D-半乳糖致小鼠脑衰老早期阶段星形胶质细胞的活化及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们前期的研究表明反应性星形胶质细胞增生参与了D-半乳糖诱导的脑衰老病理过程。然而,星形胶质细胞活化是发生在神经元死亡之前,还是对神经元变性后的继发反应,仍有待确定。本实验研究该衰老模型早期阶段海马神经元的损伤以及星形胶质细胞的活化,并进一步探索活化的星形胶质细胞是否能增加谷氨酸摄取能力,从而防止由D-半乳糖注射引起的谷氨酸兴奋性毒性。成年雄性ICR小鼠随机分为2组:D-半乳糖模型组和正常对照组,分别每日腹腔注射200mg/kg的2%D-半乳糖或等量生理盐水,持续2周。采用生化分光光度法检测海马区氧化应激水平;用Hoechst染色以及caspase-3免疫组化染色观察神经元的凋亡情况;用神经微管蛋白III和突触素免疫组化观察神经元突起和突触终末的改变;用免疫荧光方法观察谷氨酸和c-fos的表达;用免疫组化方法观察胶质纤维酸性蛋白(GFAP)以及其谷氨酸转运体1 (GLT-1)、谷氨酸天冬氨酸转运体(GLAST)和水通道蛋白4 (AQP4)的表达水平。与对照组相比,持续注射2周的D-半乳糖并没有导致显著的氧化/抗氧化参数改变,也没有出现海马神经元的损失或凋亡。相比之下,GFAP免疫组化显示在D-半乳糖注射小鼠的海马区反应性的星形胶质细胞比例显著增加。此外,与谷氨酸和c-Fos蛋白荧光双标所示的海马区谷氨酸能神经元激活结果相一致,模型组海马区星形胶质细胞膜上GLT-1和AQP4表达也显著增加,但GLAST上调不明显。这些证据提示星形胶质细胞活化在脑衰老的早期阶段是原发性的。而且,通过上调谷氨酸和水的转运蛋白,活化的星形胶质细胞可能有助于维持衰老早期脑内谷氨酸和水的平衡。因此,调节星形胶质细胞的功能可能会成为延缓脑衰老的一种新靶标。
Our previous study demonstrated that reactive astrogliosis is involved in the D-galactose-induced brain ageing. However, whether activation of astrocytes precedes or follows neuron cell death remains to be determined. Therefore, we investigated neuronal damage and astrocyte activation in the hippocampus at the early stage of this model. We also evaluated whether reactive astrocytes enhance the capabilities of glutamate uptake and water transport to prevent glutamate excitotoxicity induced by D-galactose injection. To prepare ageing model by D-galactose, the mice were randomly divided into 2 groups: D-galactose group and control group, receiving daily intraperitoneal injection of 200mg/kg 2% D-galactose or saline respectively for 2 weeks. After 2 weeks of administration, we detected biochemical levels of oxidative stress in the hippocampus by biochemical spectrophotometer. We observed neuronal apoptosis by Hoechst staining and caspase-3 immunohistochemistry. We also observed changes neuronal processes and axonal terminals in the hippocampus of two groups by using immunohistochemistryβ-tubulin III and synaptophysin. Moreover, we analysized glutamate and c-fos expression by immunofluorescence, and observed glial fibrillary acidic protein (GFAP) and its membrane glutamate transporter-1 (GLT1), glutamate-aspartate transporter (GLAST), and aquaporin-4 (AQP4) expression by immunohistochemistry. Biochemical analyses showed that mice injected with D-galactose for 2 week had no obvious changes in brain oxidative and antioxidative parameters compared with vehicle controls. Pathological results also indicated no obvious impairments in neuronal soma, process and synapse in the hippocampus of model mice. In contrast, GFAP immunohistochemistry revealed a prominent increase in the percentage of reactive hippocampal astrocytes in D-galactose-treated mice. Moreover, the increased immunostaining levels of GLT1 and AQP4, but not GLAST were observed in the model hippocampus, which were consistent with activation of hippocampal glutamatergic neurons as revealed by glutamate and c-Fos protein double immunostaining. These results suggest that astrocyte reactivity is a primary event during the ageing process. Moreover, these findings indicate that, via up-regulations of glutamate and water transport proteins, reactivated astrocytes maintain glutamate homeostasis at the early stage of brain ageing. Thus, regulating the plasticity of astrocytes may be a new target to delay brain ageing.
引文
1. Burke, S. N., and C. A. Barnes. 2006. Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30-40.
    2. Yankner, B. A., T. Lu, and P. Loerch. 2008. The aging brain. Annu Rev Pathol 3:41-66.
    3. Verkhratsky, A., and F. Kirchhoff. 2007. Glutamate-mediated neuronal-glial transmission. J Anat 210:651-660.
    4. Volterra, A., and J. Meldolesi. 2005. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626-640.
    5. Allen, N. J., and B. A. Barres. 2009. Neuroscience: Glia - more than just brain glue. Nature 457:675-677.
    6. Sofroniew, M. V., and H. V. Vinters. Astrocytes: biology and pathology. Acta Neuropathol 119:7-35.
    7. Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298-300.
    8. Ho, S. C., J. H. Liu, and R. Y. Wu. 2003. Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology 4:15-18.
    9. Wei, H., Li, L., Song, Q., Ai, H., Chu, J., and Li, W., 2005. Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav Brain Res 157, 245-251.
    10. Gong, Y., L. Liu, B. Xie, Y. Liao, E. Yang, and Z. Sun. 2008. Ameliorativeeffects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Behav Brain Res 194:100-107.
    11. Lei, M., X. Hua, M. Xiao, J. Ding, Q. Han, and G. Hu. 2008. Impairments of astrocytes are involved in the d-galactose-induced brain aging. Biochem Biophys Res Commun 369:1082-1087.
    12. Lu, J., D. M. Wu, B. Hu, W. Cheng, Y. L. Zheng, Z. F. Zhang, Q. Ye, S. H. Fan, Q. Shan, and Y. J. Wang. Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system. Neurobiol Learn Mem 93:157-164.
    13. Cui, X., P. Zuo, Q. Zhang, X. Li, Y. Hu, J. Long, L. Packer, and J. Liu. 2006. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 83:1584-1590.
    14. Wu, D. M., Lu, J., Zheng, Y. L., Zhou, Z., Shan, Q., and Ma, D. F., 2008. Purple sweet potato color repairs d-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem 90, 19-27.
    15. Coyle, J. T., and P. Puttfarcken. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689-695.
    16. Andersen, J. K. 2004. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10 Suppl:S18-25.
    17. Li, L., Xu, B., Zhu, Y., Chen, L., and Sokabe, M. 2008. DHEA prevents Abeta(25-35)-impaired survival of newborn neurons in the dentate gyrusthrough a modulation of PI(3)K-Akt-mTOR signaling. Neuropharmacology 19:1611-5.
    18. Lei, M., Y. Su, X. Hua, J. Ding, Q. Han, G. Hu, and M. Xiao. 2008. Chronic systemic injection of D-galactose impairs the septohippocampal cholinergic system in rats. Neuroreport 19:1611-1615.
    19. Liu, H., H. Wang, S. Shenvi, T. M. Hagen, and R. M. Liu. 2004. Glutathione metabolism during aging and in Alzheimer disease. Ann N Y Acad Sci 1019:346-349.
    20. Lehre, K. P., L. M. Levy, O. P. Ottersen, J. Storm-Mathisen, and N. C. Danbolt. 1995. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835-1853.
    21. Amiry-Moghaddam, M., and O. P. Ottersen. 2003. The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991-1001.
    22. Simard, M., and M. Nedergaard. 2004. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877-896.
    23. Cutler, R. G., J. Kelly, K. Storie, W. A. Pedersen, A. Tammara, K. Hatanpaa, J. C. Troncoso, and M. P. Mattson. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci U S A 101:2070-2075.
    24. Zhang, X. L., B. Jiang, Z. B. Li, S. Hao, and L. J. An. 2007. Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Pharmacol Biochem Behav 88:64-72.
    25. Cui, X., P. Zuo, Q. Zhang, X. Li, Y. Hu, J. Long, L. Packer, and J. Liu. 2006. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 84:647-654.
    26. Hsieh, H. M., W. M. Wu, and M. L. Hu. 2009. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 47:625-632.
    27. Song, X., M. Bao, D. Li, and Y. M. Li. 1999. Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev 108:239-251.
    28. Zhang, Q., X. Li, X. Cui, and P. Zuo. 2005. D-galactose injured neurogenesis in the hippocampus of adult mice. Neurol Res 27:552-556.
    29. Lu, J., Y. L. Zheng, D. M. Wu, L. Luo, D. X. Sun, and Q. Shan. 2007. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol 74:1078-1090.
    30. Martin, R. L., Lloyd, H. G., and Cowan, A. I., 1994. The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17, 251-257.
    31. Bains, J. S., and C. A. Shaw. 1997. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335-358.
    32. Kristian, T., and B. K. Siesjo. 1998. Calcium in ischemic cell death. Stroke 29:705-718.
    33. Reynolds, A., C. Laurie, R. L. Mosley, and H. E. Gendelman. 2007. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82:297-325.
    34. Kovacs, K. J. 2008. Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol 20:665-672.
    35. Johnson, R. S.,B. M. Spiegelman , and V. Papaioannou. 1992. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71:577-86..
    36. Edling, Y., Ingelman-Sundberg, M., and Simi, A., 2007. Glutamate activates c-fos in glial cells via a novel mechanism involving the glutamate receptor subtype mGlu5 and the transcriptional repressor DREAM. Glia 55, 328-340.
    37. Rogers, A., G. Schmuck, G. Scholz, and D. C. Williams. 2004. C-fos mRNA Expression in Rat Cortical Neurons During Glutamate-Mediated Excitotoxicity. Toxicol Sci 82:562-9.
    38. Chan, P. H., Chu, L., and Chen, S., 1990. Effects of MK-801 on glutamate-induced swelling of astrocytes in primary cell culture. J Neurosci Res 25, 87-93.
    39. Koyama, Y., T. Sugimoto, Y. Shigenaga, A. Baba, and H. Iwata. 1991. A morphological study on glutamate-induced swelling of cultured astrocytes: involvement of calcium and chloride ion mechanisms. Neurosci Lett 124:235-238.
    40. Magistretti, P. J., and L. Pellerin. 2000. The astrocyte-mediated coupling between synaptic activity and energy metabolism operates through volume transmission. Prog Brain Res 125:229-240.
    25. Cui, X., P. Zuo, Q. Zhang, X. Li, Y. Hu, J. Long, L. Packer, and J. Liu. 2006. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 84:647-654.
    26. Hsieh, H. M., W. M. Wu, and M. L. Hu. 2009. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 47:625-632.
    27. Song, X., M. Bao, D. Li, and Y. M. Li. 1999. Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev 108:239-251.
    28. Zhang, Q., X. Li, X. Cui, and P. Zuo. 2005. D-galactose injured neurogenesis in the hippocampus of adult mice. Neurol Res 27:552-556.
    29. Lu, J., Y. L. Zheng, D. M. Wu, L. Luo, D. X. Sun, and Q. Shan. 2007. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol 74:1078-1090.
    30. Martin, R. L., Lloyd, H. G., and Cowan, A. I., 1994. The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17, 251-257.
    31. Bains, J. S., and C. A. Shaw. 1997. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335-358.
    32. Kristian, T., and B. K. Siesjo. 1998. Calcium in ischemic cell death. Stroke 29:705-718.
    48. Liu, L., Su, Y., Yang, W., Xiao, M., Gao, J., and Hu, G. 2010. Disruption of Neuronal-Glial-Vascular Units in the Hippocampus of Ovariectomized Mice Injected With D-Galactose. Neuroscience.
    1. Oberheim, N. A., T. Takano, X. Han, W. He, J. H. Lin, F. Wang, Q. Xu, J. D. Wyatt, W. Pilcher, J. G. Ojemann, B. R. Ransom, S. A. Goldman, and M. Nedergaard. 2009. Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276-3287.
    2. Abbott, N. J., L. Ronnback, and E. Hansson. 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41-53.
    3. Newman, E. A. 2003. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536-542.
    4. Hughes, E. G., S. B. Elmariah, and R. J. Balice-Gordon. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol Cell Neurosci 43:136-145.
    5. Shih, A. Y., H. B. Fernandes, F. Y. Choi, M. G. Kozoriz, Y. Liu, P. Li, C. M. Cowan, and A. Klegeris. 2006. Policing the police: astrocytes modulate microglial activation. J Neurosci 26:3887-3888.
    6. Hirrlinger, J., and R. Dringen. The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177-188.
    7. Allen, N. J., and B. A. Barres. 2009. Neuroscience: Glia - more than just brain glue. Nature 457:675-677.
    8. Nimmerjahn, A. 2009. Astrocytes going live: advances and challenges. J Physiol 587:1639-1647.
    9. Volterra, A., and J. Meldolesi. 2005. Astrocytes, from brain glue tocommunication elements: the revolution continues. Nat Rev Neurosci 6:626-640.
    10. Constantine-Paton, M. 2000. The plastic brain. Neurobiol Dis 7:515-519.
    11. Haydon, P. G. 2001. GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185-193.
    12. Raineteau, O. 2008. Plastic responses to spinal cord injury. Behav Brain Res 192:114-123.
    13. Miller, B. H., R. A. Fratti, J. F. Poschet, G. S. Timmins, S. S. Master, M. Burgos, M. A. Marletta, and V. Deretic. 2004. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun 72:2872-2878.
    14. Ji, M. J., C. Su, H. W. Wu, X. Zhu, X. P. Cai, C. L. Li, G. F. Li, Y. Wang, Z. S. Zhang, and G. L. Wu. 2003. Gene expression profile of CD4+ T cells reveals an interferon signaling suppression associated with progression of experimental Schistosoma japonicum infection. Cell Immunol 224:55-62.
    15. Sofroniew, M. V., and H. V. Vinters. Astrocytes: biology and pathology. Acta Neuropathol 119:7-35.
    16. Bressler, J. P., and N. A. Edwards. 1992. Glial shape and cytoskeletal protein synthesis. Neurochem Res 17:173-177.
    17. Tramontina, F., M. C. Leite, K. Cereser, D. F. de Souza, A. C. Tramontina, P. Nardin, A. C. Andreazza, C. Gottfried, F. Kapczinski, and C. A. Goncalves. 2007. Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods 162:282-286.
    18. Pekny, M., and M. Nilsson. 2005. Astrocyte activation and reactive gliosis. Glia 50:427-434.
    19. Maragakis, N. J., and J. D. Rothstein. 2006. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679-689.
    20. Seifert, G., K. Schilling, and C. Steinhauser. 2006. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194-206.
    21. Tao, F., S. D. Lu, L. M. Zhang, Y. L. Huang, and F. Y. Sun. 2001. Role of excitatory amino acid transporter 1 in neonatal rat neuronal damage induced by hypoxia-ischemia. Neuroscience 102:503-513.
    22. Saadoun, S., M. C. Papadopoulos, H. Watanabe, D. Yan, G. T. Manley, and A. S. Verkman. 2005. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691-5698.
    23. Curtis, D. R., and G. A. Johnston. 1974. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69:97-188.
    24. O'Kane, R. L., I. Martinez-Lopez, M. R. DeJoseph, J. R. Vina, and R. A. Hawkins. 1999. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891-31895.
    25. Chaudhry, F. A., K. P. Lehre, M. van Lookeren Campagne, O. P. Ottersen, N. C. Danbolt, and J. Storm-Mathisen. 1995. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711-720.
    26. MacMicking, J. D., C. Nathan, G. Hom, N. Chartrain, D. S. Fletcher, M. Trumbauer, K. Stevens, Q. W. Xie, K. Sokol, N. Hutchinson, and et al. 1995.Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641-650.
    27. Zeng, X. N., X. L. Sun, L. Gao, Y. Fan, J. H. Ding, and G. Hu. 2007. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci 34:34-39.
    28. Ventura, R., and K. M. Harris. 1999. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897-6906.
    29. Broer, S., and N. Brookes. 2001. Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705-719.
    30. Rauen, T., and M. Wiessner. 2000. Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem Int 37:179-189.
    31. Wolosker, H., E. Dumin, L. Balan, and V. N. Foltyn. 2008. D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J 275:3514-3526.
    32. Scolari, M. J., and G. B. Acosta. 2007. D-serine: a new word in the glutamatergic neuro-glial language. Amino Acids 33:563-574.
    33. Martineau, M., G. Baux, and J. P. Mothet. 2006. D-serine signalling in the brain: friend and foe. Trends Neurosci 29:481-491.
    34. Badaut, J., F. Lasbennes, P. J. Magistretti, and L. Regli. 2002. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367-378.
    35. Sawada, T., Y. Kato, and M. Kobayashi. 2007. Expression of aquaporine-4 incentral nervous system tumors. Brain Tumor Pathol 24:81-84.
    36. Papadopoulos, M. C., and A. S. Verkman. 2007. Aquaporin-4 and brain edema. Pediatr Nephrol 22:778-784.
    37. Friedman, B., C. Schachtrup, P. S. Tsai, A. Y. Shih, K. Akassoglou, D. Kleinfeld, and P. D. Lyden. 2009. Acute vascular disruption and aquaporin 4 loss after stroke. Stroke 40:2182-2190.
    38. Nagelhus, E. A., Y. Horio, A. Inanobe, A. Fujita, F. M. Haug, S. Nielsen, Y. Kurachi, and O. P. Ottersen. 1999. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26:47-54.
    39. Nagelhus, E. A., T. M. Mathiisen, and O. P. Ottersen. 2004. Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905-913.
    40. Iandiev, I., T. Pannicke, M. Hollborn, P. Wiedemann, A. Reichenbach, C. Grimm, C. E. Reme, and A. Bringmann. 2008. Localization of glial aquaporin-4 and Kir4.1 in the light-injured murine retina. Neurosci Lett 434:317-321.
    41. Verkman, A. S. 2005. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225-3232.
    42. Zhang, H., and A. S. Verkman. 2008. Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells. Mol Cell Neurosci 37:1-10.
    43. Fan, Y., J. Zhang, X. L. Sun, L. Gao, X. N. Zeng, J. H. Ding, C. Cao, L. Niu, and G. Hu. 2005. Sex- and region-specific alterations of basal amino acid andmonoamine metabolism in the brain of aquaporin-4 knockout mice. J Neurosci Res 82:458-464.
    44. Laird, D. W. The gap junction proteome and its relationship to disease. Trends Cell Biol 20:92-101.
    45. Nicchia, G. P., M. Srinivas, W. Li, C. F. Brosnan, A. Frigeri, and D. C. Spray. 2005. New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. FASEB J 19:1674-1676.
    46. Nakase, T., S. Fushiki, and C. C. Naus. 2003. Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34:1987-1993.
    47. Giaume, C., F. Kirchhoff, C. Matute, A. Reichenbach, and A. Verkhratsky. 2007. Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324-1335.
    48. Connors, N. C., and P. Kofuji. 2006. Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia 53:124-131.
    49. Kim, J. H., J. A. Park, S. W. Lee, W. J. Kim, Y. S. Yu, and K. W. Kim. 2006. Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 39:339-345.
    50. Takano, T., G. F. Tian, W. Peng, N. Lou, W. Libionka, X. Han, and M. Nedergaard. 2006. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260-267.
    51. Gordon, G. R., S. J. Mulligan, and B. A. MacVicar. 2007. Astrocyte control of the cerebrovasculature. Glia 55:1214-1221.
    52. Sofroniew, M. V. 2009. Molecular dissection of reactive astrogliosis and glialscar formation. Trends Neurosci 32:638-647.
    53. Miyazaki, T., O. Miyamoto, N. A. Janjua, T. Hata, F. Takahashi, and T. Itano. 2003. Reactive gliosis in areas around third ventricle in association with epileptogenesis in amygdaloid-kindled rat. Epilepsy Res 56:5-15.
    54. De Keyser, J., J. P. Mostert, and M. W. Koch. 2008. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700