小麦十八碳烷酸合成途径基因的逆境胁迫应答研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,农业生态环境不断恶化,土壤的高盐逆境愈发严重,对农作物产量造成巨大威胁。因此,培育耐盐作物新品种是现代农业的一项重要而紧迫的任务,已成为全世界的研究热点之一。小麦是世界上分布最广、种植面积最大、加工制品最为丰富的重要粮食作物。但它属于甜土植物,耐盐能力较差。本实验室在前期研究中,建立了通过不对称体细胞杂交方法创制小麦渐渗系的技术体系(国家发明专利:ZL200410075774.7),并将小麦近缘优质牧草、单子叶植物耐盐性最强的长穗偃麦草的染色质渐渗到普通小麦,创建了一批高产、抗逆、抗病和优质的渐渗系新种质和新品系,从中选育出杂种渐渗系高产、耐盐新品种山融3号(SR3)(鲁审[2004]030),获得了研究小麦渐渗系机制和功能基因的“突变体”新材料。转录组和蛋白组分析表明SR3抗逆性与其较强的抗氧化能力密切相关。
     盐胁迫能诱导细胞产生大量的活性氧(Reactive Oxygen Species, ROS),形成次级氧化胁迫。植物在进化过程中形成了一套复杂有效的ROS清除系统,包括酶促和非酶促抗氧化剂及调控其表达的各种信号分子和转录因子。ROS能诱导脂质过氧化(lipid peroxidation),形成多种氧化产物,部分含有不饱和键,引起膜氧化损伤等毒性伤害,因而氧化的脂肪酸(义称为羟脂,oxylipids),是膜氧化损伤的优良指标及细胞感知氧化胁迫的信号。细胞中的羟脂种类较多,其中最受关注的是12-羰-植物二烯酸(12-oxo-phytodienoic acid, OPDA)及其代谢产物茉莉酸(jasmonic acid, JA),而二者都是十八碳烷酸合成途径的代谢物。据此,本实验分析了SR3和JN177中十八碳烷酸合成途径相关基因的胁迫应答表达潜,克隆了小麦SR3十八碳烷酸合成途径相关基因TaOPR1, TaOPR2以及TaAOC1,研究了其过表达对拟南芥发育和抗逆能力的影响,确定其在胁迫下的表达变化与SR3抗逆性的关系、探讨该途径的基因在植物发育和抗逆中的作用机制。主要研究内容和结果包括:
     1植物十八碳烷酸合成途径基因的表达谱分析
     为了进一步认识植物十八碳烷酸合成途径的羟脂物质在植物应对盐胁迫中所起的作用,我们对该途径基因的胁迫表达谱进行了分析。首先我们运用本实验室SR3和JN177200mMNaCl和18%PEG胁迫下的芯片信息,分析了该途径关键酶基因AOS,AOC, OPR的胁迫表达状况。结果显示,在小麦芯片中,这3个基因都以多拷贝存在,不同探针所对应的基因对于NaCl和PEG胁迫的响应趋势与变化量都不一样。根据其响应模式的不同,将每种基因的变化模式归类,发现有一类OPR基因,在NaCl胁迫下表达上调达20倍以上,有的高达几十倍甚至于上百倍,并且它们在SR3中的上调趋势比JN177更加明显。暗示了这类基因在SR3的NaCl胁迫响应中发挥了重要的作用。
     另外,我们通过TAIR网站在线分析了拟南芥相对应的AOS, AOC, OPR基因在NaCl和十早胁迫下的表达趋势变化。结果显示,AOS基因只有1个拷贝呈轻微上调的表达趋势;AOC基因有四个拷贝,其变化模式各不相同;OPR有3个拷贝都呈现出显著地上调表达,其中AtOPR1和AtOPR2属于OPR基因的第一亚家族,其上调趋势比属于OPR第二亚家族的AtOPR3上调更为明显。
     这些结果说明,小麦植物十八碳烷酸合成途径的基因在植物盐胁迫响应中发挥了一定的功能,其中OPR第一亚家族基因的功能可能更为重要。
     2TaOPR1和TaOPR2的克隆及其在非生物胁迫应答中的功能研究
     根据基因在SR3和JN177中表达量的差异,本实验室从小麦SR3中克隆了2个第一亚族的12-羰-植物二烯酸还原酶基因TaOPR1和TaOPR2。
     RT-PCR和Real-time PCR结果显示,对照条件下TaOPR1在SR3中的表达量高于JN177;200mMNaCl、18%PEG6000、100μM ABA和10mM H202胁迫条件下SR3和JN177中该基因的响应趋势基本相同,但是SR3的表达量更高;100μM的ABA合成抑制剂Norflurazon可抑制TaOPR1在200mMNaCl中的上调表达。
     TaOPR1小麦过表达(CE)株系以及拟南芥过表达(OE)株系在含有NaCl的培养基中的生长状态明显优于空载体对照(VC)株系,CE株系与OE株系相对于各自的对照株系而言,超氧化物岐化酶(SOD)、过氧化氢酶(CAT)等ROS清除酶活性显著提高,而丙二醛(MDA)含量则显著下降。这表明TaOPR1的过表达可以显著的提高植物的耐盐性。
     TaOPR1的拟南芥OE系在含有H202培养基中的生长状态也明显优于VC系,并且OE系中的ROS含量明显低于VC系;在含有ABA的培养基中,无论是种子萌发还是植株生长,OE株系都表现出了对ABA更为敏感的表型;Real-time PCR分析显示,OE株系中ABA合成途径关键基因AtABA1、AtABA2、AtNCED3和AtAAO3以及ABA依赖的胁迫应答响应关键基因AtRD22及其调控因子AtMYB2、AtMYC2等的表达均明显上调。这些结果表明TaOPR1可通过增强植物对ROS的清除能力,以及刺激ABA合成以及ABA依赖的胁迫应答途径来提高植物的耐盐能力。
     另外,TaOPR1的拟南芥OE系在含有JA的培养基中生长状态与VC系没有明显的差别,RT-PCR分析显示OE株系中JA合成以及信号转导途径MARKER基因的表达量均没有明显的变化。因此,我们认为TaOPRl与植物的JA途径没有关系,这与第一亚家族的OPR基因不参与JA合成的结论是一致的。
     Real-time PCR分析显示,NaC1、PEG和H202、胁迫下,以及胁迫响应激素ABA处理下,TaOPR2在SR3中均呈现持续上调的表达模式,说明TaOPR2也参与植物对非生物胁迫应答。作为同源基因,TaOPR2与TaOPR1在各种胁迫下的表达趋势相同;但是,TaOPR2在胁迫条件下的基因表达上调比TaOPR1明显,并且TaOPR2在渗透胁迫下的表达较盐胁迫下上调幅度更大。
     TaOPR2拟南芥OE系的表型分析显示,TaOPR2也可以通过刺激ROS清除途径以及ABA依赖的信号途径提高拟南芥对于盐胁迫、渗透胁迫以及过氧化胁迫的抗性。并且TaOPR2的作用与JA途径也没有关系。
     与TaOPR1比较,TaOPR1的OE株系在H202胁迫下不仅根长于VC株系,地上部分的生长状态也优于VC株系。Real-time PCR分析显示,在TaOPR2的OE株系中,ABA途径抑制因了AtABI1的表达被明显下调,表明TaOPR2主要通过ABA途径的负调控因子起作用。另外,TaOPR2还能通过DREB途径调控非ABA依赖途径胁迫响应基因(例如AtRD29A)的表达,这说明TaOPR1与TaOPR2两个基因虽然在功能上有着一定的冗余,但是也有着一定的分化,在植物胁迫应答中有独特的机制。
     3TaAOC1的克隆及其在非生物胁迫应答中的功能研究
     二烯氧化物环化酶基因基因(AOC)是OPDA合成途径的最后一个酶也是JA合成途径的关键酶,在植物的十八碳烷酸合成途径中具有重要的意义。本实验室从小麦SR3中首次克隆得到了一个二烯氧化物环化酶基因,命名为TaAOC1。该基因受到NaCl和PEG的诱导以后均呈现出短期上调的表达趋势。TaAOC1过表达(OE)转基因纯系的生长受到明显抑制,在正常的条件下呈现与外源施加JA的类似的根系表型,在盐胁迫培养基中,OE株系表现出对盐胁迫不敏感并且侧根增多的表型被抑制。
     这些结果进一步揭示了AOC基因以及植物十八碳烷酸合成途径在植物耐逆过程中发挥了重要的作用,但是其具体作用机制尚需进一步研究。
In recent years, the agricultural ecological environment is deterisrating and the high salinity stress becomes more and more serious, which adversely affect the crop production. Therefore, to cultivate salt tolerant crops are an important and urgent task of modern agriculture and have becoming one of the world's research focuses. Wheat is one of the most important crops worldwide, but its growth and productivity are obviously inhibited by abiotic stresses such as drought and salt. In our previous work, a new wheat introgression line Shanrong No.3(SR3) was generated using common wheat Jinan177(JN177) and Thinopyum ponticum, a salt and drought tolerant grass, via asymmetric somatic hybridization. Former results showed that SR3's genome were integrated with some chromatin fragments of T. ponticum, and took place a high frequency of allelic variation, indicating that SR3is an excellent material for investigating genetic variation, isolating stress tolerance associated genes, and dissecting the mechanisms underlying stress response. Transcriptomic and proteomic analysis showed that the SR3's resistance is closely related to its strong antioxidant capacity.
     Salt stress could induce cells to produce large amount of reactive oxygen species (ROS), which perform as intracellular secondary oxidative stress. Plants have evolved a complex and effective ROS scavenging system to cope with such stress, including enzymatic and non-enzymatic antioxidants as well as complicated signaling molecules and transcription factors to regulate their expression. ROS-induced lipid oxidation (lipid peroxidation) form a variety of oxidation products, some of which contain unsaturated bonds and cause membrane oxidative damage and other toxic injuries, so the oxidized fatty acids (also known as oxylipids) is the indicator of membrane oxidative damage degree, and serve as signals for cells to perceive oxidative stress. There have many types of oxylipids, of which the most characterized are the12-oxo-phytodienoic acid (OPDA) and its metabolite jasmonic acid, two intermediates of octadecanoid pathway, suggesting the possible role of this pathway in SR3's high salt tolerance. OPDA reductases (OPRs) catalyze the reduction of OPRA, the first step of its conversion to JA, and they are classified into two subgroups, OPRI and OPRII; OPRII participates in JA synthesis, but OPRI's function is still not known. Here, we performed a comprehensive comparison on the transcriptional patterns of genes involved in octadecanoid synthesis pathway, from which we cloned three octadecanoid pathway associated genes TaOPR1, TaOPR2, and TaAOCl from SR3, ascertained their roles in development and tolerance to abitoic stresses through overexpression in Arabidopsis and wheat, and uncovered the mechanisms of these genes in governing development and abiotic stress response in plants. The main research contents and results achieved in this work were summarized as follows.
     1. Screening expression patterns of octadecanoid pathway genes
     In order to further know the relationship of oxylipids synthesized by octadecanoid pathway in the plant response to salt stress, we performed a screening of the expression patterns of genes involved in the pathway during abiotic stress. Firstly, we analyzed the expression profiles of genes encoding key enzymes in the pathway such as AOS, AOC, and OPR, according to the data from cDNA microarray of SR3and JN177. Bioinformatic analysis showed that AOS, AOC and OPR encoding genes have multiple copies in wheat genome, and the probes referring to these genes in cDNA microarray appeared differential expression patterns. We then divided these genes into several classes based on their stress responsive modes, and found there has one class of OPR genes that were dramatically induced by more than20or even100fold under salt stress, and the induction strength were much stronger in SR3than in JN177. This implies that these OPR genes may play important roles in salt stress response in wheat.
     In addition, we analyzed the expression patterns of Arabidopsis AOS, AOC and OPR genes under NaCl and PEG stresses with the online transcriptomic data at TAIR website. The results show that all of three OPR copies were significantly induced, with a more induction extent in OPRI subfamily AtOPR1and AtOPR1than in OPRII subfamily gene AtOPR3. Besides, all of four AOC copies were stress-responsive with different patternsonly, but one copy of AOS genes was slightly up-regulated.
     These results suggest that octadecanoid synthesis pathway associated genes of wheat and other plants certainly participate in plant salt stress response, of which the linkage between OPR genes, especially OPRI genes, and the response may be closer.
     2. Cloning and function analysis of TaOPRl and TaOPR1in abiotic stress tolerance
     Comprehensive transcription comparison revealed the close relation between OPRI genes and salt stress response. Therefore, we cloned an OPRI subfamily gene TaOPR1and TaOPR2from SR3based on its most obvious induction by salt stress in cDNA microarray.
     RT-PCR and Real-time PCR showed that TaOPR1was induced by under NaCl, PEG6000, ABA and H2O2stresses in both SR3and JN177, with a more significant degreee in SR3. The induction of TaOPR1by NaCl can be inhibited by ABA biosynthesis inhibitor norflurazon, indicating the NaCl-induced TaOPR1expression is ABA-dependent.
     To know its role in salt stolerance, TaOPR1was transformed into wheat and Arabidopsis. TaOPR1overexpression did not affect the growth and reproduction ability of wheat and Arabidopsis. Under NaCl stress, wheat overexpression lines (CE) had a superior growth ability than the wildtype, and Arabidopsis overexpression lines (OE) also grew more vigorously than the empty vector control (VC) lines, indicating the positive contribution of TaOPR1in salt tolerance.
     In TaOPR1overexpressors, the activities of ROS scavengers superoxide dismutase (SOD) and catalase (CAT) were significantly increased, but ROS and malondialdehyde (MDA) contents were decreased evidently. Consistently, under H2O2stress, Arabidopsis OE seedlings were stronger than the VC line, and their seeds also had higher germination rate. This indicates that the contribution of TaOPR1in salt tolerance is partially achieved through its role in enhancement of ROS removal.
     Arabidopsis OE lines were hypersensitive to exogenous ABA, and their seedling root length and seed germination rate were both restricted more obviously than the VC line. Real-time PCR analysis showed that in ABA biosynthesis pathway associated genes AtABA1, AtABA2, AtNCED3and AtAAO3and ABA-dependent stress response pathway genes AtRD22, AtMYB2and AtMYC2all had higher transcript levels in OE lines. These results provide convinced evidence that besides through helping in ROS removal, TaOPR1enhanced stress tolerance by promoting the ability of ABA synthesis and ABA-dependent stress response pathway.
     In addition, Arabidopsis OE lines and the VC line showed similar response to exogenous JA. RT-PCR analysis demonstrated that JA biosynthesis and signal transduction pathway associated genes except for AtAOCl had no differential transcription patterns between the OE and VC lines. This indicates that TaOPR1has no crosstalk with JA pathway, which is in agreement with the knowledge that the OPRI subfamily genes are not involved in JA biosynthesis.
     Real-time PCR analysis showed that TaOPR2can be activated by NaCl, PEG, H2O2, and ABA in SR3, indicating that TaOPR2is also involved in abiotic stress responses. In comparison with TaOPR1, the response of TaOPR2to abiotic stresses was more distinguishable; TaOPR2accumulated more transcripts under PEG than NaCl stresses.
     Alike TaOPR1, TaOPR2overexpression also enhanced tolerance to salt, PEG and H2O2stresses, and sensitivity to exogenous ABA. But unlike TaOPR1, TaOPR2overexpressors not only had longer roots, but also larger leaves, indicating its excellent potential for crop breeding.
     Physiological and molecular analysis indicated that TaOPR2also promote the activities of ROS scavengers and ABA-dependent stress response pathway. But unlike TaOPRl, TaOPR1overexpression inhibited the expression of AtABI1, whose encoding protein is an inhibition factor for ABA signaling pathway, indicating that the acceleration of ABA-dependent stress response pathway by TaOPR2is accomplished through releasing its repression. Besides, TaOPR2but not TaOPR1induced the expression of DREBs, key components of ABA-independent stress response pathway. The similarities of TaOPRl and TaOPR2as well as their specificities in role of abiotic stress response indicating their functional conservation and differentiation during evolution
     3. Cloning and function analysis of TaAOCl in abiotic stress tolerance
     AOC catalyzes the last step of OPDA biosynthesis, during which AOC can convert cis-OPDA to trans-OPDA, the in vitro substrate of OPRIs, suggesting its putative coordinated role in TaOPR1/TaOPR2-induced salt tolerance. Based on this speculation, we first cloned a wheat AOC gene TaAOC1from SR3, which shares the highest identity to AtAOCl, the AOC copy induced in Arabidopsis TaOPR1OE lines, among available wheat ESTs annotated as AOC. The gene was induced at early stage of salt and PEG600treatments. TaAOC1overexpression Arabidopsis (OE) lines showed a growth-inhibited and lateral root-increased phenotype, which is similar to the wild-type seedlings exposed to exogenous JA. TaAOC1OE lines had superior salt tolerance to salt stress and the lateral root-increased phenotype was controled. These results provide a primary glimpse to the role of AOC and octadecanoid pathway metabolites in plant tolerance to abiotic stresses, but how they perform this role needs to be further studed.
引文
1. Abebe T., Guenzi A.C., Martin B.& Cushman J.C. (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology 131: 1748-1755.
    2. Abe H., Urao T., Ito T., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63-78.
    3. Abari A.K., Nasr M.H., Hojjati M. and Bayat D. (2011) Salt effects on seed germination and seedling emergence of two Acacia species African. Journal of Plant Science Vol.5(1):52-56.
    4. Agrawal G., Tamogami S., Han O., wahashi,e H., Rakwala R., (2004) Rice octadecanoid pathway. Biochemical and Biophysical Research Communications 317:1-15.
    5. Agrawal G.K., Jwa N.S., Shibato J., Han O., Iwahashi H., Rakwal R. (2003) Diverse environmental cues transiently regulate OsOPR1 of the "octadecanoid pathway" revealing its importance in rice defense/stress and development. Biochem. Biophys. Res. Commun.310: 1073-1082.
    6. Albrecht T., Kehlen A., and Stahl K., Knofel H.D., Sembdner G.& Weiler E.W. (1993) Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody. Planta 191:86-94.
    7. Allakhverdiev S.I., Sakamoto A., Nishiyama Y., Inaba M., Murata N. (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and 11 in Synechococcus sp. Plant Physiol.123(3):1047-56.
    8. Anderson J.P., Badruzsaufari E., Schenk P.M., Manners J.M., Desmond O.J., Ehlert C., Maclean D.J., Ebert P.R., Kazan K. (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell 16:3460-3479.
    9. Apel K.& Hirt H. (2004) Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373-399.
    10. Asada K. (1999) The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Reviews in Plant Physiology and Plant Molecular Biology 50:601-639.
    11. Asada K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141:391-396.
    12. Balbi V.& Devoto A. (2008) Jasmonate signalling network in Arabidopsis thaliana:crucial regulatory nodes and new physiological scenarios. New Phytol 177:301-318.
    13. Beale M.H., Ward J.L. (1998) Jasmonates:key players in the plant defence. Nat. Prod. Rep. 15:533-548.
    14. Beynon E.R., Symons Z.C., Jackson R.G., Lorenz A., Rylott E.L., Bruce N.C. (2009) The Role of Oxophytodienoate Reductases in the Detoxification of the Explosive 2,4, 6-Trinitrotoluene by Arabidopsis. Plant Physiol 151:253-261.
    15. Bhandal I.S.& Malik C.P. (1988) Potassium Estimation, Uptake, and Its Role in the Physiology and Metabolism of Flowering Plants. International Review of Cytology.110: 205-254.
    16. Biesgen C., Weiler E.W. (1999) Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis. Planta 208:155-165.
    17. Blumwald E. (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431-434.
    18. Bohnert H.J., Shen B. (1999) Transformation and compatible solutes. Sci Hort 78:237-260.
    19. Bray E.A, Bailey-Serres J., Weretilnyk E. (2000) Responses to abiotic stresses. In:Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158-1249.
    20. Browse J. (2005) Jasmonate:an oxylipin signal with many roles in plants. Vitam Horm 72: 431-456.
    21. Bruns, S., Hecht-Buchholz, C., (1990) Light and electron-microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages. Potato Res. 33:33-41.
    22. Buseman C.M., Tamura P., Sparks A.A., Baughman E.J., Maatta S., Zhao J., Roth M.R., Esch S.W., Shah J., Williams T.D. et al. (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28-39
    23. Chapman D. (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci. B419-426.
    24. Chaves M.M., Flexas J., Pinheiro C. (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell.Ann Bot.103(4):551-60.
    25. Chen T.H., Murata N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250-257.
    26. Cheong Y.H., Chang H.-S., Gupta R., Wang X., Zhu T.& Luan S. (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology 129:661-677.
    27. Choi H.I., Hong J.H., Ha J., Kang J.Y., Kim S.Y. (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723-1730.
    28. Clough S.J., Bent A.F. (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-743.
    29. Conconi A., Smerdon M.J., Howe G.A.& Ryan C.A. (1996) The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826-829.
    30. Creelman R.A., Tierney M.L.& Mullet J.E. (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl AcadSci USA 89:4938-4941.
    31. Creelman R.A.& Mullet J.E. (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114-4119.
    32. Dathe W., Ronsch H., Preiss A., Schade W., Sembdner G. & Schreiber K. (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153:530-535.
    33. Davletova S., Schlauch K., Coutu J.& Mittler R. (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiology 139:847-856.
    34. Delfine S., Alvino A., Villani M.C., Loreto F. (1999) Restrictions to carbon dioxide conductance and photosynthesis in spinach leave recovering from salt stress. Plant Physiol 119:1101-1106.
    35. Delker C., Stenzel I., Hause B., Miersch O., Feussner I., Wasternack C. (2006) Jasmonate Biosynthesis in Arabidopsis thaliana-Enzymes, Products, Regulation. Plant Biol 8:297-306.
    36. Diamant S., Eliahu N., Rosenthal D., Goloubinoff P. (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586-39591.
    37. Dombrowski J.E. (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiology 132:2098-2107.
    38. Eckardt N.A.(2008)Oxylipin Signaling in Plant Stress Responses. Plant Cell.20:495-497.
    39. Esterbauer H. (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57:779S-786S.
    40. Farmer E.E., Almeras E.& Krishnamurthy V. (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372-378.
    41. Falkenstein E., Groth B., Mithofer A.& Weiler E.W. (1991) Methylasmonate and a-linolenic acid are potent inducers of tendril coiling. Planta 185:316-322.
    42. Farmer E.E., Ryan C.A. (1992) Octadecanoid precursors of jasmonic acid activate tile synthesis of wound-inducible proteinase inhibitors. The Plant Cell 4(2):129-134.
    43. Feussner I.& Wasternack C. (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53: 275-297.
    44. Fitzpatrick T.B., Amrhein N., Macheroux P. (2003) Characterization of YqjM, an Old Yellow Enzyme Homolog from Bacillus subtilis involved in the Oxidative Stress Response. J Biol Chem 278:19891-19897.
    45. Foyer C.H.&Noctor G. (2005) Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. The Plant Cell 17:1866-1875.
    46. Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K. (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509-525.
    47. Fukushima E., Arata Y., Endo T., Sonnewald U.& Sato F. (2001) Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell and Physiology 42: 245-249
    48. Gadallah, Frank W., Munnik T., Kerkmann K., Salamini F.,& Bartels D. (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12:111-124.
    49. Goff S.A., Ricke D., Lan T.H., Presting G., Wang R., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92-100.
    50. Gong Z., Koiwa H., Cushman M.A., et al. (2001) Gene that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiology 126:363-375.
    51. Gu D., Liu X., Wang M., Zheng J., Hou W., Wang G., Wang J. (2008) Overexpression of ZmOPR1 in Arabidopsis enhanced the tolerance to osmotic and salt stress during seed germination. Plant Science 174:124-130.
    52. Hamberg M.& Fahlstadius P. (1990) Allene oxide cyclase:a new enzyme in plant lipid metabolism. Arch Biochem Biophys 276:518-526.
    53. Hamberg M., Gardner H.W. (1992) Oxylipin pathway to jasmonates:biochemistry and biological significance. Biochim. Biophys. Acta.1165:1-18.
    54. Hamberg M., Ponce de Leon I., Rodriguez M.J.& Castresana C. (2005) a-Dioxygenases. Biochem Biophys Res Commun 338:169-174.
    55. Hamberg M., Sanz A.& Castresana C. (1999) a-Oxidation of fatty acids in higher plants. Identification of a pathogen-inducible oxygenase (piox) as ana-dioxygenase and biosynthesis of 2-hydroperoxylinolenic acid. J Biol Chem 274:24503-24513.
    56. Hare P.D., Cress W.A., Van Staden J. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535-553.
    57. Hause B., Demus U., Teichmann C., Parthier B.& Wasternack C. (1996) Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant Cell Physiol 37:641-649.
    58. Hayashi M., Aoki M., Kato A., Kondo M., Nishimura M. (1996) Transport of chimeric proteins contains a carboxy terminal targeting signal into plant microbodies. Plant J 10: 225-234.
    59. He Y., Fukushige H., Hildebrand D.F., Gan S. (2002) Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiol 128:876-884.
    60. Heath R.L., Packer L. (1968) Photoperoxidation in isolated chloroplasts.1. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189-198.
    61. Hlavinka J., Nozkova-HlavackovaV., Flokova K., Novak O., Nausa J. (2012) Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA. Plant Physiol Biochem 54:89-96.
    62. Horton R.F. (1991) Methyl jasmonate and transpiration in barley. Plant Physiology 96: 1376-1378.
    63. Hoth S., Morgante M., Sanchez J.P., Hanafey M. K., Tingey S.V. and Chua N. H. (2002)Genome-wide gene expression profiling in Ambidops thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abil mutant (J). Journal of Cell Science 115:4891-4900.
    64. Howe G.A. (2001) Cyclopentenone signals for plant defense:remodeling the jasmonic acid response. Proc. Natl. Acad. Sci.98:12317-12319.
    65. Howe G.A., Lightner J., Browse J.& Ryan C.A. (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8:2067-2077.
    66. Hu X., Jiang M., Zhang A.& Lu J. (2005) Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta 223:57-68.
    67. Hu X., Zhang A., Zhang J.& Jiang M. (2006) Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant and Cell Physiology 47:1484-1495
    68. Imbusch R. and M.J. Mueller (2000) Analysis of oxidative stress and wound-inducible dinor isoprostanes F (1) (phytoprostanes F (1)) in plants. Plant Physiol.124:p.1293-1304.
    69. Ingram J., Bartels D. (1996). The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377-403.
    70. Ishiguro S., Kawai-Oda A., Ueda J., Nishida I.& Okada K. (2001) The DEFECTIVE IN ANTHER DEH1SCIENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191-2209.
    71. Jakab G., Ton J., Flors V., Zimmerli L., Metraux J-P., Mauch-Mani B. (2005) Enhancing Arabidopsis Salt and Drought Stress Tolerance by Chemical Priming for Its Abscisic Acid Responses. Plant Physiol 139:267-274.
    72. Karpinski S., Gabrys H., Mateo A., Karpinska B.& Mullineaux P.M. (2003) Light perception in plant disease defence signalling. Current Opinion in Plant Biology 6:390-396.
    73. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech 17:287-291.
    74. Kang J.Y., Choi H.I., Im M.Y., Kim S.Y. (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343-357.
    75. Kasinathan V.& Wingler A. (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiologia Plantarum 121:101-107.
    76. Katsir L., Schilmiller A.L., Staswick P.E., He S.Y., Howe G.A. (2009) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Nutl Acad Sci USA 105:7100-7105.
    77. Kazan K. and Manners J.M.(2011).JAZ repressors and the orchestration of phytohormone crosstalk. Trends in Plant Science.17:22-31.
    78. Khavarinejad R.A., Mostofi Y., (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35: 151-154.
    79. Kishor K.P.B., Hong Z., Miao G.H., Hu C.A.A., Verma D.P.S (1995) Overexpression of D1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387-1394.
    80. Knight H., Knight M.R. (2001) Abiotic stress signalling pathways:specificity and cross-talk. Trends Plant Sci 6:262-267.
    81. Koornneef A., Leon-Reyes A., Ritsema T., Verhage A., Den Otter F.C., Van Loon L.C.& Pieterse C.M. (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147:1358-1368.
    82. Koornneef A.& Pieterse C.M. (2008) Cross talk in defense signaling. Plant Physiol 146: 8398-844.
    83. Kovtun Y., ChiuW.-L.,Tena G.& Sheen J. (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the USA 97:2940-2945.
    84. Kramell R., Miersch O., Atzorn R., Parthier B., Wasternack C. (2000) Octadecanoid-derived alteration of gene expression and the 'oxylipin signature' in stressed barley leaves:implications for different signalling pathways. Plant Physiol 123:177-186.
    85. Kreps J.A., Wu Y., Chang H.S., Zhu T., Wang X.& Harper J.F. (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology 130: 2129-2141.
    86. Kunkel B.N.& Brooks D.M. (2002) Cross talk between signalling pathways in pathogen defense. Current Opinion in Plant Biology 5:325-331.
    87. Kumar S., Tamura K., Nei M. (2004) MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinformatics 5:150-163.
    88. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
    89. Laudert D., Hennig P., Stelmach B.A., Miiller A., Andert L., Weiler E.W. (1997) Analysis of 12-oxo-phytodienoic acid enantiomers in biological samples by capillary gas chromatography-mass spectrometry using cyclodextrin stationary phases. Anal Biochem 246: 211-217.
    90. Laudert D.& Weiler E.W. (1998) Allene oxide synthase:a major control point in Arabidopsis thaliana octadecanoid signaling. Plant Journal 15:675-684.
    91. Lee G.J., Roseman A.M., Saibil H.R., Vierling E. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 3:659-671.
    92. Lee S.C., Luan S. (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53-60.
    93. Lee S.J., Jung H.J., Kang H., Kim S.Y. (2012) Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant Cell Physiol.53(4):673-686.
    94. Lehmann J., Atzorn R., Bruckner C., Reinbothe S., Leopold J., Wasternack C.& Parthier B. (1995) Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta 197:156-162.
    95. Liavonchanka A.& Feussner I. (2006) Lipoxygenases:occurrence, functions and catalysis. J Plant Physiol 163:348-357.
    96. Liu C., Li S., Wang M, Xia G.M. (2012) A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. Plant Mol Biol 78:159-169.
    97. Livak K.J., Schmittgen T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 25:402-408.
    98. Lorenzo O.& Solano R. (2005) Molecular players regulating the jasmonate signalling network.. Curr Opin Plant Biol 8:532-540.
    99. M.A.A., (1999) Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biol. Plant.42:249-257.
    100. Matsui H., Nakamura G., Ishiga Y., Toshima H., Inagaki Y., Toyoda K., Shiraishi T., Ichinose Y. (2004) Structure and expression of 12-oxophytodienoate reductase (subgroup Ⅰ) genes in pea, and characterization of the oxidoreductase activities of their recombinant products Mol Gen Genomics 271:1-10.
    101.Maurel C. (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Biol 48:399-429.
    102. McConn M., Creelman R.A., Bell E., Mullet J.E.& Browse J. (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473-5477.
    103. McNeil S.D., Nuccio M.L., Hanson A.D. (1999) Betaines and related osmoprotectants:targets for metabolic engineering of stress resistance. Plant Physiol 120:945-949.
    104. Miao Y., Lv D., Wang P., Wang X.C., Chen J., Miao C., Song C.P. (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749-2766.
    105. Miersch O., Wasternack C. (2000) Octadecanoid and jasmonate signalling in tomato leaves (Lycopersicon esculentum Mill.):endogenous jasmonates do not induce jasmonate biosynthesis. Biol Chem 381:715-722.
    106. Mittler R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science.7: 405-410.
    107. Mittler R., Kim Y., Song L., Coutu J., Coutu A., Ciftci-Yilmaz S., Lee H., Stevenson B., Zhu J. (2006) Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537-6542.
    108. Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Breusegem F.V. (2011) ROS signaling:the new wave? Trends Plant Sci 16: 300-309.
    109. Mittler R., Vanderauwera S., Gollery M.& Van Breusegem F. (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9:490-498.
    110. Mittler R., Kim Y., Song L., Coutu J., Coutu A., Ciftci-Yilmaz S., Lee H., Stevenson B., Zhu J. (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537-6542.
    111. Moonqa A., Prinsen E., Bauw G., Montaguasi M. (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. The Plant Cell, Vol.9: 2243-2259.
    112. Mueller M.J. (1997) Enzymes involved in jasmonic acid biosynthesis, Physiol. Plant.100: 653-663.
    113. Mueller, M.J. (2004) Archetype signals in plants:The phytoprostanes. Curr. Opin. Plant Biol. 7:441-448.
    114. Mueller M.J. (1998) Radically novel prostaglandins in animals and plants:the isoprostanes, Chem. Biol.5:323-R333.
    115. Mueller M.J., Brodschelm W. (1994) Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionizationmass spectrometry. Anal Biochem 218:425-435.
    116. Munnik T., Ligterink W., Meskiene I., Calderini O., Beyerly J., Musgrave A., Hirt H. (1999) Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J 20:381-388.
    117.Munns R. (2005) Genes and salt tolerance:bringing them together. New Phytologist 167: 645-663.
    118.Munns R. and Tester M.(2008)Mechanisms of Salinity Tolerance. Annual Review of Plant Biology.59:651-681.
    119. Nakashima K., Ito Y., Yamaguchi-Shinozaki K. (2009) Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Plant Physiol 149:88-95.
    120. Narvaez-Vasquez J., Florin-Christensen J., Ryan C.A. (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell,11:2249-2260.
    121. Narusaka Y., Nakashima K., Shinwari Z., Sakuma Y., Furihata T., Abe H., Narusaka M., Shinozaki K and Yamaguchi-Shinozaki K. (2003) Interaction between two cis-acting elements, ABRE and DRE, in aba-dependent expression of Arabidopsos rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal 34:137-148.
    122. Noctor G., Veljovic-Jovanovic S., Driscoll S., Novitskaya L.& Foyer C.H. (2002) Drought and oxidative load in the leaves of C3 plants:a predominant role for photorespiration? Annals of Botany 89:841-850.
    123. Odat O., Matta S., Khalil H., Kampranis S.C., Pfau R., Tsichlis P.N., Makris A.M. (2007) Old yellow enzymes, highly homologous FMN oxidoreductases with modulating roles in oxidative stress and programmed. J Biol Chem 282:36010-36023.
    124. Parchmann S., Gundlach H., and Mueller M.J. (1997) Induction of 12-oxo-phytodienoic acid in wounded plants and elicited plant cell cultures. Plant Physiology.115:1057-1064.
    125. Parthier B. (1991) Jasmonates, new regulators of plant growth and development:many facts and few hypotheses on their actions. Bot Acta 104:446-454.
    126. Pedranzani H., Racagni G., Alemano S., Miersch O., Ramirez I., Pena H., Taleisnik, Machado-Domenech E., Abdala G.(2003)Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulation 41:149-158,2003.
    127. Pena-Cortes H., Albrecht T., Prat S., Weiler E.W., Willmitzer L. (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191(1):23-128.
    128. Peng Z., et al. (2009) A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat. Molecular and Cellular Proteomics.8:2676-2686.
    129. Pi Y., Jiang K., Cao Y., Wang Q., Huang Z., Li L., Hu L., Li W., Sun X.., Tang K.(2009)Allene oxide cyclase from Camptotheca acuminata improves tolerance against low temperature and salt stress in tobacco and bacteria. Mol Biotechnol.41(2):115-22.
    130. Reymond P., Weber H., Diamond M., Farmer E.E. (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707-719
    131. Rhoads D.M., Umbach A.L., Subbaiah C.C.& Siedow J.N. (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiology 141:357-366.
    132. Russell B.L., Rathinasabapathi B., Hanson A.D. (1998) Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol 116:859-865.
    133. Schaller A., Stintzi A. (2009) Enzymes in jasmonate biosynthesis-Structure, function, regulation. Phytochemistry 70:13-14.
    134. Schaller F. (2001) Enzymes of the biosynthesis of octadecanoid-derived signaling molecules, J. Exp. Bot.52:11-23.
    135. Schaller F., Biesgen C., Miissig C., Altmann T., Weiler E.W. (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979-984.
    136. Schaller F., Hennig P., Weiler E.W. (1998) 12-Oxophytodienoate-10,11 reductase:Occurrence of two isoenzymes of different specificity against stereoisomers of 12-oxophytodienoic acid. Plant Physiol 118:1345-1351.
    137. Schaller F., Weiler E.W. (1997) Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thaliana. Strutural and functional relationship to yeast old yellow enzyme. J Biol Chem 272:28066-28072.
    138. Schaller F., Weiler E.W. (1997) Enzymes of octadecanoid biosynthesis in plants. 12-Oxo-phytodienoate 10,11-reductase. Eur J Biochem 245:294-299
    139. Schaller F, Schaller A & Stintzi A (2005) Biosynthesis and metabolism of jasmonates. J lant Growth Regul 23:179-199.
    140. Schilmiller A.L.& Howe G.A. (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369-377
    141. Sembdner G., Parthier B. (1993) The biochemistry and the physiological and molecular action of jasmonates. Plant Mol. Biol.44:569-589.
    142. Sears E.R. (1954) The aneuploids of common wheat. Mo. Agric. Exp. Sta. Res. Bull.572:1-58
    143. Sears E.R., Sears L.M.S. (1978) The telocentric chromosomes of common wheat. Indian Agricultural Research Institute, New Delhi.
    144. Seo H.S., Song J.T, Cheong J.J., Lee, Y.H. Lee Y.W., Wang I. H, Lee J.S., Choi Y.D. (2001) Jasmonic acid carboxyl methyltransferase:a key enzyme for jasmonate-regulated plant responses, Proc. Natl. Acad. Sci. USA 98:4788-4793.
    145.Sequeira L., Mineo L. (1966) Partial purification and kinetics of indoleacetic acid oxidase from tobacco roots. Plant Physiol 41:1200-1208.
    146. Serrano R., Mulet J.M., Rios G., Marquez J.A., de Larrinoa I.F., Leube M.P., Mendizabal I., Pascual-Ahuir A., Proft M., Ros R., Montesinos C. (1999) A glimpse of the mechanisms of ion homeostasis during salt stress.J Exp Bot 50:1023-1036.
    147. Shan L., et al. (2006) Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No.3. Scientia Agricultuca Sinica.39:225-230.
    148. Shimamoto K., Kyozuka J. (2002) Rice as a model for comparative genomics of plants. Annu. Rev. Plant Biol 53:399-419.
    149. Shinozaki K., Yamaguchi-Shinozaki K. (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327-334.
    150. Shinozaki K., Yamaguchi-Shinozaki K. (2000) Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signalling pathways. Curr Opin Plant Biol 3:217-223.
    151. Smith T., McCracken J., Shin Y.K.& DeWitt D. (2000) Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). J Biol Chem 275:40407-40415.
    152. Sobajima H., Takeda M., Sugimori M., Kobashi N., Kiribuchi K., Cho E.M., Akimoto C., Yamaguchi T., Minami E., Shibuya N., Schaller F., Weiler E.W., Yoshihara T., Nishida H., Nojiri H., Omori T., Nishiyama M., Yamane H. (2003) Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells, Planta 216:692-698.
    153. Staswick P.E., Yuen G.Y.& Lehman C.C. (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747-754.
    154. Stelmach B.A., et al. (2001) A Novel Class of Oxylipins, sn1-O-(12-Oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl Diglyceride, from Arabidopsis thaliana. J Biol Chem.276:12832-12838.
    155. Stelmach B.A., et al. (1998) Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in mechanotransduction. Phytochemistry.47:539-546.
    156. Stelmach B.A., Miiller A., Hennig P., Laudert D., Andert L., Weiler E.W. (1998) Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in mechanotransduction. Phytochem 47:539-546.
    157. Stenzel I., Hause B., Maucher H., Pitzschke A., Miersch O., Ziegler J., C.A. R, Wasternack C.(2003) Allene oxide cyclase dependence of the wound response and vascular bundle specific generation of jasmonates in tomato-Amplification in wound-signalling. Plant J33:577-589.
    158. Stintzi A., Browse J. (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625-10630.
    159. Stockinger E.J., Gilmour S.J., Thomashow M.F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035-40.
    160. Strassner J., Furholz A., Macheroux P., Amrhein N., Schaller A. (1999) A homolog of old yellow enzyme in tomato. Spectral properties and substrate specificity of the recombinant protein. JBiol Chem 274:35067-35073.
    161. Strassner J., Schaller F., Frick U.B., Howe G.A., Weiler E.W., Amrhein N., Macheroux P., Schaller A. (2002) Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32:585-601.
    162. Sze H., Lia X., Palmgrenb M.G. (1999) Energization of plant cell membranes by H-pumping ATPases:regulation and biosynthesis. Plant Cell 11:677-690.
    163. Tarczynski M.C., Jensen R.G., Bohnert H.J. (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508-510.
    164. Thomashow M.F. (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1-7.
    165. Thomashow M.F. (1999) Plant cold acclimation:freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571-599.
    166. Trotter E.W., Collinson E.J., Dawes I.W., Grant C.M. (2006) Old Yellow Enzymes Protect against Acrolein Toxicity in the Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 72: 4885-4892.
    167. Tyerman S.D., Bohnert H.J., Maurel C., Steudle E., Smith J.A.C. (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055-1071.
    168.Ueda J.& Kato J. (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246-249.
    169. Vellosillo T., Martinez M., Lopez M.A., Vicente J., Cascon T., Dolan L., Hamberg M.& Castresana C. (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831-846
    170. Vollenweider S., Weber H., Stolz S., Chetelat A.& Farmer E.E. (2000) Fatty acid ketodienes and fatty acid ketotrienes:Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J 24:467-476.
    171. Vick B.A., Zimmermann D.C. (1983) The biosynthesis of jasmonic acid:a physiological role for plant lipoxygenase. Biochem. Biophys. Res. Commun 111:470-477.
    172. Vick B.A.& Zimmerman D.C. (1987) Pathway of fatty acid hydroperoxide metabolism in spinach leaf chloroplasts. Plant Physiol 85:1073-1078.
    173. Vierling E. (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Biol 42:579-620.
    174. Vijayan P., Shockey J., Le'vesque C.A., Cook R.J.& Browse J. (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95:7209-7214.
    175. Wang M.C., et al. (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics.8:1470-1489.
    176. Wasternack C., Hause B. (2002) Jasmonates and octadecanoids:signals in plant stress responses and plant development, Prog. Nucleic Acid Res.72:165-221.
    177. Wasternack C., Stenzel I., Hause B., Hause G., Kutter C., Maucher H., Neumerkel J., Feussner I.& Miersch O. (2006) The wound response in tomato-role of jasmonic acid. J Plant Physiol 163:297-306.
    178. Weber H. (2002) Fatty acid-derived signals in plants.Trends Plant Sci 7:217-224.
    179. Weber H., Vick B.A., Farmer E.E. (1997) Dinor-oxophytodienoic acid:a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473-10478.
    180. Weiler E.W., et al. (1994) The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett 345:9-13.
    181. Williams R.E., Bruce N.C. (2002) 'New uses for an Old Enzyme'-the Old Yellow Enzyme family of flavoenzymes. Microbiol 148:1607-1614.
    182. Xia G.M. (2009) Progress of chromosome engineering mediated by asymmetric somatic hybridization. J Genet and Genomics 36:547-556.
    183. Xia G.M., et al. (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor. Appl. Genet.107:299-305.
    184. Xiong L., K.S. Schumaker, and J. Zhu(2002)Cell Signaling during Cold, Drought, and Salt Stress. The Plant Cell, Supplement:S165-S183.
    185. Yamane H., Takagi H., Abe H., Yokota T.& Takahashi N. (1981) Identification of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol 22:689-697.
    186. Yamaguchi-Shinozaki K.& Shinozaki K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251-264.
    187. Yan J., Zhang C., Gu M., Bai Z., Zhang W., Qi T., Cheng Z., Peng W., Luo H., Nan F., Wang Z., Xie D. (2009) The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor. Plant Cell 21:2220-2236.
    188. Yoo S.D., Cho Y.H., Sheen J. (2007) Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Prot 2:1565-1572.
    189. Zhao T.J., Zhao S.Y., Chen H.M., Zhao Q.Z., Hu Z.M., Hou B.K., Xia G.M. (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199-1204.
    190. Zhang J., Simmons C., Yalpani N., Crane V., Wilkinson H. Kolomiets M. (2005) Genomic analysis of the 12-oxo-phytodienoic acid reductase gene family of Zea mays.Plant Molecular Biology 59:323-343.
    191. Zhang J.P., Liu T.S., Zheng J., Jin Z., Zhu Y., Guo J.F., Wang G. Y. (2007) Cloning and characterization of a putative 12-oxophytodienoic acid reductase cDNA induced by osmotic stress in roots of foxtail millet. DNA Seq.18:138-144.
    192. Zhu J.K. (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401-406.
    193. Zhu J.K. (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247-73.
    194. Zhu X.G., Zhang Q.D. (1999) Advance in the research on the effects of NaCl on photosynthesis. Chinese Bulletin of Botany 16:332-338.
    195. Ziegler J., Hamberg M., Miersch O.& Parthier B. (1997) Purification and characterisation of allene oxide cyclase from dry corn seeds. Plant Physiol 114:565-573.
    196. Ziegler J., Keinanen M., Baldwin I.T. (2001) Herbivoreinduced of allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuata. Phytochem 58:729-738.
    197. Ziegler J., Stenzel I., Hause B., Maucher H., Hamberg M., Grimm R., Gallal M., Wastemack C. (2000) Molecular cloning of allene oxide cyclase the ellzyme establishing the stereochemistry of octadecanoids and jasmonates. Joumal of Biological Chemistry.275: 19132-19138.
    198. Zimmermann S., Sentenac H. (1999) Plant ion channels:from molecular structures to physiological functions. Curr Opin Plant Biol 2:477-482.
    199.戴伟民,蔡润,潘俊松等.(2002)盐胁迫对番茄幼苗生长发育的影响。上海农业学报,18:58-62.
    200.黄立华,梁正伟.(2007)不同钠盐胁迫对高冰草种子萌发的影响。干旱区资源与环境,21(6):173-176.
    201.林栖凤.耐盐植物研究[M].北京:科学出版社,2004:p.58.
    202.王东明,贾媛,崔继哲.(2009)盐胁迫对植物的影响及植物盐适应性研究进展 中国农学通报,25(04):124-128.
    203.张洁明,孙景宽,刘宝玉等.(2006)盐胁迫对荆条、白蜡、沙枣种子萌发的影响.植物研究,26(5):595-599.
    204.朱进,别之龙,李娅娜.(2006)盐胁迫对不同基因型黄瓜幼苗生长和光合作用的影响沈阳农业大学学报,006-06,37(3):476-478.
    205.朱义,谭贵娥,何池全等.(2007)盐胁迫对高羊茅(Festuca arundimwza)幼苗生长和离子分布的影响。生态学报,20(12):5447-5454.
    206. FAO.2008. FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700