原位自生Al_2O_3-TiC铝基复合材料高温压缩变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用搅拌熔铸技术制备了原位自生Al_2O_3-TiC铝基复合材料,借助于X射线衍射仪(XRD)鉴定了该复合材料的相组成,利用扫描电镜(SEM)观察了复合材料中增强相的形貌、尺寸和分布。利用CSS-44500电子万能试验机辅以加热设备对热挤压态Al_2O_3-TiC/Al复合材料、Al_2O_3-TiC/ZL109复合材料、工业纯铝及ZL109合金等四种材料进行了高温压缩试验研究,阐述了不同温度、不同应变速率下试验材料的高温压缩行为。利用透射电镜(TEM)观察了不同压缩变形工艺后试验材料的微观组织结构演变过程,计算了不同变形工艺下的应变速率敏感指数(m )和表观激活能(Q),论述了高温压缩变形机制。
     在相同应变速率条件下,试验材料的流变应力随温度的上升而下降,在723K压缩变形时,试验材料的流变应力降低显著;在相同压缩温度条件下,试验材料的流变应力均随应变速率的提高而提高。
     在523K压缩时,试验材料的微观组织中都明显地出现动态回复特征;在623K压缩时,工业纯铝中动态回复现象更为明显,组织内部可以见到被拉长的亚晶晶粒,晶粒内部位错密度很低,位错沿晶界呈位错墙排布;在该温度下复合材料及ZL109合金的压缩组织中,还可以观察到明显的动态再结晶晶粒。
     在0.01s-1-1s-1应变速率范围内,试验材料的m值均随温度的升高而升高。在不同压缩温度范围内,试验材料存在不同高温压缩变形机制。在523K-623K压缩温度范围内,试验材料的热激活能均小于铝的晶界自扩散激活能,表明该温度范围内试验材料的变形机制是以晶内位错滑移及攀移为主要特征。而在623K-723K压缩温度范围内,各试验材料的变形机制则有所不同,工业纯铝的变形机制与其在523K-623K压缩温度范围内完全相同,而其他三种材料的表观激活能明显高于铝的晶界自扩散激活能,这表明在此温度范围内他们的变形机制是以晶界的蠕动为主要特征。
The in-situ Al_2O_3-TiC/Al (ZL109) composites were fabricated by melting and casting technique. The phases in the composites were identified by XRD. The distributions and morphologies and sizes of Al_2O_3 and TiC particles were observed and determined by SEM. The compressive tests at elevated temperatures were conducted on the CSS-44500 tensile machine with a heater attached. The compressive behaviors of the composites and pure industrially aluminum and ZL109 alloy were described. The microstructures fore and after hot compressive deformation were analyzed by TEM. The sensitivity indexes of strain rate ( m ) and apparent activation energies (Q) of the test material composites at different test conditions were calculated, and deformation mechanisms were discussed at elevated temperatures.
     The flow stresses of the test materials decreased with temperature increasing under the same strain rate. The flow stress fell down sharply at 723K. The flow stresses increased with increasing of strain rates under the same temperature.
     The TEM results showed that the dynamic recovery occurred in the compressive materials at 523K. The elongated grains and few dislocations in the grains and dislocation wall along grains were seen in the pure industrially aluminum. The dynamic recrystallizations occurred near the reinforced particles and dynamic recovery far from the particles for composites and ZL109 alloy..
     The sensitivity indexes of strain rate increased with temperature increasing ranged from 0.01s-1 to 1s-1. There existed different deformation mechanisms at different temperatures in the materials. The thermal activation energies of all test material composites were lower than the thermal activation energy of self-diffusion of grain boundary ranged the temperatures from 523K to 623K, which indicated that the deformation mechanism were characterized by sliding and climbing of dislocations in the grains. From 623K to 723K, however, the deformation mechanisms were different. The deformation of pure industrially aluminum were same as those from 523K to 623K. And the deformation mechanism of other three material composites were characteristic of creeping of grain boundaries, for thermal activation energy of pure industrially aluminum were lower than others when the temperature was from 623K to 723K.
引文
[1]吴人洁.金属基复合材料的现状与展望[J].金属学报,1997,33(1):79-84
    [2]曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993:21-56
    [3]桂满昌.颗粒增强铝基复合材料的制备和应用[J].材料导报,1996,12(9):165-169
    [4]刘万辉.AlNp/2024铝基复合材料的高温压缩变形行为的研究[D].哈尔滨工业大学硕士学位论文,2004,1
    [5]牛建平,戴鹏芳.铸造金属基颗粒复合材料[J].机械工程材料,1993,17(5):1-2
    [6]丁文江,余滋璋,徐小平.SiC粒子增强铸造Al基复合材料的研究[J].材料科学进展,1992, 6(3): 269-271
    [7]王军,严彪.金属基复合材料的发展和未来[J].上海有色金属,1999,20(4):188-192
    [8]欧阳柳章,罗承萍,隋贤栋,洛灼旋.外加颗粒增强铝基复合材料的现状与展望[J].中国铸造设备与技术.2000,(1):3-7
    [9] M.K.Surappa, P.Sivakumar.Fracture Toughness Evaluation of Al2O3/2024Al Composites by inst- rumented impact[J].Composites science and Technology,1993,(46):287-295
    [10] H.Yanfeng, L.Xiangfa. In situ TiBz reinforced near eutectic Al-Si alloy composites[J].Composite Part A, 2002,33(8):439-444
    [11] S.Lakshmi, L.Lu, M.Gupta. In situ preparation of TiB2 reinforced A1 based composites [J].Journal of Materials Processing Technology, 1998, 73 (3):160-166
    [12]于敬宇,李玉龙,周宏霞,徐绯.颗粒尺寸对颗粒增强型金属基复合材料动态特性的影响[J].复合材料学报,2005,22(5):31-38
    [13]权高峰,柴东朗,宋余九.增强体种类及含量对金属基复合材料力学性能的影响[J].复合材料学报,1999,16(2):62-66
    [14]罗兵辉,柏振海.SiC增强颗粒含量对6066铝合金组织及力学性能的影响[J].轻合金加工技术,2001,29(8):43-46
    [15]徐绯,李玉龙,郭伟国.高应变率下颗粒形状、含量和基体特性对金属基复合材料力学行为的影响[J].复合材料学报,2003,20(6):36-41
    [16]郦定强,洪淳亨.增强体颗粒尺寸对SiCp/2124Al复合材料变形行为的影响[J].上海交通大学学报,2000,34(3):342-346
    [17] T.Doel,P.Bowen.Tensile properties of particulate-reinforced metal matrix composites[J]. Composites Part A, 1996,27(A):655-665
    [18]朵军.颗粒增强铝基复合材料的研究现状[J].青海科技,2006, (4):58-60
    [19]崔岩等.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002, (6):3-6
    [20]于家康.混杂2D-Cr/Al电子封装复合材料的研究[D].西北工业大学博士学位论文,2000,2
    [21] Peng HX, Wang DZ, Geng L.Evaluationofthe Microstructure ofinstureaction Processed Al3Ti, Al2O3, Al Composite[J]. Scripta Materialia,1997,37(2):199-204
    [22]廖恒成.铝原位合成复合材料的反应模式与机理[J].铸造1999,48(1):43-47
    [23]柴跃生,张树瑜,梁建民.原位内生颗粒增强铝基复合材料研究进展[J].太原重型机械学院学报,2001,22(2):138-143
    [24] Yun-Mo Sung,Kyung-YolYon,S.A.Dunn.Wetting behavior and mullite formation at the interface Of inviscid melt-spun CaO-Al2O3 fibre-reinfored Al-Si alloy (4032)[J].composites. J.Mater. Sci, 1994,29(3):55-63
    [25]吴澎.硅颗粒增强金属基复合材料制备工艺的探讨[D].西安理工大学硕士论文,2005,3
    [26]郑小红.熔铸法原位自生Al2O3- TiCp /Al基复合材料的热力学及动力学分析[D].佳木斯大学硕士论文,2007,3
    [27]张雪囡.晶须与纳米颗粒混杂增强铝基复合材料制备与高温变形[D].哈尔滨工业大学硕士学位论文,2002.7
    [28]崔岩,复合材料的制备及界面研究[D].哈尔滨工业大学博士学位论文,1997.3
    [29]王基才,尤显卿,郑玉春,程娟文.颗粒增强金属基复合材料的研究现状及展望[J].硬质合金, 2003,20(1):51-55
    [30]周尧和,胡壮麒,乔万奇.凝固技术[M].机械工业出版社,1998:389-399
    [31]柴跃生,张树瑜,梁建民.原位内生颗粒增强铝基复合材料研究进展[J].太原重型机械学院学报,2001,22(2):138
    [32]杨滨,王锋,崔华等.搅拌对熔铸—原位反应TiB2/Al和TiC/Al复合材料微观组织的影响[J].航空材料学报,1999,19(4):16-21
    [33] D.Corbin, J.W.McCauley.Mtlms86-1[M].USAMTL, Waterown, MA, 1986
    [34] Surbrahmanyam J,Vijayakumar M.Self-propagating High-temperature Synthesis[J]. Materials science and technoloty, 1992,27(23):0249-6273
    [35] S.C.Tjong,Z.Y.Ma.Microstructural and mechanical characteristic of in situ metal matrix composit- es[J].Materials Science and Engineering,29(2000):49-113
    [36] Martin Marietta Corp. Process for forming metal-ceramic composites[M].US Pat,4710348, 1987
    [37] Z.Wang,X.Liu.Reaction mechanism in an Al-TiO2-C system for producing in-situAl/(TiC+Al2O3) composite[J]. Journal of Materials Scence, 2004, 667-669
    [38] Z..Wang,X. Liu.In-situ synthesis of Al/(TiC+α-Al2O3) and Al/(TiAl3+TiC+α-Al2O3) alloys by reactions between Al,TiO2 and C in liquid aluminum[J]. Letters, 2005,1047-1050
    [39]王振卿.Al-(Ti, TiO2, ZrO2)-C体系的反应机理及其材料的熔体原位反应合成[D].山东大学博士学位论文,2005
    [40]宁江利,Al2O3/6061铝基复合材料的热挤压及高温变形行为[D].哈尔滨工业大学硕士学位论文,2003,7
    [41] Urty S V S N, Rao B N.Instalility map for hot working of 6061 Al-10vol% metal matrix compos- ite[J].J Phys D,1998,31(22):3306-3311
    [42]秦蜀煞,张国定.改善颗粒增强金属基复合材料塑性和韧性的途径与机制[J].中国有色金属学报,2000,10(5):621-629
    [43]李淑波,吴昆,郑明毅,熊守美.挤压对AZ91铸造镁合金力学性能的影响[J].材料工程, 2006,12:54-57
    [44]苏德权,赵云禄.藏学府.铝型材挤压温度范围的选择[J].锻压技术,1995,(6):12-14
    [45]郑晶,王智民.热挤压变形对Al-Si复合材料组织性能的影响[J].铸造技术,2006,27(8):839-841
    [46]颜鸣皋,韩雅芳.第四届先进材料技术研讨会论文集[M].北京:《材料工程》编辑部,1997,86
    [47]曾凡文,张绪虎,胡欣华,关盛勇,苏肇健,巫世杰.SiCp/2024Al复合材料的挤压研究[J].稀有金属,1999,23 (3):177-180
    [48]周天国,温景林,陈彦博.挤压比对6201铝合金半固态连续挤压成形组织和性能的影响[J].中国有色金属学报,2004,14(10):1683-1688
    [49]甘为民.挤压态SiCw/AZ91镁基复合材料高温压缩变形行为研究.哈尔滨工业大学硕士学位论文,2004,6
    [50]陈礼清,董群,郭金花,毕敬,徐永波.TiC/AZ91D镁基复合材料高温压缩变形行为[J].金属学报,2005,41(3):326-331
    [51]程羽,郭生武,郭成.变形条件对SiCp/2014Al复合材料力学行为和晶粒度的影响[J].锻压技术,2000,9(4):368-370
    [52]李红章,张辉,陈振华.7075Al/SiCp复合材料热压缩变形的研究[J].长沙航空职业技术学院学报, 2005,5(3):39-42
    [53]李洪武.亚微米颗粒增强铝基复合材料的制备、组织与性能的关系[D].中南大学硕士学位论文,2005,5
    [54]李淑波.SiCw/AZ91复合材料高温压缩变形行为的研究[D].哈尔滨工业大学硕士学位论文,2001,7
    [55]韩冰.7075z铝合金高温塑性变形行为研究[D].广东工业大学工学硕士学位论文,2003,5
    [56]谢建新,刘静安.金属挤压理论与技术[M].冶金工业出版社,2001:16-76
    [57]李红英,欧玲,张建飞,陈军,郑子樵.一种新型Al-Cu-Li系合金的热压缩流变应力[J].北京科技大学学报,2006,28(8):750-754
    [58]韩冰,刘文娟,袁鸽成.7055铝合金高温压缩变形的流变应力[J].广东工业大学学报,2004,2(21):16-21
    [59] Poirier J P.晶体的高温塑性变形[M],关德林译.大连:大连理工出版社,1989
    [60] Sheppard T, Parson N C, Zaidi M A. Dynamic recrystallization in Al-Mg[J].Met Sci,1983,17(10): 481
    [61] T.G.Nieh,J.Wadsworth,T.Imai. A Rheological view of high-Strain-Rate Superplasticity in Alloys and Metal-Matrix Composites[J].Scripta Metallurgicaet Materialia,1992,26:703-708
    [62]陈家瑞.汽车构造[M],上册.第三版.北京人民交通出版社,1997:1-27
    [63]蒋德明.内燃机原理[M],第一版.北京:中国农业机械出版社,1988:18-39
    [64]王忠瑜.活塞的传热和热强度研究[D].重庆大学硕士学位论文,2002,5
    [65] Peng Yu, Zhi Mei, S.C.Tjong. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles[J]. Materials Chemistry and Physics, 2005, (9):109-116
    [66] Ping Shen, Hidetoshi Fujii, Kiyoshi Nogi.Wettability of polycrystalline rutile TiO2 by molten Al in different atmospheres[J]. Acta Materialia, 2005,1-11
    [67]李奎,汤爱涛等.金属基复合材料原位反应合成技术现状与展望[J].重庆大学学报, 2002(9):155-160
    [68] C.H.Cho, D. K. Kim.Microstructure evolution and isothermal compaction in TiO2-Al-C reaction[J]. Materials Synthesis and Processing, 2002,10(3):127-134
    [69]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社, 2003,589-59
    [70]程羽,郭生武,郭成,陈金德.热挤压对颗粒增强金属基复合材料组织和性能的影响[J].兵器材料科学与工程,2000,23(2):31-34
    [71]程虎.3104铝合金热变形行为研究[D].重庆大学硕士学位论文,2006.5
    [72]宋玉泉,程永春,刘术梅.超塑拉伸变形应变速率敏感性指数的力学解析[J].机械工程学报,2001,37(3):5-10
    [73]许晓静,张荻,施忠良,赵昌正,吴人洁.挤压铸造铝基复合材料的高应变速率超塑性[J].1999, 9(2)
    [74]冯艾寒.Si3N4w/4032Al复合材料高温压缩变形行为的研究.哈尔滨工业大学博士学位论文,2006.6
    [75]潘金生,仝健民,田民波.材料科学基础,第一版.清华大学出版社,1998:512-547
    [76]毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金土业出版社,1994
    [77]张新明,陈健美,邓运来.Mg-Gd-Y-Zr耐热镁合金的压缩变形行为[J].中国有色金属学报,2005,15(12):1925-1932
    [78]王春艳,吴昆,郑明毅,ZK60和Al18B4O33w /ZK60高温压缩流变应力行为的研究[J].材料科学与工艺,2007,15(2):202-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700