米根霉发酵产L-乳酸的中和剂研究及代谢通量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在米根霉发酵产L-乳酸过程中,一般采用CaCO3作为酸中和剂,不仅L-乳酸损失大,且环境污染严重。为降低L-乳酸生产成本,寻求替代CaCO3的新型中和剂,本文通过摇瓶发酵优化得出以CaCO3、NaOH溶液和氨水作为中和剂的最适培养基组成,通过罐发酵实验确定了CaCO3、NaOH溶液和氨水的最适中和剂浓度,并在最适浓度基础上考察了米根霉的菌体形态和发酵动力学,实现了NaOH溶液和氨水作为中和剂的半连续发酵,同时对其进行代谢通量分析。主要研究结论如下:
     1.通过单因素和正交试验,优化得出采用CaCO3、NaOH溶液和氨水作为中和剂时的培养基组成:(1)以CaCO3作为中和剂的最优培养基组成:葡萄糖120g/L, (NH4)2SO4 4.0g/L, KH2PO4 0.15g/L, NaH2PO4 0.20g/L, ZnSO4·7H2O 0.22g/L, MgSO4·7H2O 0.35g/L。(2)以NaOH溶液作为中和剂的最优培养基组成:葡萄糖120g/L, (NH4)2SO4 4.0g/L, MgSO4·7H2O 0.35g/L, ZnSO4·7H2O 0.22g/L, NaH2PO4 0.10g/L, KH2PO4 0.15g/L。(3)以氨水作为中和剂的最优培养基组成:葡萄糖120g/L, (NH4)2SO41.0g/L, MgSO4·7H2O 0.35g/L, ZnSO4·7H2O 0.22g/L, NaH2PO4 0.15g/L, KH2PO4 0.15g/L。
     2. NaOH溶液和氨水作为中和剂时,添加Ca2+后L-乳酸产量平均提高7.3倍;通过罐发酵得出米根霉发酵产L-乳酸的最适pH值为5.5±0.2, NaOH溶液、氨水溶液作为中和剂的最佳浓度分别为10mol/L、25%,通过摇瓶发酵试验得出CaCO3最佳浓度为60g/L;在最适NaOH溶液、氨水、CaCO3浓度基础上进行罐发酵得菌丝体小球直径分别为0.2-1.2mm、1.2-2.2mm、0.8-1.8mm,残糖分别为2.58g/L、1.37g/L、22.78 g/L, L-乳酸产量分别为74.34g/L、80.61g/L、75.80g/L,发酵强度分别为1.03g/(L-h)、1.12g/(L·h)、1.40g/(L·h);而使用NaOH溶液和CaCO3复合中和剂、氨水和CaCO3复合中和剂时发酵强度皆为1.18 g/(L·h),高于NaOH溶液、氨水的发酵强度,低于CaCO3的发酵强度。
     3.在米根霉半连续发酵过程中,使用NaOH溶液作为中和剂时,L-乳酸平均发酵强度为1.53g/(L·h),以氨水作为中和剂时,L-乳酸平均发酵强度为1.65g/(L·h),高于分批发酵的产酸强度。
     4.简单构建了米根霉As3.819胞内代谢网络模型。应用代谢通量分析法,分别以10mol/LNaOH溶液、25%氨水、60g/LCaCO3作为中和剂时不同发酵阶段胞内代谢通量分布的变化。以NaOH溶液为中和剂,第12h、36h、60h产物L-乳酸的流量速率分别为0.93mmol/g/h、2.05mmol/g/h和5.83mmol/g/h;以氨水为中和剂时,第12h、36h、60h产物L-乳酸的流量速率分别为1.48mmol/g/h、2.02 mmol/g/h、5.94mmol/g/h;以CaCO3作为中和剂,第12、30h、48h产物L-乳酸的流量速率分别是10.54mmol/g/h、4.72mmol/g/h、7.30mmol/g/h。
CaCO3 was commonly used as an acid neutralizer in the process of producing L-lactic acid by Rhizopus oryzae. CaSO4 residue from the recovery procedure not only caused the loss of L-lactic acid during filtration but also brought enormous environmental pressures. Therefore, in order to reduce production cost, to seek a new neutralizer instead of CaCO3, CaCO3、NaOH solution and ammonia were researched respectively. The optimal medium composition of the three different neutralizers were optimized through fermenting by shake flasks; the optimal neutralizer concentration of CaCO3、NaOH solution and ammonia were derived by tank fermentation, morphology of Rhizopus oryzae and fermentation kinetics were studied based on the optimal neutralizer concentration; Achieved the semi-continuous fermentation with NaOH solution and ammonia as the neutralizer, and made research based on metabolic flux analysis. The main findings were as follows:
     1. The culture medium ingredient with CaCO3、NaOH solution and ammonia as the neutralizer were optimized by the combination.of single factor experiments and orthogonal experiments. (1) The optimal medium composition with CaCO3 as the neutralizer:glucose 120g/L, (NH4)2SO4 4.0g/L, KH2PO4 0.15g/L, NaH2PO4 0.15g/L, ZnSO4·7H2O 0.22g/L, MgSO4·7H2O 0.35g/L, CaCO3 60g/L. (2) The optimal medium composition with NaOH solution as the neutralizer:glucose 120g/L, (NH4)2SO4 4.0g/L, MgSO4·7H2O 0.35g/L, ZnSO4·7H2O 0.22g/L, NaH2PO4 0.10g/L, KH2PO4 0.15g/L. (3)The optimal medium composition with ammonia as the neutralizer:glucose 120g/L, (NH4)2SO4 1.0g/L, MgSO4·7H2O 0.35g/L, ZnSO4·7H2O 0.22g/L, NaH2PO4 0.15g/L, KH2PO4 0.15g/L.
     2. Effects of Ca2+ on L-lactic acid production were studied with NaOH solution and ammonia as the neutralizer. The results showed that after adding Ca2+, the average production of L-lactic acid was 7.3 times more than the control one; The optimum pH value of L-lactic acid production by Rhizopus oryzae was 5.5±0.2, the optimal concentration of NaOH solution ammonia as the neutralizer were 10mol/L、25% based on tank fermentation respectively, the optimum CaCO3 adding amount was 60g/L based on shake flask fermentaton; fermentation on the optimum NaOH、ammonia、CaCO3 concentration, the physical form of Rhizopus oryzae were uniform pellet with diameter of 0.2-1.2mm、1.2-2.2 mm、0.8-1.8mm, residual sugar were 2.58g/L、1.37g/L、22.78g/L, L-lactic acid yields were 74.34g/L、0.61g/L 75.80g/L, fermentation intensity were 1.03g/(L·h)、1.12g/(L·h)、1.40g/(L·h); both of the fermentation intensity of NaOH'solution and CaCO3 composite neutralizer、ammonia and CaCO3 composite neutralizer were 1.18g/(L·h), higher than the fermentation intensity of NaOH solution ammonia but lower than fermentation intensity CaCO3.
     3. The semi-continuous fermentation using NaOH solution、ammonia as the neutralizer were studied. The results were as following:when using NaOH solution as the neutralizer, the average L-lactic fermentation intensity was 1.53g/(L·h), when the ammonia as the neutralizer, the average L-lactic fermentation was 1.65g/(L·h), higher than fermentation intensity of batch fermentation.
     4. The intracellular metabolic network model of Rhizopus oryzae As3.819 was built through literature review and biochemical information of Rhizopus oryzae and experimental determination. Application of metabolic flux analysis, the changes of distribution in intracellular metabolic flux were researched with 10mol/LNaOH solution,25% ammonia,60g/L CaCO3 as the neutralizer. The results showed that: the flow rate of L-lactic acid at 12h、36h、60h with NaOH solution as the neutralizer were 0.93mmol/g/h、2.05mmol/g/h and 5.83mmol/g/h respectively; the flow rate of L-lactic acid at 12h、36h、60h with ammonia as the neutralizer were 1.48mmol/g/h、2.02mmol/g/h、5.94mmol/g/h respectively; the flow rate of L-lactic acid at 12h、30h、54h with CaCO3 as the neutralizer were 10.54mmol/g/h、4.72mmol/g/h、7.30mmol/g/h respectively.
引文
[1]金其荣,张继民,徐勤.有机酸发酵工艺学[M].北京:中国轻工业出版社,1997
    [2]杨萍.L-乳酸的生产及其应用研究[J].科技信息,2008,2:56-63
    [3]凌关庭.食品添加剂手册[M].北京:化学工业出版社,第三版,2003
    [4]王博彦,金其荣.发酵有机酸生产与应用手册[M].北京:中国轻工业出版社,2007
    [5]洪安安,刘灿明,刘德华.L-乳酸的微生物发酵[J].化学工程与装备,2008,2: 56-63
    [6]Yu R C, Hang Y D. Kinetics of direct fermentation of agricultural commodities to L-(+)-lactic acid by Rhizopus oryzae[J]. Biotechnology Letters,1989,11(8):597-600
    [7]钱志良,胡军,雷肇祖.乳酸的工业化生产、应用和市场[J].工业微生物,2001,31(2):49-53
    [8]曹本昌,徐建林.L-乳酸研究综述[J].食品与发酵工业,1993,18(3):56-61
    [9]赵鑫,赵良启,谢红.发酵生产L-乳酸的现状与展望[J].山西化工,2005,25(1): 15-19
    [10]赵宏宇,赵靖,郑春丽.米根霉乳酸发酵的研究进展[J].天津化工,2007,21(1): 7-9
    [11]王宏伟,郭绍华,冯靓.L-乳酸发酵的研究进展[J].辽宁农业科学,2004(4):28-30
    [12]徐忠,汪群慧,姜兆华.L-乳酸的制备及其应用的研究进展[J].化学与粘合,2004(4):214-217
    [13]穆杂文.国内外乳酸及其衍生品的应用和市场情景[J].化工技术经济,2001(3):107-114
    [14]Data R. Technological and economical potential of polylactic acid and lactic acid derivatives[J]. FEMS Microbiology Reviews,1995(16):221-231
    [15]Niju N, Roychoudhury P K, Srivastave A. L-(+)lactic acid fermentation and its product polymerization[J]. Electronic Journal of Biotechnology,2004(8): 167-179
    [16]钱志良,胡军,雷肇祖.乳酸的工业化生产、应用和市场[J].工业微生物,2001,31(2):49-53
    [17]王立梅,齐斌.L-乳酸应用及生产技术研究进展[J].食品科学,2007,28(10):608-612
    [18]胡艳红.米根霉发酵产L-乳酸耐高温菌株的选育及发酵条件优化[D].合 肥工业大学,合肥:2007
    [19]梁诚.乳酸生产、应用及市场前景[J].广西化工,2001,29(6):37-39
    [20]Mokhtar M, El-Baseir Ian W, Kellaway. Poly (L-lactic acid) microspheres for pulmonary drug delivery:release kinetics and aerosolization studies[J]. International Journal of Pharmaceutics,1998,175:135-145
    [21]杨惠娣.生物降解性塑料开发的现状与发展趋势[J].中国塑料,1996,10(4): 1-9
    [22]白冬梅.L-乳酸高产菌株的诱变选育及其代谢通量分析[D].天津大学,天津:2001
    [23]Rathin Datta etal. The technology and economy potential of poly (lactic acid) and its ramification[J], FEMS Microbiology Reviews,1995, (16):221-231
    [24]Peimin Yin, Naoki Nishina, Yuuko Kosakai etal. Enhanced production of L-(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift Bioreactor[J], J.Ferment.Bioeng,1997,84:249-253.
    [25]David P. Mobley, Plastics from Microbes, Hanser/Gardner Publications, Inc, Cincinnatic Munich Vienna New York,1994,93-137
    [26]曹本昌,徐建林.L-乳酸研究综述[J].食品与发酵工业,1993,18(3):56-61
    [27]杨虹,林宇野,史美榕.产L-乳酸的丝状真菌的研究[J].微生物学通报,1994,21(6):339-342
    [28]虞东胜,周晓燕,王健.米根霉发酵生产L-乳酸[J].工业微生物,2000,
    [29]白冬梅,赵学明,胡宗定.从地表土中筛选根霉乳酸菌的研究[J].化学工业与工程,2001,18(6):407-410
    [30]Bai D M, Zhao X M. Strain Improvement of Rhizopus oryzae for Over-production of L(+)-lactic acid and Metabolic Flux Analysia of Mutants[J]. Biochemical Engineering,2003:1-8
    [31]Obayshi A, Yorifugi H, Yamagata T. Respiration in Organic Acid Forming Molds. Part I Purification of Cytochrome c, coenzyme Q9 and L-lactic Dehydrogenase from Lactace Forming Rhizopus Oryzae[J]. Agric Biol Chem,1966,30:717-724
    [32]Prichard G G. An NAD+-Independent L-Lactate Dehydrogenase From Rhizopus Oryzae[J]. Biochimica Et Biophysica Acta,1971,250:25-34
    [33]Prichard G G. Factors Affecting the Activity and Synthesis of NAD+-dependent L-Lactate Dehydrogenase in Rhizopus Oryzae[J]. J of General Microbiology,1973,78:125-137
    [34]Skory C D. Isolation and Expression of Lactate Dehydrogenase Genes from Rhizopus Oryzae[J]. Applied and Enbironmental Microbiology,2000,6: 2343-2348
    [35]Hakki E E, Akkaya M S. RT-PCR amplification of Rhizopus Oryzae Lactate Dehydrogenase gene fragment[J]. Enzyme and Microbial Technology,2001, 28:259-264
    [36]Skory C D. Lactic Acid Production by Saccharomyces cerevisiae Expressing a Rhizopus oryzae Lactate Dehydrogenase gene[J]. J Ind Microbiol Biotechnol,2003,30:22-27
    [37]Skory C D. Lactic Acid Production by Rhizopus oryzae Transformants with Modified Lactate Dehydrogenase Activity [J]. Appl Microbiol Biotechnol, 2003
    [38]王蓉,王远亮,陈国平.米根霉发酵生产L(+)-乳酸研究进展[J].重庆大学学报(自然科学版),2004,27(12):95-97
    [39]曾炜,陈丰秋,詹晓力.乳酸的生产技术及其研究进展[J].化工进展,2006,25(7):744-749
    [40]乔长昴,汤凤霞,贾士儒.L-乳酸高产突变株米根霉NAF-032[J].无锡轻工大学学报,2001,20(5):459-465
    [41]P Bai D M, Jia M Z, Zhao X M. L(+)-lactic Acid Production by Pellet-form Rhizopus oryzae R1021 in a Stirred Tank Fenmentor[J]. Chemical Engineering Science,2003,58:785-791
    [42]Bai D M, Zhao X M, Li X G. Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants[J]. Biochemical Engineering Journal,2004,18:41-48
    [43]闫征,王昌禄,顾晓波.pH值对乳酸菌生长和乳酸产量的影响[J].食品与发酵工业,2002,29(6):35-37
    [44]徐国谦,储炬,王永红.不同的中和剂对L(+)-乳酸发酵的影响[J].工业微生物,2007,4(37):1-5
    [45]史高峰,王国英.L-(+)-乳酸发酵与分离技术研究进展[J].食品科学,2007,28(12):547-550
    [46]陆玲,袁生.真菌顶端生长菌丝内CaM的免疫组化定位[C]//中国菌物学会论文摘要,1993:176
    [47]裘维蕃.菌物学大全[M],北京:科学出版社,1998
    [48]匡群,孙梅,施大林.耐氨米根霉发酵生产L-乳酸的研究[J].生物技术,2005,4(15):65-67
    [49]孙梅,匡群,施大林.耐氨米根霉的分批补料发酵及发酵动力学初探[J].食品与发酵工业,2005,12(31):30-34
    [50]白冬梅,赵学明,胡宗定.玉米生粉发酵生产L-乳酸的研究[J].化学工程, 2002,30 (3):50-54
    [51]Tiejun Liu, Shigenobu Miura, Tomohiro Arimura. Evaluation of L-Lactic Acid Production in Batch,Fed-batch,and Continuous Cultures of Rhizopus sp.MK-96-1196 Using an Airlift Bioreactor[J]. Biotechnology and Bioprocess Engineering,2005,10:522-527
    [52]Tiejun Liu, Shigenobu Miura, Masaaki Yaguchi. Scale-Up of L-Lactic Acid Production by Mutant Strain Rhizopus sp.MK-96-1196 from 0.03m3 to 5 m3 in Airlift Bioreactors[J]. Journal of bioscience and bioengineering,2006, 1(101):9-12
    [53]张蓓.代谢工程[M].天津:天津大学出版社,2003
    [54]Bailey J E. Toward a science of metabolic engineering[J]. Science,1991, 252:1668-1681
    [55]赵学明,马红武,班睿.代谢工程的发展现状和未来[J].化学功臣,1997,5(25):57-59
    [56]孔庆学,李玲.代谢工程中的MFA&MCA及其具体应用[J].天津农学院学报,2003,10(3):52-55
    [57]金明杰,黄和,张昆.应用代谢通量法分析花生四烯酸的合成过程[J].高校化学工程学报,2007,2(71):316-321
    [58]卫功元,李寅,堵国成.产阮假丝酵母分批发酵生产谷胱甘肽的代谢通量分析[J].化工学报,2006,6(57):1141-1147
    [59]金明杰,黄和,刘欣.花生四烯酸发酵动态代谢通量分析模型[J].化学与生物工程,2007,6(24):41-44
    [60]金明杰,黄和,张昆.应用代谢通量法分析花生四烯酸的合成过程[J].高校化学工程学报,2007,2(71):316-321
    [61]张青瑞,修志龙,曾安平.克雷伯氏杆菌发酵生产1,3-丙二醇的代谢通量优化分析[J].化工学报,2006,6(57):1103-1110
    [62]刘朝辉,齐崴,何志敏.地衣芽孢杆菌发酵生产p-甘露聚糖酶的代谢通量分析[J].过程工程学报,2007,7(6):1163-1167
    [63]赵学明,马红武,唐寅杰.应用代谢通量法分析黄原胶发酵实验数据[J].高校化学工程学报,1997,4(11):394-399
    [64]仝志明,曹竹安.杂交瘤细胞代谢流分析模型及在批式培养中的应用[J].无锡轻工大学学报,2001,20(1):11-15
    [65]Jorgensen.H, Nielsen.J, Villadwen.J. Metabolic flux distributions in penicillium chrysogenum during Fed-Batch Cultivation[J]. Biotechnol bioeng,1995,462:119-131
    [66]Wright B E. Angelika Longacre and Jacqueline Reimers, Models of Metabolism in Rhizopus oryzae[J]. J theor.Biol,1996,182:453-457
    [67]Longacre A. Jacqueline Reimers and James E. Gannon etc, Flux analysis of glucose metabolism in Rhizopus oryzae for the purpose of increasing lactate yields[J]. J theor.Biol,1997,21:30-39
    [68]熊宗贵.发酵工艺原理[M].北京:中国医药科技出版社,1995
    [69]俞俊棠,唐孝宣.生物工艺学(上册)[M].上海:华东理工大学出版社,1999
    [70]曹友声.现代工业微生物学[M].长沙:湖南科学技术出版,1998
    [71]郑志,姜绍通,潘丽军.反相高效液相色谱法测定发酵液中乳酸的含量[J].食品科学[J],2003,12:89-91
    [72]陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002
    [73]郑志,姜绍通,罗水忠.米根霉乙醇脱氢酶(ADH)突变菌株的诱变选育[J].微生物学通报,2007,34(1):24-27
    [74]Henrik pedersen, Morten carlsen, Jens Nielsen. Identification of Enzymes and Quantification of Metabolic Fluxes in the Wild Type and in a Recombinant Aspergillus oryzae Strain[J]. Applied and Environmental Microbiology,1999,65(1):11-19
    [75]Mariet J, Guettler MV, Mahendra KJ. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp 130Z[J]. Arch Microbiol,1997,167: 332-342
    [76]McKinlay JB, Shachar HY, Zeikus JG. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of C-13-labeled metabolic product isotopomers[J]. Metab Eng,2007,9(2): 177-192
    [77]潘丽军,李兴江,姜绍通.基于代谢通量分析的琥珀酸放线杆菌高产选育研究[J].生物工程学报,24(9):1595-1603

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700