction product only consists ofα-Al_2O_3 and ZrB_2.The activation energy value of Al-ZrO_2 system calculated from DSC curves with different heating rates and the Kissenger equation was shown to be 358 kJ/mol. When B/ZrO_2 molar ratio is 1,the activation energy rise to 393 kJ/mol.
     The research of mechanical properties shows that:as B/ZrO_2 molar ratio grew from 0 to 1,further to 2,the tensile strength of the composites whose reinforcement volume fraction were 20%and 30%firstly decrease from 135MPa and 186MPa to 130MPa and 163MPa respectively,but then rose to 189MPa and 209MPa.However,the elongation rate varied in the opposite way,increasing from 4.7%and 14.9%to 10.3%and 16.1%at first,and then falling to 8.1%and 12.3%.The strengthening mechanism of Al-ZrO_2 and Al-ZrO_2-B systems composites can be interpreted by dispersion strengthening,fine grain strengthening, dislocation strengthening;the fracture mechanism include dislocation nucleation mechanism and the vacancy mechanism.
引文
[1]赵玉涛,戴起勋,陈刚.金属基复合材料.第1版.北京:机械工业出版社,2007
    [2]陶杰,赵玉涛,潘蕾.金属基复合材料制备新技术导论.第1版.北京:化学工业出版社,2007
    [3]于化顺,金属基复合材料及其制备技术.第1版.北京:化学工业出版社,2006
    [4]王倩,高建国,马伟民.金属基复合材料的发展与应用.沈阳大学学报.2007(2):10-15
    [5]肖恩忠.原位制备金属基复合材料的研究进展.潍坊学院学报.2007(2):5-8
    [6]岳云龙,公衍生,沈强,张联盟.原位(in-situ)反应合成技术在制备金属基复合材料中的应用.硅酸盐通报.2002(4):45-48
    [7]Nukm i T,Flemings M C.In situ sythesis of TiC particles reinforced aluminum matrix composites.Metall transA.1995(26):1884-1877
    [8]Gotman I,Koczak M J.Fabrication of aluminum matrix in situ composites via self-propergating synthesis.Materials science and engineeringA.1994(187):189-199
    [9]Odawara J.Ceramic lined pipes produced by a centrifugal-thermit process.Trans of the Japan institute of metals.1985(26):578-586
    [10]Choi Y,Mullins E.Fabrication of metal matrix composites of TiC-Al through self-propagating synthesis reaction.Metall Trans.1992(23):2387-2394
    [11]朱和国,吴申庆.自生铝基复合材料的制备、性能及生成机理.材料导报.1998(4):61-64
    [12]朱和国,吴申庆,王恒志.XD合成Al_2O_3,TiB_2/Al复合材料的热力学分析.中国有色金属学报.2001(3):382-384
    [13]T.G.Durai,Karabi.Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates.Material science and engineering A.2007(445-446):100-105
    [14]Y.H.Wang,J.P.Lin,Y.H.He,Y.L.Wang.Microstructural characteristics of Ti-45Al-8.5Nb /TiB_2 composites by powder metallurgy.Journal of alloys and compounds.2008:1-7
    [15]金海波,邹宗树,王文忠.Lanxide技术的研究与进展.国内冶金.1999(4):41-44
    [16]何树先,袁森,王俊.直接金属氧化法制备Al_2O_3/Al陶瓷基复合材料的生长方式.上海交通大学学报.2001(5):676-679
    [17]X.Cu,R.J.Hand.The production of reinforced aluminum/alumina bodies by directed metal oxidation.Journal of European ceramic society.1995(15):823-831
    [18]H.Venugopalan,K.Tankala,T.Debroy.Kinectics of directed oxidation of Al-Mg alloys in the initial and final stages of synthesis of Al_2O_3/Al composites.Material science and engineering A.1996(210):64-75
    [19]M.Montoya-Davila,M.A.Pech-Canul,M.I.Pech-Canul.Effect of bi-and trimodal size distribution on the superficial hardness of Al/SiC_p composites prepared by pressureless infiltration.Power technology.2007(176):66-71
    [20]L.Zhang,X.H.Qu,X.B.He.Thermo-physical and mechanical properties of high volume fraction SiCP/Cu composites prepared by pressureless infilitration.Materials sicence and engineering.2008(489):285-293
    [21]崔春翔,吴人洁,杨春生.自生TiCW-AINP/Al复合材料中TiCW相的形成和分布.金属学报.1996(3):101-104
    [22]杨守杰,戴圣龙.反应喷射沉积5083铝合金的微观组织.中国有色金属学报.2003(6):1473-1476
    [23]Zan-Jun Huang,Bin Yang,Hua Cui.Study on the fabrication of Al composites strengthened by diluent combined in-situ alumina particle and in situ alloying element.Materials science and engineering A.2003(351):15-22
    [24]徐宝洁,朱延山,赵玉涛.Al-Zr-O-B体系反应生成颗粒增强颗粒复合材料的研究.特种铸造及有色合金.2006(12):816-818
    [25]杨滨,许芳,张济山.铝熔体原位合成TiC的动力学分析.稀有金属材料与工程.2001(4):241-244
    [26]赵玉涛,孙建祥,戴起勋.Al-Zr(CO_3)_2体系反应合成复合材料的反应机制及动力学模型.中国有色金属学报.2005(9):1343-1349
    [27]杨滨.搅拌对熔铸-原位反应TiB_2/Al和TiC/Al复合材料微观组织的影响.航空材料学报.1999(19):16-21
    [28]阴瑜娟,赵玉厚,夏永喜.原位生成铝基复合材料增强相的研究现状.热加工工艺.2006(17):70-73
    [29]Degang Zhao,Xiangfa Liu,Yuxian Liu.In-situ preparation of Al matrix composites reinforced by TiB_2 particles and sub-micron ZrB_2.Journal of materials science.2005(40):4365-4368
    [30]刘江,彭晓东,刘相果.原位合成铝基复合材料的研究现状.重庆大学学报.2003(10):1-5
    [31]石益海,赵玉厚.(ZrB_2+Al_3Zr)/ZL101原位复合材料的力学性能与断裂行为.铸造技术.2008(2):209-212
    [32]江润莲,赵玉涛,孙建祥.Al-Zr-O-B原位合成复合材料的微观组织和力学性能.特种铸造及有色合金.2005(25):316-318
    [33]Lee K B,Sim H S,Heo S W.Tensile properties and microstructures of Al composite reinforced with BN particles.Composites.2002(33):709-715
    [34]陈秋玲,孙艳.颗粒增强铝基复合材料的研究.中国综合资源利用.2003(6):31-33
    [35]石益海,赵玉厚.原位生成Al_3Zr和ZrB_2增强铝基复合材料研究.材料热处理技术.2008(4):20-22
    [36]叶大伦,胡健华.实用无机热力学数据手册.第2版.北京:冶金工业出版社,2002
    [37]梁英教,车荫昌.无机物热力学数据手册.第1版.沈阳:东北大学出版社,1993
    [38]朱和国,王恒志,熊党生,孙强金,吴申庆.Al-TiO_2系XD合成铝基复合材料的反应机理.中国有色金属学报.2005(2):205-209
    [39]LF蒙多尔福.铝合金组织与性能.第1版.北京:冶金工业出版社,1987
    [40]Subrahmanyam J,Vijayakumar M.Review self-propagating high-temperature synthesis.Journal of material of materials science,1992(27):6249-6273
    [41]Montgomery D C,Runger G.C.Applied Statistics and Probability for Engineers.3rd ed.New York:John Wiley and Sons,1994
    [42]C.F.Feng,L.Froyen.In-situ P/M Al/(ZrB_2+Al_2O_3)MMCs processing microsructure and mechanical characterization.Acta mater.1999(18):4571-4583
    [43]刘爱辉,李邦盛,隋艳伟,于杰,郭景杰,傅恒志.Ti/ZrO_2和TiAl/ZrO_2反应的差热分析.中国有色金属学报.2008(5):794-798
    [44]沈兴.差热、热重分析与非等温固相反应动力学.第1版.北京:冶金工业出版社,1995
    [45]Courtney T H.Process modeling of mechanical alloying(overview).Materials transaction JTM,1995(2):110-122
    [46]何秋梅,朱敏,曾美琴.CeO_2和ZrO_2添加剂对高能球磨Al_2O_3组织和热稳定性的影响.材料热处理学报,2008(6):111-114
    [47]刘佑铭,许伯藩,蔡珣,李刘和,陈秋龙.稀土CeO_2作为添加剂制备in situ TiC/Al 基复合材料.上海交通大学学报,2004(7):1122-1125
    [48]文九巴,宋延沛,杨永顺,祝要民.自生颗粒增强铝基复合材料的组织与性能.洛阳工学院学报.2000(4):10-12
    [49]Songli Zhang,Yutao Zhao,Gang Chen,Xiaonong Cheng.(Al_2O_3+Al_3Zr)/A356nanocomposites fabricated by magnetochemistry in situ reaction.Journal of alloys and compounds.2009(475):261-267
    [50]N.Chawla,J.J.Williams,R.Saha.Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composite.Journal of light metals.2002(2):215-227
    [51]郭永良,刘兴秋,宁江利,蒋大鸣.热挤压对Al_2O_3p/6061铝基复合材料拉伸性能及组织的影响.机械工程材料.2007(3):65-67
    [52]张松利,赵玉涛,陈刚,汪长勤.超声化学原位合成(Al_3Zr+ZrB_2/A356)复合材料的力学行为.中国有色金属学报.2008(12):2140-2144
    [53]Song li Zhang,Yutao Zhao,Guang Chen,Xiaonong Cheng,Qixun Dai.Microstructures and mechanical properties of aluminum matrix composites fabricated from Al-xwt.%Zr(CO_3)_2(x=5,10,15,20,25) systems.Journal of alloys and compounds.2007(429):198-203
    [54]何肇基.金属力学性质.第2版.北京:冶会工业出版社,1981
    [55]汪小燕.原位铝基复合材料的制备及凝固组织控制.江苏大学,硕士学位论文,2006
    [56]哈宽富.金属力学性质的微观理论.第1版.北京:科学性出版社,1983
    [57]G.R.Li,Y.T.Zhao,H.M.Wang,G.Chen,Q.X.Dai,X.N.Cheng.Fabrication and properties of in situ(Al_3Zr+Al_2O_3)pA356 composites cast by permanent mould and squeeze casting.Journal of alloys and compounds.2009(471):530-535
    [58]Arsenault R J,Shi N.Dislocation generation due to difference between coefficients of thermal expansion.Met.Sci.& Eng.1986(81):175-187
    [59]束德林.工程材料力学行为.第1版.北京:机械工业出版社,2003
    [60]孔建祥,赵玉涛,戴起勋等.Al-Zr(CO_3)_2体系反应合成复合材料的力学性能与断裂行为.中国有色金属学报,2004(7):1228-1233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700