NR2B反义寡核苷酸对吗啡戒断大鼠海马NMDA受体亚基mRNA表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察N-甲基-D-天门冬氨酸(N-methyl-D-aspartate,NMDA)受体NR2B亚基反义寡核苷酸对吗啡依赖大鼠戒断症状和海马NMDA受体亚基mRNA表达的影响。
     方法:
     鞘内置管成功的成年雌性SD大鼠32只,随机分为4组(n=8):正常对照组(A组)、吗啡依赖组(B组)、反义药物组(C组)、正义药物组(D组)。B、C、D三组采用吗啡递增给药法制备大鼠慢性依赖模型,C组、D组在吗啡皮下注射的同时分别鞘内注射15nmol反义寡核苷酸或正义寡核苷酸。观察各组纳洛酮激发戒断症状评分、体重减轻数及海马NMDA受体NR1、NR2A和NR2B亚基mRNA表达的变化。
     结果:
     与B组相比,C组戒断症状的总评分和体重减轻数降低(P<0.01);与A组相比,B组、D组海马NR2B亚基mRNA表达上调(P<0.01);与B组相比,C组NR2B亚基mRNA表达下调(P<0.01),C组NR2A亚基mRNA表达上调(P<0.05);NR1亚基mRNA表达变化无统计学意义。
     结论:
     鞘内注射NR2B反义寡核苷酸可以有效抑制吗啡依赖大鼠戒断症状的形成,其机制与海马NMDA受体亚基数量和构成的变化调节有关。
Objective :
     To investigate the influence of NR2B antisense oligonucleotide on the mRNA expression of N-methyl-D-aspartate receptor (NMDAR) subunits in the rat hippocampus and how this relates to morphine dependence.
     Methods :
     Thirty-two adult female Sprague-Dawley rats weighing 230~270g were randomly divided into 4 group(n=8 each): A control; B morphine dependence; C NR2B antisense oligonucleotide (ANR2B); D NR2B sense oligonucleotide (SNR2B). A model of chronic morphine dependence was established by repeated subcutaneous injection of morphine with progressive doses. Additionally, rats were treated with intrathecal (i.t.) injection of either saline, ANR2B or SNR2B. Morphine dependence was characterized by the total score of naloxone-precipitated withdrawal and weight loss .The method of reverse transcription polymerase chain reaction (RT-PCR) was used to study the expression of NR1, NR2A and NR2B mRNA in rat hippocampus.
     Results :
     The total score of morphine-withdrawal symptoms and the number of weight loss were higher in group B or D than in group C (P<0. 01). Increase in NR2B mRNA expression in the hippocampus induced by morphine were significantly attenuated by ANR2B.
     Conclusions :
     These results indicate that morphine dependence is related to the regulation of NMDA receptor ' s level and construction in thehippocampus.
引文
1. Guo M . Xu NJ, Li YT, et al. Morphine modulates glutama terelease in the hippocampal CA1 area in mice[J]. Neurosci Lett, 2005, 381(12): 5—12.
    2. Sommer W, Heilig M. Antisense oligonucleotides are clinically tested. They inhibit the expression of disease related genes[J]. Lakartidningen, 1999, 96(4):348—354.
    3. Nestler EJ ,Aghajanian GK. Molecular and cellular basis of addiction[J]. Science ,1997,278:58—63.
    4. Abdelnamid EE , Sultana M , Portoghese PS , et al. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice[J]. Pharmacol Exp Ther , 1991 , 258 (1) :299~303.
    5. Kellstein DE , Mayer DJ. Spinal coadministration of cholecystlkinin antagonists with morphine prevents the development of opioid tolerance[J]. Pain ,1991 ,47:221—229.
    6. Kolesnikov YA , Pick CG, Ciszewska G, et al. Blockade of tolerance to morphine but not kappa opioids by a nitric oxide synthase inhibitor[J]. Proc Natl Acad Sci USA ,1993,90:5162—5166.
    7. Grabowski J , Shearer J , Merrill J , et al. Agonist-like, replacement pharmacotherapy for stimulant abuse and dependence [J]. Addict Behav, 2004, 29(7): 1439—1464.
    8. Yamakura T , Shimoji K. Subunit-and site-specific pharmacology of the NMDA receptor channel[J]. Prog Neurobiol ,1999 ,59(3):279— 298.
    9. Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels[J]. Pharmacol Rev, 1999, 51 (1): 7—61.
    10. Trujillo KA ,Akil H. Inhibition of opiate tolerance by noncompetitive N-methyl-D-aspartate receptor antagonists[J]. Brain Res ,1994 ,633:178—188.
    11. Inturrisi CE. Preclinical evidence for a role of glutamatergic systems in opioid tolerance and dependence[J]. Semin Neurosci , 1997,9:110-119.
    12. Glass MJ , Kruzich PJ , Kreek MJ , et al. Decreased plasmamembrane targeting of NMDA-NR1 receptor subunit in dendrites of medial nucleus tractus solitarius neurons in rats self-administering morphine[J]. Synapse, 2004, 53(4): 1991—2001.
    13. Koyuncuoglu H, Nurten A, Yamanturk P, et al . The importance of the number of NMDA receptors in the development of supersensitivity or tolerance to and dependence on morphine[J]. Pharmacol Res, 1999, 39: 311—319.
    14. Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801[J]. Science, 1991, 251:85— 87.
    15. Xi ZX, Stein EA. Blockade of ionotropic glutamatergic transmission in the ventral tegmental area reduces heroin reinforcement in rat. [J]. Psychopharmacology (Berl), 2002,164 (2): 144—150.
    16. Matsumoto RR, Brackett RL, Kanthasamy AG. Novel NMDA /glycine site antagonists attenuate cocaine-induced behavioral toxicity[J]. Eur J Pharmacol, 1997, 338(3): 233—242.
    17. Bespalov AY, Medvedev IO, Sukhotina IA. Effects of the NMDA receptor antagonist, D - CPPene, on sensitization to the operant decrement produced by naloxone in morphine -treated rats[J]. Behav Pharmacol, 2001,12(2): 135—142.
    18. Higgins GA, Nguyen P, Sellers EM. The NMDA antagonist dizocilpine (MK-801) attenuates motivational as well as somatic aspects of naloxone precipitated opioid withdrawal[J]. Life Sci, 1992, 50: 167—172.
    19. Gonzalez P, Cabello P, Germany A, et al. Decrease of tolerance to, and physical dependence on morphine by glutamate receptor antagonists[J]. Eur J Pharmacol, 1997, 332:257—262.
    20. Trujillo KA, Akil H. Excitatory amino acids and drugs of abuse: A role of N-methy-D-aspartate receptors in drug tolerance, sensitization and physical dependence[J]. Drug Alcohol Depend, 1995,38:139-154.
    21. MonyerH, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 1992, 256:1217-1221.
    22. Narita M, Yoshizawa K, Nomura M. Role of the NMDA receptor subunit in the expression of the discriminative stimulus effect induced by ketamine[J]. Eur J Pharmacol, 2001, 423:41—46.
    23. Ma YY, Guo CY, Yu P. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats[J]. Exp Neurol, 2006, 200(2): 343—355.
    24. Moriyoshi K, Masu M, Ishii T, et al. Molecular cloning and characterization of the rat NMDA receptor[J]. Nature, 1991 , 354(6348): 31-37.
    25. Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors:molecular and functional distinction of subtypes[J]. Science, 1992 ,256(5060): 1217—1221.
    26. Zhu H, Ho IK. NMDA-R1 antisense oligonucleotide attenuates withdrawal signs from morphine[J]. Eur J Pharmacol, 1998, 352:151 — 156.
    27. Lai SK, Wong CK, Yang MS, et al. Changes in expression of N-methyl-D-aspartate receptor subunits in the rat neostriatum after a single dose of antisense oligonucleotide specific for N-methyl-D-aspartate receptor1 subunit[J]. Neuroscience, 2000, 98(3): 493-500.
    28. Retter LM, Unis AS, Meador2Woodruff JH. Ontogeny of ionotropic glutamate receptor expression in human fetal brain[J]. Brain Res Dev Brain Res , 2001,127(2): 123-133.
    29. Charton JP, Herkert M, Becker CM, et al. Cellular and subcellular localization of the 2B-subunit of the NMDA receptor in the adult rat telencephalon[J]. Brain Res , 1999, 816(2):609-617.
    30. Luo JH, Fu ZY, Losi G, et al. Functional expression of distinct NMDA channel subunits tagged with green fluorescent protein in hippocampal neurons in culture[J]. Neuropharmacology, 2002, 42 (3): 306-318.
    31. Nagy J. The NR2B subtype of NMDA receptor: a potential target for the treatment of alcohol dependence[J]. Curr Drug Targets CNS Neurol Disord, 2004, 3(3) :169—179.
    32. Sze SC, Wong CK, Yung KK. Modulation of the gene expression of N-methyl-D-aspartate receptor NR2B subunit in the rat neostriatum by a single dose of specific antisense oligodeoxynucleotide[J]. Neurochemistry International, 2001,39:319—327.
    33. Narita M, Aoki T, Suzuki T. Molecular evidence for the involvement of NR2B subunit containing N-methyl-D-aspartate receptors in the development of morphine-induced place preference[J]. Neuroscience, 2000,101 (3): 601—606.
    34. Paul CZ, Mary L. S. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide[J]. Proc Nati Acad Sci USA, 1978, 75(1):260—264.
    35. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide[J]. Proc Natl Acad Sci USA, 1978, 75:280—284.
    36. Wahlestedt C, Colanov E, Yamamoto S, et al. Antisense oligodeoxynucleotides to NMDA2R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions[J].Nature,1993,363:260-263.
    37.Wagner RW.Gene inhibition using antisense oligodeoxynucleotides [J].Nature,1994,372:333-335.
    38.李兴玉,杨永建,王镜等.医学分子生物学.兰州大学出版社,1999.6.
    39.Myers KJ,Dean NM.Sensible use of antisense:how to use oligodeoxynucleotides as research tools[J].Trends Pharmacol Sci,2000,21:19-23.
    40.YoshiKawa M,Oka T.Specific regulation of gene expression in brain by antisense oligodeoxynucleotides[J].Nippon YaKurigaKu Zasshi,1997,109(4):187-191.
    41.林元藻.反义核酸的研究及其应用.广东药物学报,2000,16(1):48-51.
    42.陈援越,吕时铭.反义核酸技术的现状[J].国外医学临床生物化学与检验学分册,2001,22(1):20-21.
    43.Uhlmann.Peptide nucleic acids(PNA) and PNA-DNA chimeras:from high binding affinity towards biological function[J].Biol Chem,1998,379(8-9):1045-1052.
    44.Fundytus ME,Osborne MG,Henry JL,et al.Antisense oligonucleotide knockdown of mGluR1 alleviates hyperalgesia and allodynia associated with chronic inflammation[J].Pharmacol Biochem Behav,2002,73:401-410.
    45.Shimoyama N,Shimoyama M,Davis AM,et al.An antisense oligonucleotide to the N-Methyl-D-aspartate(NMDA) subunit NMDAR1attenuates NMDA-induced nociception,hyperalgesia,and morphine tolerance.Pharmacology and experimental therapeutics,2005,312(2):834-840.
    46.杨建平,蒋豪,吴珏.大鼠蛛网膜下腔埋管并长期留置操作的改进[J].中华麻醉学杂志,1993,13:110-112.
    47.杨国栋,周文华,张富强,等.选择性受体拮抗剂减轻吗啡耐受和依赖的实验研究[J].中华医学杂志,1997,77:130-134.
    48.王晓菲,吴宁,苏瑞斌,李锦.胍丁胺对吗啡长期处理引起的NMDA受体蛋白表达改变的影响[J].中国药物依赖性杂志,2006,15(4):267-271.
    49.Nicholson DW.From bench to clinic with apoptosis-based therapeutic agents[J].Nature,2000,407:810-816.
    50.Oberbauer R.Not nonsense but antisense applications of antisense oligonucleotides in different fields of medicine[J].Wien Klin Wochenschr.1997,109(2):40-46.
    51.Liu C,Qureshi IA,Ding X,et al.Modulation of multidrug resistance gene(mdr-1) with antisense Oligoxynucleotides[J].Clin Sci(Lond),1996,91(1):93-98.
    52.郑晓飞,梅柱中,付汉江,等.RNA实验技术手册.科学出版社,196-197.
    53.Furukawa H,Singh SK,Mancusso R,et al.Subunit arrangement and function in NMDA receptors.Nature,2005,438:185-192.
    54.Parsons CG.NMDA receptors as targets for drug action in neuropathic pain[J].Eur J Pharmacol,2001,429:71-78.
    55.Boyce-Rustay JM,Holmes A.Functional roles of NMDA receptor NR2A and NR2B subunits in the acute intoxicating effects of ethanol in mice[J].Synap se,2005,56(4):222-225.
    56.Nagy J,Horvath C,Farkas S,et al.NR2B subunit selective NMDA antagonists inhibit neurotoxic effect of alcohol-withdrawal in primary cultures of rat cortical neurons[J].Neurochem Int,2004,44:17-23.
    57.Rana A.Al-Hallaq,Thomas P.Conrads,Timothy D.Veenstra,et al.NMDA Di-Heteromeric Receptor Populations and Associated Proteins in Rat Hippocampus.Neurosci.2007,27:8334-8343.
    58.Chazot PL,Lawrence S,Thompson EL.Studies on the subtype selectivity of CP-101,606:evidence for two classes of NR2B-selective NMDA receptor antagonists[J].Neuropharmacology , 2002, 42(3): 319-324.
    59. Kutsuwada T , Kashiwabuchi N , Nori H , et al. Molecular diversity of the NMDA receptor channel[J]. Nature, 1992, 358(6381):36—41.
    60. Moon IS, Apperson ML, Kennedy MB. The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B[J]. Proc Natl Acad Sci USA, 1994, 91 (9): 3954-3958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700