用户名: 密码: 验证码:
辐照预处理提高小麦秸秆酶解产糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可再生能源是一个应对能源短缺和环境恶化的有效途径之一。而生物质能源作为储量最为丰富的可再生能源之一,近年来受到了越来越多的关注。利用木质纤维素生成生物乙醇或其它生物制品的瓶颈是如何有效的破坏原料的结构以增加其反应性能。很多方法被广泛的应用于木质纤维素原料的预处理,如物理、化学、物理-化学、生物方法等。本文研究了γ射线辐射预处理麦秸的辐照效应及辐照后效应。实验结果表明,辐照预处理能明显破坏麦秸的结构。随辐照剂量增加,麦秸质量损失增大,粒度分布向细颗粒方向迁移。辐照与粉碎结合预处理有明显的协同效应,较适宜的预处理条件为500 kGy、粒度为140目,葡萄糖得率为10.2%。辐照后效应对麦秸酶解产糖有明显的影响,以50、100、200、300和400 kGy辐照的麦秸酶解,其辐照后效应与初始效应的比值分别为12.9%、14.9%、8.9%、9.1%(产还原糖)和20.1%(产葡萄糖)。
     通过考察辐照剂量、辐照与NaOH组合顺序、NaOH浓度、NaOH浸泡时间等因素,研究了用100 kGy剂量辐照与NaOH温和浸泡协同预处理工艺。通过对还原糖得率、组分改变、表面形态、结晶度等的分析,对该协同工艺的作用机理进行了探讨。实验结果表明,辐照与NaOH协同预处理,可以大大提高还原糖得率,协同效应明显。较适宜的组合预处理工艺为100 kGy辐照加2%NaOH浸泡1 h后,其酶解还原糖得率达到理论产率的78.2%。单纯用100 kGy剂量辐照对麦秸的组分、表面形态及结晶度的改变不明显,但可以大大降低后续碱浸泡所需的用量和时间。
     对100 kGy辐照加2%NaOH浸泡1 h的小麦秸秆的酶解条件进行了优化,其最佳酶解参数为:酶的用量为50 mg/g底物,底物量为1 g/50 ml缓冲液,温度为50℃,pH为4.8,酶解时间为48 h。在此条件下,小麦秸秆的酶解还原糖得率为80.15%。
The renewable energy is an alternative way to cope with the current energy shortage and the climate change. The biomass energy, as one of the renewable energy source, has received increasing attention in recent years. The bottleneck of the utilization of biomass for the production of biofuel or bioproducts is the disruption of cellulose, usually the chemical hydrolysis, mechanical abrasion methods have been used. However, there are some drawbacks, such as low efficiency and the negative effect of hydrolysis products on the further bioconversion. Therefore it is necessary to develop the new technology. This paper reported a pretreatment technology, that is, the application of ionizing irradiation technology for the pretreatment of wheat straw to improve their enzymatic hydrolysis. It is shown that irradiation can cause significant breakdown of the structure of wheat straw. The weight loss of wheat straw increased and the size distribution after crushing moved to fine particles at elevated irradiation doses. A synergistic effect between irradiation and crushing was observed, with a glucose yield of 10.24% at a dose of 500 kGy with powder of 140 mesh. The aftereffect of irradiation had important impact on enzymatic hydrolysis of wheat straw. The aftereffect (at 22nd day) of 400 kGy irradiation accounted for 20.0% of the initial effect for glucose production, and the aftereffects of 50, 100, 200 (at 9th day) and 300 kGy (at 20th day) accounted for 12.9%, 14.9%, 8.9% and 9.1%, respectively, for reducing sugar production.
     Gamma ray irradiation and alkali solution pretreatment of wheat straw and its effect on enzymatic hydrolysis were also studied in this paper. The result showed that irradiation can significantly decrease the concentration of alkali solution and shorten the pretreated time, though the changes in the physical and chemical properties of only irradiated wheat straw are indistinctively. A synergistic effect between irradiation and alkali solution pretreatment was observed, with a reducing sugar yield of 78.2% (accounted for theoretical yield) after irradiation at a dose of 100 kGy and then with2% NaOH pretreated for 1 h. And the optimum conditions for saccharification this pretreated wheat straw were 50 mg/g (cellulose/substrate), 50℃, 1 g/50 ml (substrate/buffer), pH 4.8, 48 h.
引文
[1] 朱跃钊,卢定强,万红贵等.木质纤维素预处理技术研究进展.生物加工过程,2004,1(4):11-16
    [2] 胡代泽.我国农作物秸秆资源的利用现状与前景.资源开发与市场,2000,16(1):19-20
    [3] 黄忠崎,龙章富,彭卫红等.农作物秸秆资源的综合利用.资源开发与市场,1999,15(1):32-34
    [4] 胡润青.欧盟可再生能源发展到2010年将达到12%.中国能源,2004,26(11):35-37
    [5] 曾麟,王革华.世界主要发展生物质能国家的目的与举措.可再生能源,2005,2:53-55
    [6] 孙建,陈砺,王红林等.纤维素原料生产燃料酒精的技术现状.可再生源,2003,6:5-9
    [7] 陈洪章.纤维素生物技术.北京:化学工业出版社,2005
    [8] Lenting H B M, Warmoeskerken M M C G. Mechanism of interaction between cellulase action and applied shear force, an hypothesis. Journal of Biotechnology, 2001, 89(2):217-226
    [9] Badal C S, Hemicelulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 2003, 30:279-291
    [10] Thomson J A, Molecular biology of xylan degradation. FEMS Microbiol Rev, 1993, 104:65-82
    [11] 秋增昌,王海毅.木质素的应用研究现状与进展.西南造纸,2004,33(3):29-33
    [12] Gong C S, Cao N J, Du J, et al. Ethanol production from renewable resources. Advances in Biochemical Engineering/Biotechnology, 1999, 36:207-241
    [13] 陈育如,夏黎明,吴绵斌等.植物纤维素原料预处理技术的研究进展.化工进展,1999,4:24-27
    [14] 唐爱民,梁文芷.纤维素预处理技术的发展.林产化学与工业,1999,19(4):81-88
    [15] Zhu S, Wu Y, Yu Z, et al. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technology, 2006, 97:1964-1968
    [16] Shafizadeh F, Bradbury A G W. Thermal degradation of cellulose in air and nitrogen at low temperatures. Journal of Applied Polymer Science, 1979, 23(5):1431-1442
    [17] Ben-Ghedalia D, Miron J. The effect of combined chemical and enzymetreatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnology and Bioengineering, 1981, 23(4):823-831
    [18] Neely W C. Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng, 1984, 26(1):59-65
    [19] Ben-Ghedalia D, Shefet G. Chemical treatments for increasing the digestibility of cotton straw. The Journal of Agricultural Science, 1983, 100:393-400
    [20] Vidal P F, Molinier J. Ozonolysis of lignin – improvement of in vitro digestibility of poplar sawdust. Biomass, 1988, 16(1):1-17
    [21] Dominguez J M, Cao Ningjun, Gong C S, et al. Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast. Bioresource Technology, 1997, 61(1):85-90
    [22] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol, 2002, 83:1-11
    [23] Millet M A, Baker A J, Scatter L D. Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech Bioeng Symp, 1976, 6:125-153
    [24] Bjerre A B, Olesen A B, Fernqvist T. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng, 1996, 49:568-577
    [25] Iyer P V, Wu Z W, Kim S B, et al. Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol, 1996, 57/58:121-132
    [26] David J G, John N S. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng, 1996, 51(4):375-383
    [27] Nunes A P, Pourquie J. Steam explosion pretreatment and enzymatic hydrolysis of eucalyptus wood. Bioresource Technology, 1996, 57(2):107-110
    [28] 陈洪章,曲音波,高培基.半纤维素蒸汽爆碎水解物连续发酵生产单细胞蛋白的研究.食品与发酵工业,1992,3:7-11
    [29] Holtzapple M T, Humphrey A E, Taylor J D. Energy requirements for the size reduction of poplar and aspen wood. Biotechnol Bioeng, 1989, 33(2):207-210
    [30] Mackie K L, Brownell H H, West K L, et al. Effect of sulphur dioxide and sulphuric acid on stream explosion of aspenwood. Journal of Wood Chemistry and Technology, 1985, 5(3): 405-425
    [31] Clark T A, Mackie K L. Steam explosion of soft-wood pinus rasiata with sulphur dioxide addition Ⅰ Process optimization. J Wood Chem Technol, 1987, 7(3): 373-403
    [32] Mes-Hartree M, Dale B E, Craig W K. Comparation of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose. Applied Microbiology and Biotechnology, 1988, 29:462-468
    [33] Holtzapple M T, Lundeen J E, Sturgis R. Pretreatment of lignocellulosic municipal solid waste by ammonia fiber explosion (AFEX). Appl Biochemi Biotechnol, 1992, (34/35):5-21
    [34] Tengerdy R P, Nagy J G. Increasing the feed value of forestry waste by ammonia freeze explosion treatment. Biological Wastes, 1988, 25(2):149-153
    [35] Holtzapple M T, Jun J H, Ashok G, et al. The ammonia freeze exposion (AFEX) process: a practical lignocellulose pretreatment. Appl Biochemi Biotechnol, 1991, (28/29):59-74
    [36] Vlasenko E Y, Ding H, Labavitch J M, et al. Enzymatic hydrolysis of pretreated rice straw. Bioresour Technol, 1997, 59(2-3):109-119
    [37] Zheng Y Z, Lin H M, Tsao G T. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog, 1998, 14(6):890-896
    [38] Hatakka A I. Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Applied Microbiology and Biotechnology, 1983, 18:350-357
    [39] Akin D E, Rigsby L L, Sethuraman A, et al. Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl Environ Microbiol, 1995, 61(4):1591-1598
    [40] 赵文彦,潘秀苗.辐射加工技术及其应用——高技术绿色加工产业.北京:兵器工业出版社,2003,4-7
    [41] 王宝章.辐射技术在治理三废中的应用.北京:原子能出版社,1983,5-6;11-14
    [42] Khan F, Ahmad S R, Kronfli E. γ-Radiation induced changes in the physical and chemical properties of lignocellulose. Biomacromolecules, 2006, 7:2303-2309
    [43] Charlesby A. Crosslinking and degradation of polymers. Radiat Phys Chem, 1981, 18:59-66
    [44] 许洪林,张文辉.60Co γ辐照引发的木材自由基.辐射研究与辐射工艺学报,1994,12(4):214-219
    [45] 李宝忠,张利华,于家艳.辐照聚酰胺1010的后效应.辐射研究与辐射工艺学报,1996,14(3):153-156
    [46] Glegg R E, Kertesz Z I. Aftereffect in the degradation of cellulose and pectin by gamma rays. Science, 1956, 124:893-894
    [47] 宫宁瑞,常德华,张剑蓉等.棉纤维素辐射降解的后效应.北京理工大学学报,1998,18(5):647-650
    [48] Polovka M, Brezová V, Sta?ko A, et al. EPR investigations of gamma –irradiated ground black pepper. Radiat Phys Chem, 2006, 75:309-321
    [49] Bayram G, Delincée H. Identification of irradiated Turkish foodstuffs combining various physical detection methods. Food Control, 2004, 15:81-91
    [50] Yordanov N D, Aleksieva K. X- and Q-band EPR studies on fine powders of irradiated plants. New a pproach for detection of their radiation history by using Q-band EPR spectrometry. Radiat Phys Chem, 2004, 69:59-64
    [51] Bhushan B, Bhat R, Rao B Y K, et al. Electron spin resonance studies on γ-irradiated coffee bean parts. International Journal of Food Science and Technology, 2003, 38:11-16
    [52] Keller A, Ungar G. Radiation effects and crystallinity in polyethylene. Radiat Phys Chem, 1983, 22:155-181
    [53] Hon D N S. Thermomechanical pulp and light-photoactivity of α-carbonyl group in solid lignin. Journal of Wood Chemistry and Technology, 1992, 12:179-196
    [54] Simkovic I, Ebringerova A, Tino J, et al. ESR study of soda waste liquors. Holzforschung, 1986, 40:15-18
    [55] 何源禄.植物纤维原料辐射水解研究进展.核技术,1984,5:7-10
    [56] 何源禄,王玉华.苏联植物纤维原料辐射水解研究进展.核技术,1987,2:1-6
    [57] Kumakura M, Kaetsu I. Effect of electron beam current on radiation pretreatment of cellulosic wastes with electron beam accelerator. Radiat Phys Chem, 1984, 23(5):523-527
    [58] Lu Z X, Kumakura, M. Effect of radiation pretreatment on enzymatic hydrolysis of rice straw with low concentrations of alkali solution. Bioresource Technol, 1993, 43(1):13-17
    [59] Han Y W, Timpa J, Clegler A, et al. γ-ray-induced degradation of lignocellulosic materials. Biotechnol Bioeng, 1981, 23(11):2525-2535
    [60] Chosdu R, Hilmy N, Erizal, et al. Radiation and chemical pretreatment of cellulosic waste. Radiat Phys Chem, 1993, 42(4-6):695-698
    [61] Kumakura M, Kaetsu I. Radiation degradation and the subsequent enzymatic hydrolysis of waster papers. Biotechnol Bioeng, 1982, 24(4):991-997
    [62] Kumakura M, Kaetsu I. Radiation and chemical pretreatment of chaff and its effect on enzymatic hydrolysis. Process Biochemistry, 1983, 18(5):14-16
    [63] Matsuhashi S, Kume T, Hashimoto S. Effect of γ-irradiation on enzymatic digestion of oil palm empty fruit bunch. Journal of the Science of Food and Agriculture, 1995, 69(2):265-267
    [64] Al-Masri M R, Zarkawi M. Effects of gamma irradiation on chemical compositions of some agricultural residues. Radiat Phys Chem, 1994, 43(3):257-260
    [65] Al-Masri M R. Nutritive value of some feed blocks, as influenced by gamma irradiation. Agribiological Res, 1995, 48(2):171-178
    [66] Al-Masri M R, Guenther K D. Changes in digestibility and cell-wall constituents of some agricultural by-products due to gamma irradiation and urea treatments.Radiat Phys Chem, 1999, 55(3):323-329
    [67] Banchorndhevakul S. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk. Radiat Phys Chem, 2002, 64(5-6):417-422
    [68] Leonhard L, Arnold G, Baer M, et al. Radiation degradation of cellulose. Radiat Phys Chem, 1985, 25(4-6):899-904
    [69] Al-Masri M R, Zarkawi M. Effects of gammar irradiation on cell-wall constituents of some agricultural residues. Radiat Phys Chem, 1994, 44(6):661-663
    [70] Youssef B M, Aziz N H. Influence of γ-irradiation on the bioconversion of rice straw by Trichoderma viride into single cell protein. Cytobios, 1999, 97:171-183
    [71] Lillehoj E B, Han Y W. Chemical and gamma-ray-modified bagasse as substrates for bioproduction of cellulases and protein. Biotechnol Bioeng, 1983, 25(8):2077-2084
    [72] Takacs E, Wojnarovits L, Borsa J, et al. Effect of γ-irradiation on cotton-cellulose. Radiat Phys Chem, 1999, 55(5):663-666
    [73] Takacs E, Wojnarovits L, Foldvary Cs, et al. Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiat Phys Chem, 2000, 57(3-6):399-403
    [74] Takacs E, Wojnarovits L, Foldvary Cs, et al. Radiation activation of cotton-cellulose prior to alkali treatmen. Res Chem Intermed, 2001, 27:837-845
    [75] Foldvary Cs M, Takacs E, Wojnarovits L. Effect of high-energy radiation and alkali treatment on the properties of cellulose. Radiat Phys Chem, 2003, 67:505-508
    [76] Tóth T, Borsa J, Takacs E. Effect of preswelling on radiation degradation of cotton cellulose. Radiat Phys Chem, 2003, 67:513-515
    [77] Edward I, Aleksandra K, Halina S, et al. Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives. Radiat Phys Chem, 2002, 63(3-6):253-257
    [78] Kumakura M, Kaetsu I. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials. International Journal of Applied Radiation and Isotopes, 1979, 30(3):139-141
    [79] Kumakura M, Kaetsu I. Radiation pretreatment of cellulosic wastes in the presence of acids. International Journal of Applied Radiation and Isotopes, 1984, 5(1):21-24
    [80] Kumakura M, Kaetsu I. Heat enhancement effects in radiation pretreatment of cellulosic wastes. Industrial & Engineering Chemistry, Product Research and Development, 1984, 23(1): 88-91
    [81] 马瑞德,周瑞敏,陈騊声.植物纤维素的辐射裂解及酶水解.工业微生物,1986,16:21-25
    [82] 何源禄,贾眉,鲁淑霞,等.电离辐射对马尾松及玉米芯稀酸水解影响的初步研究.林产化学与工业,1990,4:249-256
    [83] 陆兆新,熊仓秥.里氏木霉Trichoderma reesei固定化细胞酶液水解辐射预处理稻麦秸秆的研究.核农学报,1992,6:92-98
    [84] 宫宁瑞,常德华,刘继华.辐射对棉纤维素相对分子质量的影响.北京理工大学学报,1997,17:574-578
    [85] 常德华,宫宁瑞,刘继华.辐射对棉纤维素结晶度的影响.北京理工大学学报,1997,17:579-83
    [86] 张琳,顾汉泉,高仁孝.辐射对纤维素结晶度的影响.火炸药学报,2002,1:76-77
    [87] 周瑞敏,唐述祥.降低粘胶生产中废弃物的新工艺: 纤维素的辐射降解.环境科学,2002,23(增):118-120
    [88] Reidel K, Riter J, Bronnenmeier K, et al. Synergistic interaction of the Clostridium srercomrium cellulases AvicelaseⅠ(Cel Z) and AvicelaseⅡ(Cel Y) in the degradation of micfocrystallin cellulose. FEMS Microbiology Letters, 1997, 147:239-243
    [89] Tan L U L, Yu E K C, Mayers P, et al. Column cellulose hydrolysis reactor: Cellulase dsorption profile. Appl Microbiol Biotechnol, 1986, 25:256-261
    [90] Wood T M. Properties of cellulolytic enzyme system. Biochem Soci Trans, 1985, 13:407-410
    [91] Faterstam L T, Peitersson L G. The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414: A new type of cellulolytic synergism. FEBS Letters, 1980, 119(1):97-100
    [92] Lee I, Evans B R, Woodward J. The mechanism of cellulase action on cotton fibers : evidence from atomic force microscopy. Ultramicroscopy, 2000, 82(1-4):213-221
    [93] Wood T M. Properties and models of action of cellulase. Biotechnol Bioeng Symp, 1975, 5:111-137
    [94] Reese E T. Polysaccharase and the hydrolysis of insoluble substrates. Proc Sess, 1976, 6:9-12
    [95] Wood T M, Mccrae S I. Synergism between enzyme involved in the solubilization of native cellulose. Advances in Chemistry Ser, 1979, 181:181-209
    [96] Enari T M, Paavola M L. Enzymatic hydrolysis of cellulose. CRC Critical Reviews in Biotechnology, 1987, 5:67-81
    [97] Van Tibeurgh H, Claeyssens M. Detection and diferentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS letters, 1985, 187(2):283-288
    [98] Foyle T, Jennings L, Mulcahy P. Compositional analysis of lignocellulosicmaterials: Evaluation of methods used for sugar analysis of waste paper and straw. Bioresource Technology, 2007, 98:3026-3036
    [99] 王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序.微生物学通报,2002,(1):81-84
    [100] 宁正祥.食品成分分析手册.北京:中国轻工业出版社,2001
    [101] Kovalev G V, Bugaenko L T. On the crosslinking of cellulose under exposure to radiation. High Energy Chemistry, 2003, 37:209-215
    [102] Smith P A, Sheely M V, Hakspiel S J, et al. Volatile organic compounds produced during irradiation of mail. AIHA, 2003, 64:189-195
    [103] Hon D N S. Formation and behavior of mechanoradicals in pulp cellulose. Journal of Applied Polymer Science, 1979, 23:1487-1499
    [104] Khan F. Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by γ-radiation. Macromol Biosci, 2005, 5:78-89
    [105] Barsberg S, Matousek P, Towrie M. Structural analysis of lignin by resonance ramam spectroscopy. Macromol Biosci, 2005, 5:743-752
    [106] Felby C, Thygesen L G, Sanadi A, et al. Native lignin for bonding of fiber boards-evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Industrial Crops and Products, 2004, 20:181-189
    [107] Rocero M B, Torres A L, Colom J F, et al. TCF bleaching of wheat straw pulp using ozone and xylanase. Part A: paper quality assessment. Bioresource Technology, 2003, 87:305-314
    [108] Kim S, Holtzapple M T. Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology, 2006, 97:583-591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700