新疆西昆仑切列克其铁矿矿床地质特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
切列克其铁矿地理位置上位于新疆克孜勒苏柯尔克孜自治州阿克陶县布伦口乡,铁品位为27.15~64.55%,平均品位42.48%,铁资源储量近5千万吨,为一大型铁矿床。本论文在对西昆仑构造演化研究的基础上,分析了切列克其铁矿形成的构造背景,认为切列克其铁矿形成于西昆仑南带大陆边缘环境。通过对切列克其铁矿的野外地质编录、室内岩矿综合鉴定、金属元素测试,研究了矿床的地质特征、矿石结构构造特征和化学成分特征。关于切列克其的铁矿的成因存在中低温热液成因、沉积变质成因和热水喷流成因的争议,本文重点对矿床的成因进行了详细研究,在矿床地质特征研究的基础上,利用微量元素、稀土元素和流体包裹体等手段,结合矿床地质特征和矿区地质背景,认为切列克其铁矿主要为热水喷流成因,形成时代为志留纪,后期受到岩浆热液的改造作用,形成细脉状粗粒菱铁矿石。
West Kunlun orogenic belt is bounded on north by a thrust fault adjacent with Tarim basin, on the south by Kongka fault adjacent with Kalakunlun-Qiangtang block, on the west by Taxkorgan faulted basin adjacent with Pamirs and on the east by Alton strike-slip fault. The orogenic belt is generally S-shaped, about 1000km long and 300km wide. Some researchers had devided West Kunlun belt into different units according to large-scale faults and sutures(Jiang Chunfa, 1992, Pan Yusheng, etc., 2000, Sun Haitian, 2003, Li Xingzhen, etc., 2002, XIAO Wenjiao, etc., 2000, Jin Xiaochi,etc,1999, Ding Daogui, 1996). In this paper, we proposed a new division that West Kunlun orogenic belt should be divided into North, Middle and South belt by Aoyitage-Kudi-Qimanyute and Mazha-Kangxiwa-Subashi suture zones respectively.
     Strata in this area develop quite complete from Proterozoic to Quaternary. Precambrian strata, the basement of West kunlun, are exposed in Middle belt, as well as other areas like Tiekelike, Taxkorgan and Qogir Mountain. Early Palaeozoic strata are widely distributed in Kudi-Aoyitage area of North belt and Mazha-Ayilixi-Bulunkou area of South belt, defined by different components containing a set of pillow basalt siliceous rocks in North belt representing a geodynamic setting of the early Paleozoic oceanic basin and Silurian clastic carbonate formation with SEDEX siderite deposits in it. Late Paleozoic strata are marked by sedimentary sequence containing basic, medium-felsic volcanic rocks, volcano-clastic rocks, clastic rocks and carbonate, exposed in Akesayi-Gaizi-Kuerliang area of North belt. Mesozoic and Cenozoic especially Triassic strata are dominated by continental margin flysch formation, widely spread in Quanshuigou, Dahongliutan-Heweitan area in southeastern of South belt.
     West Kunlun orogenic belt has undergone several tectonic-magmatic evolution cycles since Palaeoproterozoic. Granite intrusions of Caledonian, Variscan, Indosinian and Yanshanian are generally parallel to suture zones, NW-SE trending. Caledonian granites on both sides of Aoyitage-Kudi-Qimanyute suture and Variscan intrusions in Middle belt are formed by subduction of North Ocean; Indosinian granites, parallel to Kangxiwa suture zone, are associated with the evolution of South Ocean, Yanshanian granites exposed at southern margin of South belt are closely related to the closure of Tethyan Ocean. These granites’ages are progressively changing younger from north to south with the development of the orogenic evolution.
     Qieliekeqi iron deposit is located in the South belt of West Kunlun, formed in an extensional tectonic setting in Silurian. The strata exposed in the mining area are mainly Proterozoic Bulukuole Group and Silurian Wenquangou formation. Huoshibieli fault passes through the northern mining area. Permian magmatic rocks constitute eastern part of Qiukutai rock mass. Three ore bodies occur as layer, layer-like and lentoid shape, in Wenquangou formation. Among them, ore body I with five Siderite layers are hosted in marble, whileore bodyⅡin schist and ore bodyⅢin schist granulite. Ore minerals are dominated by siderite, with minor amount of pyrite and chalcopyrite, gangue minerals are calcite, ankerite, quartz, muscovite and sericite. Ore textures are mainly euhedral coarse-grained texture, hypidiomorphic fine-grained texture and ore structures are block structure, banded structure, laminated structure, brecciate structure, fine vein structure, druse-like structure and disseminated structure.
     Researches on geochemistry and fluid inclusions are carried out accompanied with deposit geological characteristics and ore characteristics, in order to discuss the genetic type of Qieliekeqi deposit. Major element, trace element and REE date are obtained from four siderite samples and three carbonate samples. It suggests that all samples have characteristics of minor amount of Ti, Al, Al/(Al+Fe+Mn) ratio smaller than 0.35 and Fe/Ti ratio graeater than 20, indicating siderite and carbonate are formed by chemical sedimentation. Spider diagram of trace element normalized to normal carbonate of the world shows the enrichment of B、Fe、Co、Cu、As、Tb、Ba elements that associated with hydrothermal exhalative sedimentation. (Cu+Ni+Co)×10-Fe-Mn and Cr-Zr diagrams suggest a hydrothermal sedimentation genesis of siderite and carbonate.
     NASS normalized REE pattern of carbonate samples shows slightly positive Eu anomaly and enrichment of LREE, which is different from typical carbonate REE pattern, implying the participation of the hydrothermal. REE pattern of siderite is characterized by distinct Eu positive anomaly and HREE depletion, which is same to world’s typical SEDEX siderite deposits, suggesting exhalative hydrothermal genesis.
     Homogenization temperature of fluid inclusions in siliceous bands ranges from 140℃to 160℃, the salinity is a little higher than seawater, the pressure is about 12MPa and the depth of seawater is 1.2km.Three types of fluid inclusions are recognized in quartz vein formed in post mineralization stage, which is liquid-rich type, vapor-rich type and halite-bearing multiphase type, representing the involvement of magmatic and meteoric water which transformed siderites from the earlier mineralization stages to vein ores.
     The genetic model of Qieliekeqi iron deposit is as follows: in Silurian, deep-cycling of seawater extracted iron from marine sediments, mixed with CO2-bearing fluid degassing from magma chamber, emitted out of seafloor, mixed with alkaline seawater above and lead to the precipitation of siderite and carbonates. In Devonian, siderite layers were transformed by high-T, high-salinity magmatic fluid during orogenic movement and cross-strata vein ores precipitated later by mixing of magmatic fluid and meteoric fluid.
引文
[1]F.Castorina ,U.Masi.2008. REE and Nd-isotope evidence for the origin of siderite from the Jebel Awam deposit(Central Morocco). Ore Geology Reviews.
    [2]Dilek Alka,Umit Atalay.2008.Kinetics of thermal decomposition of Hekimhan-Deveci siderite ore samples. International Journal of Mineral Processing K.Zak,M.Radvanec.2002.Siderite mineralization of the Gemericum Superunit.review and a revised genetic model. Ore Geology Reviews.
    [3]F.Castorina ,U.Masi.2000.Sr-isotopic composition of siderite for assessing the origin of mineralizing fluids:the case study from the Jebel Awam deposit(Central Morocco). Ore Geology Reviews
    [4]Adel.A,Dabous.2002.Uranium isotopic evidence for the origin of the bahariya iron deposits,Egypt Ore Geology Reviews
    [5]M.Bau,P.Moller.Rare.Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite Magnesite and Siderite.mineralogy and petrology, 1992,45:231-246
    [6]Martin Radvanec.Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and a revised genetic model.ore geology reviews, 2004,24:267-297
    [7]XIAO Wenjiao.Tectonic facies and the archipelago-accretion process of the West Kunlun, China.sience in China(D),2000(S1)
    [8]Adachi M,Yamamoto K,Suigiaki R.Hydrothermal chert and associated siliceous rocks from the northern Pacific:Their geological significance as indication of ocean ridge activity.Sedimentary[J].Geology,1986,47(1/2):125-148.
    [9]Turekian K K,Wedepohl K H.Distribution of the elements in some major units of the Earths crust[J]·Bulletin of the Geological Society of America,1961,72:175-192
    [10]Michard,Albarde F,Michard G,etal.Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field(13°N) [J]·Nature,1983,303:795-797.
    [11]Mills R,Elderfield H.Rare earth element geochemistry of hydrothermal deposits from the active TAG Mount 26°N mid-Atlantic Ridge [J]·Geochim Cosmochim Acta,1995,59(17):3 511-3 524.
    [12]Lottermoser B G.Rare Earth Element Study of Exhalites within the Willyama Supergroup,Broken Hill Block,Australian[J]·Mineral Deposita,1989,24:92-99.
    [13]中科院青藏高原综合科学考察队.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社,2000.
    [14]丁道桂,王道轩,刘伟新.西昆仑造山代与盆地.北京:地质出版社,1996.
    [15]贾群子.西昆仑块状硫化物矿床成矿条件和成矿预测[M].北京:地质出版社,1999.
    [16]姜春发,王宗起,李锦铁,等.中央造山带开合构造[M].北京:地质出版社,2000.
    [17]姜春发,杨经绥,冯秉贵,等.昆仑开合构造.北京:地质出版社,1992.
    [18]刘斌,朱思林,沈昆.流体包裹体热力学计算软件及算例[M].北京,地质出版社, 2000,1~252.
    [19]侯增谦,等.现代与古代海底热水成矿作用.地质出版社,2002
    [20]孙海田,李纯杰,吴海,等.西昆仑金属成矿省概论.北京,科学出版社,2003,150~153.
    [21]姚凤良,孙丰月.矿床学教程.北京,地质出版社,2006,64~133.
    [22]卢焕章,范宏瑞.流体包裹体.北京,科学出版社,2004
    [23]邵洁连.金矿找矿矿物学[M].北京:中国地质大学出版社,1990.
    [24]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.
    [25]薛春纪,祁思敬,马国良等.秦岭泥盆纪海底热液沉积岩的岩石学和地球化学(《秦岭热水沉积型铅锌(铜)矿床.北京:地质出版社,1993.
    [26]王中刚,于学元,赵振华等.稀土元素地球化学.北京:科学出版社,1989
    [27]韩发,赵汝松,沈建忠.大厂锡多金属矿床地质及成因[M].北京:地质出版社,1997.
    [28]WOLFKH.层控矿床与层状矿床[M].北京:地质出版社1986.
    [29]卢焕章,李丙伦,沈昆.包裹体地球化学[M] .北京:地质出版社,1990.
    [30]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志.地质出版社:北京,1993.
    [31]涂光炽,陈先沛.与热水沉积作用有关的矿床地球化学[M].涂光炽主编:中国层控矿床地球化学,第三卷.北京:科学出版社,1987:131-168.
    [32]刘斌,沈昆.流体包裹体热力学.地质出版社.1999
    [33]中国地质科学院情报所编.1986.菱铁矿矿床-地质科技资料选编(四十二).地质出版社
    [34]菱铁矿矿床学术会议论文集编辑组. 1983.菱铁矿矿床学术会议论文集.北京:科学出版社
    [35]桑隆康,路风香.2000.岩石学.北京:地质出版社
    [36]河南地调院.25万区域地质调查报告库尔干幅、艾提开尔丁萨依幅、英吉沙县幅.2005
    [37]河南地调院.25万区域地质调查报告克克吐鲁克幅、塔什库尔干塔吉克自治县幅.2004
    [38]河南地调院.25万区域地质调查报告叶城县幅.2004
    [39]山西地调院.25万区域地质调查报告叶亦克幅.2003
    [40]陕西地调院.25万区域地质调查报告康西瓦幅.2006
    [41]陕西地调院.25万区域地质调查报告麻扎幅、神仙湾幅.2004
    [42]陕西地调院.25万区域地质调查报告恰哈幅.2006
    [43]陕西地调院.25万区域地质调查报告塔吐鲁沟幅(东北角)、斯卡杜幅(东北角).2006
    [44]吉林大学地质调查研究院.新疆西昆仑地区成矿条件研究设计书.2007,内部资料
    [45]吉林大学地质调查研究院.新疆西昆仑地区成矿条件2008年工作方案.2008,内部资料
    [46]袁波.新疆西昆仑卡兰古、塔木铅锌矿地质特征和矿化富集规律研究.吉林大学地球科学学院.2007
    [47]冯永玖.新疆西昆仑特格里曼舒铜矿矿床地质特征及矿化富集规律研究.吉林大学地球科学学院.2008
    [48]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,25(3):224~233.
    [49]李峰,李雷,1996.滇西含铜(多金属)岭铁矿矿床成矿规律.昆明理工大学学报,21(1)
    [50]孙丰月,金巍,李碧乐.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,2000,30(增刊):27-30.
    [51]薛春纪.南秦岭主要热水沉积岩的REE地球化学特征.西安地质学院院报,1996,18(3):21-28
    [52]李昌贵等.云南勐腊新山上三叠统的海绵斑礁及沉积型菱铁矿.地质论评,1989(5)
    [53]赵大贤.勐腊新山含铜菱铁矿矿床特征及成因讨论.云南地质, 1985(2)
    [54]崔银亮,杨灿.云南勐腊新山菱铁-多金属矿床热水沉积成因.有色金属矿产与勘查.1996,6(5):274-278
    [55]张志斌,李忠权.中天山下石炭统马鞍桥组重结晶灰岩热水沉积成因的地球化学初步分析.矿物岩石,2007,27(2):70-77
    [56]邵龙义.湘中下石炭统碳酸盐岩地球化学特征及其环境意义.地球化学,1991(4):390-398肖荣阁,张汉城,陈卉泉,张宗恒.热水沉积岩及矿物岩石标志.地学前缘,2001,8(4) :379-385
    [57]毕华,王中刚,王元龙,等.西昆仑造山带构造-岩浆演化史[M].中国科学(D辑),1999,5(29):398~405.
    [58]肖文交.西昆仑大地构造相解剖及多岛增生过程.中国科学(D),2000(S1)
    [59]李兴振,等.青藏高原及邻区大地构造单元划分.地质通报,2002(11)
    [60]潘裕生.青藏高原第五缝合带的发现与论证.地球物理学报,1994(02):184-192
    [61]刘石华.西昆仑北带蛇绿岩的地球化学特征及大地构造意义.世界地质,2002,21(4):332-339
    [62]王东安,陈瑞君.新疆库地西北一些克沟深海蛇绿质沉积岩岩石学特征及沉积环境[J].自然资源学报,1989,4(3):212-221
    [63]邓万明.喀喇昆仑-西昆仑地区蛇绿岩的地质特征及基大地构造意义[J].岩石学报,1995,(11):98-111.
    [64]王志洪.西昆仑库地蛇绿岩地质地球化学及其成因研究[J].地质科学,2000,35(2):151-160.
    [65]王元龙.西昆仑库地蛇绿岩的地质特征及其形成环境[J].长春地质学院学报,1997,27(3): 304-309.
    [66]汪玉珍.西昆仑依沙克群的时代及其构造意义.新疆地质,1983,1(1):1-8
    [67]杨树锋,陈汉林,等.西昆仑山库地蛇绿岩的特征及其构造意义.SCIENTIA GEOLOGICA SINICA ,1999,34(3):281—288
    [68]肖序常.再论西昆仑库地蛇绿岩及其构造意义.地质通报.2003,22(10) :745-750
    [69]邓万明.库地-苏巴什蛇绿岩带见:喀喇昆仑-昆仑山地质演化[I].北京:科学出版社,2000:53-67
    [70]方爱民,等.新疆西昆仑“依沙克群”中的放射虫组合及其形成时代探讨.地质科学,2000,35(2):212-217
    [71]袁超.西昆仑库地蛇绿岩的构造背景:来自玻安岩系的新证据.地球化学,2002,31(1):43-48
    [72]王东安,陈瑞君.新疆库地西北一些克沟深海蛇绿质沉积岩岩石学特征及沉积环境.自然资源学报,1989,4(3):213-220
    [73]周辉,李继亮.西昆仑库地大型韧性剪切带的厘定.科学通报,1999,44(16):1774-1778
    [74]张传林,于海峰.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体.地质论评,2004,50(6):639-644
    [75]潘裕生.西昆仑构造特征与演化.地质科学.1990.25(3),224-231
    [76]潘裕生,王毅.青藏高原叶城—狮泉河路线地质特征及区域构造演化.地质学报.1994.86(4): 295-307
    [77]韩芳林.西昆仑其曼于特蛇绿混杂岩带及构造意义.中国地质大学(北京),2002
    [78]李博秦.西昆仑麻扎构造混杂岩的组成及其地质意义.现代地质,2007,21(1):78-87
    [79]李博秦.西昆仑柳什塔格峰西侧火山岩特征时代及地质意义.岩石学报,2007,23(11):2801-2901
    [80]计文化,蔺新望,等.西昆仑苏巴什蛇绿混杂岩带组成、特征及其地质意义.陕西地质,2001,19(2):40-49
    [81]张传林,陆松年,于海锋,叶海敏.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据.中国科学(D辑),2007,37(2):145-155
    [82]许志琴,李海兵.造山的高原-青藏高原巨型造山拼贴体和造山类型.地学前缘,2006,13(4):1-17
    [83]许志琴,杨经绥,李海兵,等.青藏高原研究聚焦——地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质,2006, 33(2):221-238
    [84]许志琴.西昆仑康西瓦加里东期孔兹岩系及地质意义.地质学报,2004,78(6):733-744
    [85]汪玉珍,方锡床.西昆仑山、喀喇昆仑山花岗岩类时空分布规律的初步探讨.新疆地质,1987,5(1):9-25
    [86]杨克明.论西昆仑大陆边缘构造演化及塔里木西南盆地类型.地质论评,1994,40(1):9-19
    [87]李博秦.从地层角度探讨麻扎-康西瓦-苏巴什结合带的演化过程.中国地质科学院,2007
    [88]禇少雄.西昆仑及其邻区成矿地质背景和成矿规律探讨.中国地质大学(北京),2008
    [89]韩芳林.西昆仑增生造山带演化及成矿背景.中国地质大学(北京),2006
    [90]潘裕生.昆仑山区构造区划初探.自然资源学报,1989,4(3),196-203
    [91]袁超,孙敏,周辉.西昆仑阿卡阿孜岩体的年龄、源区及构造意义.新疆地质,2003,21(1):37-39
    [92]邓万明,西昆仑蛇绿岩研究的新进展.中国西部特提斯构造演化及成矿作用.电子科技出版社,1991
    [93]许荣华,张玉泉,谢应雯,等.西昆仑山北部早古生代构造一岩浆带的发现.地质科学.1994.29(4).313-359
    [94]刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报,1987(7),345-352
    [95]廖士范.贵州西部沉积改造菱铁矿矿床研究.北京:地址出版社.1984.
    [96]沈冰,刘飞燕.滇中地区层控菱铁矿成因机制探讨,矿产与地质, 2006,20(3)
    [97]李忠平.地面高精度磁测在新疆契列克其铁矿区找矿中的应用.长春工程学院院报, 2003.4(4)
    [98]王永新.东帕米尔“层控碳酸岩型”铁铜金矿浅释.新疆地质, 2004.22(4)
    [99]潘裕生,周伟明.昆仑山早古生代地质特征与演.中国科学. 1996.26(4)
    [100]孙海田,李纯杰.西昆仑布伦口地区发现铁铜共生矿床成矿带.地球学报. 1996.17(3)
    [101]李宝强.西昆仑成矿带成矿特征及勘查远景.西北地质2006.39(2)
    [102]董永观,郭坤一.西昆仑地区成矿远景.中国地质, 2003.30(2)
    [103]李博秦.西昆仑麻扎—黑恰达坂多金属矿化带的发现及地质意义.地质论评. 2007.53(4)
    [104]姜耀辉.西昆仑山构造格架与成矿堆积环境.火山地质与矿产, 2001.22(1)
    [105]王书来,汪东波,祝新友.西昆仑中间隆起带花岗岩及与铜金矿化关系.矿产与地质, 2005.1(14)
    [106]祝新友,樊俊昌,邓吉牛.锡铁山矿床中石膏、菱铁矿成因研究与意义.矿产与地质. 2006.20(3)
    [107]王义.新疆阿克陶县切列克其铁矿地质特征及成因探讨.新疆有色金属.增刊.2005.
    [108]关剑宇.赵祖应.新疆西昆仑地区契列克其─卓木吉勒尕富铁富铜矿床地质特征及成因类型探讨.新疆有色金属.2002.
    [109]刘敏,陈志明,陈其英.有机质在宣龙地区菱铁矿形成中的作用.沉积学报. 1997.15(3)
    [110]姜春发.中央造山带几个重要地质问题及其研究进展.地质通报. 2002.21(8-9)
    [111]P.S.Mozley,P.Wersin.作为沉积环境指示剂的菱铁矿的同位素组成组成. Geology, 1992.V.20, 817~820
    [112]戴永定,宋海明,沈继英.河北宣龙铁矿化石细菌.中国科学(D辑). 2003.33(8)
    [113]杨耀民,方维宣.陕西大西沟重晶石菱铁矿—银硐子银铜铅多金属特大型矿床成矿成晕模式. []有色金属矿产与勘查. 1999.8(6)
    [114]方维萱,芦继英.陕西银硐子-大西沟菱铁银多金属矿床热水沉积岩相特征及成因.沉积学报. 2000.18(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700