短期大剂量他汀逆转兔易损斑块进展试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.在新西兰大白兔的腹主动脉构建动脉粥样硬化易损斑块的动物模型。
     2.通过血管内超声技术VH-IVUS与病理检测结果进行比较,评价血管内超声技术在识别易损斑块中价值。
     3.通过观察血脂及主要致炎因子hs-CRP、MMP-3、IL-1、IL-10、TNF-α及ox-LDL等的水平变化,探讨血脂及炎症因子与斑块稳定性的关系。
     方法
     4月龄新西兰大白兔16只,随机分成单纯高脂组(6只)和高脂+球囊损伤组(10只)。2周后腹主动脉内膜球囊损伤术,术后继续高脂饲料喂养10周,总共12周后。两组兔分别于实验开始、球囊损伤后及处死动物前作血液生化检查。禁食12h以上,抽取空腹血,留取自凝血检测血脂水平。同时采用ELISA法测定血清高敏C反应蛋白(hs-CRP),肿瘤坏死因子(TNF-α),氧化型低密度脂蛋白(ox-LDL),白介素1(IL-1),白介素10(IL-10),基质金属蛋白酶3(MMP-3)的浓度。12周处死前高脂+球囊损伤组(8只)进行血管内超声检查。两组实验兔处死后,切取左肾动脉向远端的5cm长动脉,切成3mm厚,石碏包埋,5um的组织切片固定在载玻片上,分别进行病理学及免疫组织化学染色检查。
     结果
     1.实验过程中,高脂+球囊损伤组有两只兔意外死亡。
     2.两组兔血生化指标和炎性因子水平检测结果
     与基础状态相比,建模前后两组兔血脂各项指标比较均有显著性差异,只有LDL-c和Fig在处死前进一步升高,与球囊损伤时相比有显著差异,但两组间比较差异无统计学意义。基础状态和球囊损伤时,两组间对比hs-CRP、MMP-3、IL-l、IL-l0、TNF-α、ox-LDL水平无明显差异,在十二周处死前高脂+球囊损伤组与单纯高脂组比较,hs-CRP、MMP-3、IL-l、IL-l0、TNF-α、ox-LDL水平明显升高(P=0.00)。而且通过动态观察血清炎性因子的情况,发现两周后两组的hs-CRP、IL-l、IL-l0、TNF-α、ox-LDL水平较基础均有升高,但是与单纯高脂组不同,12周处死前高脂+球囊损伤组与两周时对比都有进一步提高,除IL-l的(P<0.05),其余(P均<0.01),而MMP-3在单纯高脂组动态观察并没有明显变化,高脂+球囊损伤组MMP-3在两周时虽有升高但没有统计学意义,12周处死前有明显升高(P<0.01)
     3.虚拟组织学-血管内超声(VH-IVUS)检查及与病理组织学对比
     在球囊损伤+高脂饮食组,8只实验兔均进行了血管内超声(IVUS)检查,并与病理检查的结果进行比较,总共276个动脉粥样硬化性斑块被分析,对于不同斑块的特异性,敏感性和阳性预测值被总结, VH-IVUS对非钙化和钙化的薄帽纤维斑块(TCFA)的敏感性是83.3和92.9%,VH-IVUS能正确的识别83.3和81.3%的非钙化和钙化的纤维斑块(FA),对于致病性内膜增生(PIT),VH-IVUS识别PIT的敏感性和阳性预测值分别是81.7和75.4%。以上结果提示VH-IVUS对于识别TCFA具有高度的敏感性和特异性。
     病理组织学与VH-IVUS对不同的组织成份识别存在明显的相关,线性回归分析显示,在斑块成份分析方面,病理组织学与虚拟组织学(VH-IVUS)之间存在明显相关:纤维组织(R=0.845,P<0.001),纤维脂肪组织(R=0.791,P<0.001),坏死钙化组织(R=0.793,P<0.001),并且坏死核心(R=0.731,P<0.001)。
     在内弹力膜和中外弹力膜边界的测量方面,不同的观察者之间变化很小,线性回归分析显示测量值明显相关各为(R=0.993和0.996)。
     4.两组病理学测量结果之比
     高脂与球囊损伤结合组12周时与单纯高脂组对比,除内中膜厚度变化不明显外,斑块厚度,纤维帽厚度及斑块厚度与内中膜厚度比值经分析,差异有非常显著性意义(P<0.01)。
     5.两组免疫组化染色对比
     高脂+球囊损伤组的斑块内有大量染色阳性CD68(巨噬细胞)聚集,主要集中于内膜近管腔面的数层细胞内及外膜处,而单纯高脂组几乎不着色,示炎症较轻;α-actin肌动蛋白两组均有染色,与单纯高脂组比,高脂+球囊损伤组的染色稍浅,两组CD68巨噬细胞和α-actin肌动蛋白阳性面积比有明显区别(P<0.01)。
     结论
     1.通过高脂+球囊损伤兔腹主动脉内膜,成功建立了易损斑块的动物模型。
     2.通过动态观察血脂水平和炎性因子水平的变化,得出易损斑块形成与高血脂水平基础上血管内膜损伤有关。
     3. VH-IVUS与病理检查结果存在良好的相关性,其对易损斑块检测的敏感性,特异性和阳性预测值高,是一个重复性好,有价值的检查手段。
     目的
     1.通过分组横向对比病理学、免疫组织化学及VH-IVUS的观察结果,了解短期不同剂量匹伐他汀干预对斑块成份和稳定性的影响。
     2.通过纵向动态观察VH-IVUS以及炎症因子水平在不同剂量匹伐他汀治疗前后变化,以了解不同剂量他汀干预对斑块的影响,探讨短期大剂量他汀对斑块的影响及其作用机制。
     方法
     1.动物实验
     易损斑块模型的建立同论文第一部分,采用高脂+球囊损伤腹主动脉建模,经过VH-IVUS检查确定已产生易损斑块的新西兰大白兔24只入选,随机分成对照组,匹伐他汀普通剂量组(1㎎/kg/d)和大剂量组(10㎎/kg/d) ,各8只,对照组仅予高脂饲料,1周后均进行VH-IVUS检查。
     2.血清学检查
     实验后12周末和13周末抽取兔耳缘静脉血4ml,自凝后留取血清分装于EPPendorf管中,分别检测血清总胆固醇(TC)、甘油三酷(TG)、低密度脂蛋白(LDL-C)及高密度脂蛋白(HDL-C)。部分血清按试剂盒说明采用ELISA法测定血清高敏C反应蛋白(hs-CRP),基质金属蛋白酶3(MMP-3),基质金属蛋白酶9(MMP-9),肿瘤坏死因子-α(TNF-α),白介素1(IL-1),白介素10(IL-10),氧化型低密度脂蛋白(ox-LDL)。
     3.血管内超声检查
     实验12周末及13周末检测以下指标:腹主动脉管腔面积(lumen area,LA),血管外弹力膜面积(external elastic membrane area,EEMA),斑块面积(Plaque area,PA),斑块负荷(Plaque burden,PB)。VH-IVUS检测根据成像原理,动脉粥样斑块成份分为四种:纤维成份(fibrous tissue,FT;绿色标记)、纤维脂质成份(fibro-fatty,FF;黄色标记)、钙化成份(dense calcium,DC;白色标记)、坏死成份(necrotic core,NC;红色标记)。
     4.病理组织学及免疫组织化学检查
     苏木素-伊红(HE)染色、天狼猩红染色和Masson染色,应用图像分析软件(Image-ProPlus 6.0 software,Mediacybemeties)进行测量分析,平均纤维帽厚度和血管内-中膜厚度(IMT)是在每个切片血管内膜的十个等距点测量的均值,并计算斑块厚度/血管内-中膜厚度的比值。应用MMP-3、MMP-9、CD68及α-actin等抗体检测局部基质金属蛋白酶,巨噬细胞及平滑肌细胞的表达。
     5,实时定量反转录多聚酶链式反应
     RT-PCR检测LOX-1、MMP-3、MMP-9、TIMP1及TIMP2等mRNA的表达。
     结果
     1.治疗前后血清学检测结果匹伐他汀组TC、TG、LDL-c等治疗后均有明显的减少(P<0.01),而大剂量匹伐他汀组的HDL-c有明显升高(P<0.01);组间对比,治疗后(13周末),与对照组相比,匹伐他汀治疗的两组TC、TG、LDL-c等均有明显的减少,且与普通剂量匹伐他汀组对比,大剂量组LDL-c有进一步的减少但没有统计学意义(P=0.066),而HDL-c明显升高有意义(P<0.01)。
     匹伐他汀组hs-CRP、MMP-3、MMP-9、TNF-α、IL-1、IL-10、ox-LDL等治疗后均有明显的减少(普通剂量组的TNF-α,hs-CRP, MMP-9的P<0.05外,其余的指标以及大剂量组的所有指标均P<0.01),且大剂量组更明显。组间对比,治疗后(13周末时),与对照组相比,普通和大剂量匹伐他汀组hs-CRP、MMP-3、MMP-9、TNF-α、IL-1、IL-10、ox-LDL等水平均有明显减少(P<0.05和P<0.01),且与普通剂量组相比,除ox-LDL和MMP-9外,其他指标大剂量组有更明显的减少(P<0.01)。
     2.治疗前后VH-IVUS血管容积和斑块成份改变
     大剂量匹伐他汀组与治疗前相比,治疗后管腔面积显著增大(P=0.01),斑块面积和斑块负荷显著减少(P<0.01),VH-IVUS示纤维脂质成份面积和纤维脂质成份含量有明显减少(P<0.05)。组间对比,治疗后(13周末)大剂量匹伐他汀组纤维脂质成份面积较对照组和普通剂量匹伐他汀组明显减少(P<0.01和P<0.05)。
     3.治疗前后斑块病理组织学检查结果
     根据特殊染色的结果,治疗后大剂量匹伐他汀组斑块厚度与对照组和普通剂量匹伐他汀组相比有明显减少而纤维帽厚度明显增厚(P<0.05和P<0.01),内中膜厚度指标三组间没有明显不同。通过特殊染色和免疫组化检测斑块内胶原、巨噬细胞、平滑肌细胞含量。巨噬细胞(CD68)染色阳性百分比大剂量匹伐他汀组较其他两组明显减少而α-actin染色阳性百分比明显增加(P<0.01),天狼猩红染色胶原阳性百分比大剂量匹伐他汀组与对照组相比有增加趋势但没有统计意义(P=0.06)。
     4.治疗前后实时定量反转录多聚酶链式反应(RT-PCR)
     匹伐他汀两组斑块内MMP-3、MMP-9mRNA和LOX-1表达明显减少,TIMP-l和TIMP-2的mRNA表达量增多,且存在剂量依赖性。
     结论
     1.普通和大剂量匹伐他汀短期内均有调脂作用,且存在剂量依赖性。
     2.普通和大剂量匹伐他汀短期内均有抗炎作用,且存在剂量依赖性。
     3.大剂量匹伐他汀短期内可稳定易损斑块,并逆转斑块的进展。
     4.在易损斑块动物模型中,匹伐他汀通过调脂、抗炎和抗氧化而发挥稳定及逆转斑块的作用。
Objectives
     1. To establish an animal model of vulnerable atherosclerotic plaque in New Zealand white rabbits abdominal aorta.
     2. To evaluate the value of intravascular ultrasound in recognition of vulnerable plaque by comparison with pathological results.
     3. To explore the relationship between plaque stability and the lipids and the major pro-inflammatory cytokines.
     Materials and methods
     New Zealand rabbits aged 4 months(n=16)were randomly divided into 2 groups: fat-rich diet group(group A, n=6) and fat-rich combined with arterial intimal injury group(group B, n=10). Rabbits of group B after 2 weeks underwent balloon-induced endothelial injury in the abdominal aorta and thereafter were fed a fat-rich diet (1%cholesterol) for 10 weeks. Blood was drawn from rabbits fasting overnight to measure lipid profile at the beginning of the study, after week 2, the end of week12 on termination of experiment. At the same time,ELISA was used to quantify the amount of different inflammation mediators such as hs-CRP,MMP-3, IL-1, IL-10, TNF-α, and ox-LDL. Rabbits of group B underwent intravascular ultrasound studies after anesthesia on termination of experiment. Rabbits of 2 groups were sacrificed, the abdominal aorta of 5cm was cut down distal to the takeoff of the left renal artery, and 3mm specimen was embedded in paraffin, and then cut into 5um-slices and fixed on glass slides for the purpose of pathological and immunohistochemical analysis.
     Results
     1. There were 2 rabbits of group B died in accident during experiment.
     2. Biochemical studies
     The serum lipids levels of all rabbits increased significantly after the fat-rich diet, with further increase of levels of LDL-c and Fig on termination of the experiment (P<0.01), but values did not significantly differ between two groups (P>0.05).
     Levels of hs-CRP,MMP-3, IL-1, IL-10, TNF-α, and ox-LDL were no significant differences between the 2 groups at baseline and week 2(all P>0.05). However,the levels of six inflammatory biomarkers were significantly higher in rabbits of group B than those in rabbits of group A on termination of the experiment (all P<0.01). The levels of hs-CRP,IL-1, IL-10, TNF-α, and ox-LDL of all rabbits were significantly higher at week 2 than at baseline, and the levels of hs-CRP,IL-1, IL-10, TNF-α, and ox-LDL of group B increased further on termination of the experiment, as compared to group A. The level of MMP-3 was significantly higher on termination of the experiment in group B.
     3. VH-IVUS imaging and histology
     Eight rabbits of group B underwent intravascular ultrasound, a total of 276 atherosclerotic plaques were analyzed. VH-IVUS had a sensitively of 83.3% and 92.9% for the detection of non-calcified and calcified TCFA, respectively. VH-IVUS correctly identified 83.3% of the non-calcified FA and 81.3% of the calcified FA. For the detection of PIT, VH-IVUS showed a sensitivity of 81.7% and a positive predictive value of 75.4%.
     Linear regression analysis showed a strong correlation between histology and VH-IVUS for the percent area of fibrous tissue (R=0.845, P<0.001), fibro-fatty tissue (R=0.791, P<0.001), necrotic calcified tissue (R=0.793, P<0.001) and confluent necrotic core (R=0.731, P<0.001).
     The inter-observer variability of the intimal boundaries and the medial- adventitial boundaries were low. Linear regression analysis shows a strong correlation between two measurements, which were performed by two observers (R=0.993 for intimal boundaries and 0.996 for medial-adventitial boundaries).
     4. Histological and immunohistochemical staining
     In addition to intra-media thickness, the plaque thickness, fibrous cap thickness and plaque thickness/ intra-medial thickness ratio were different significantly between the two groups (P<0.01). The results of immunostainingα-actin were less expression in group B than group A, the positive staining of CD68 were higher in group B than group A.
     Conclusions
     We have developed an animal model of vulnerable plaque in New Zealand white rabbit abdominal aorta. vulnerable plaque is successfully produced by fat-rich diet together with balloon-induced endothelial injury in the rabbit abdominal aorta. Linear regression analysis showed a strong correlation between histology and VH-IVUS, VH-IVUS is a feasible, reproducible and valuable means of the vulnerable plaque identification.
     Objectives
     1. To test the hypothesis that short-term high-dose pitavastatin intervention has anti-atherosclerotic progression and plaque-stabilizing effect in a rabbit model of vulnerable plaques.
     2. To elucidate the mechanisms of short-term high-dose pitavastatin treatment in stabilizing vulnerable plaques. Methods
     1. Anmal experiment protocol
     A rabbit model of vulnerable plaque was produced by the method in part I. The male New Zealand white rabbits underwent balloon-induced endothelial injury in the abdominal aorta and thereafter were fed with a high-cholesterol diet (l% cholesterol) for 10 weeks. A total of 24 male New Zealand white rabbits were identified vulnerable plaques in abdominal aorta by VH-IVUS. Then rabbits were randomly divided into 3 groups: group A was served as controls (without treatment, n=8), group B was given usual dose pitavastatin (1mg/kg/d, n=8), group C was given high-dose pitavastatin (10mg/kg/d, n=8). One week later, all rabbits underwent VH-IVUS examination.
     2. Biochemical studies
     Blood was drawn from rabbits fasting overnightat the end of week12 and 13 to measure lipid profile and the amount of different inflammation mediators such as hs-CRP, MMP-3, MMP-9, TNF-α, IL-1, IL-10 and ox-LDL.
     3. Intravascular ultrasound studies
     VH-IVUS was accomplished at the end of week 13 to measure the external elastic membrane area(EEMA), the lumen area(LA),plaque area(PA),the percentage of plaque burden(PB). VH-IVUS identified four different plaque components (fibrous, fibrofatty, necrotic and calcified tissue).
     4. Histological and immunohistochemical staining
     Serial cross-sections underwent general histological staining with hematoxylin & eosin(HE), picrosirius red, Masson and specific immunohistochemical stainings. The primary antibodies included monoclonal antibodies against rabbit macrophages to identify macrophages,andα-smooth muscle cell actin to detect VSMCs. The fibrous cap thickness, the intra-media thickness, the plaque thickness, and the plaque thickness/ intra-medial thickness ratio were measured and values averaged. VSMCs and macrophages were expressed as a percentage of statining area divided by plaque area.
     5. Quantitative Real-time reverse transcriptase-polymerase chain reaction
     The mRNA expression of various inflammation medicators LOX-l, MMP-3, MMP-9, TIMP-1 and TIMP-2 in the abdominal arterial atherosclerosis lesions was determined by RT-PCR. Results
     1. Biochemical changes
     The levels of TC, TG and LDL-C were decreased significantly in pitavastatin groups (P<0.01), and HDL-C was increased in high-dose pitavastatin group(P<0.01). At the week 13, the levels of TC, TG and LDL-C in pitavastatin group were lower than those in control group, but only HDL-C in high-dose pitavastatin group was higher than that in usual dose pitavastatin group (P<0.01).
     The levels of MMP-3, hs-CRP, MMP-9, TNF-α, IL-1, IL-10 and ox-LDL were decreased significantly after treatment in pitavastatin groups (P<0.05 for TNF-α,hs-CRP, MMP-9 in usual dose group and P<0.01 for IL-1, IL-10, MMP-3, ox-LDL in usual dose group and all in high dose group). The levels of MMP-3, hs-CRP, MMP-9, TNF-α, IL-1, IL-10 and ox-LDL in pitavastatin groups was lower than those in control group, and the levels of MMP-3, hs-CRP, TNF-α, IL-1 and IL-10 in high-dose pitavastatin group was lower than those in usual dose group(P<0.01 for MMP-3, hs-CRP,TNF-α, IL-1, IL-10 ).
     2. Intravascular ultrasound alterations
     The lumen area was increased significantly (P=0.01), and the plaque area and the plaque burden were decreased significantly after pitavastatin treatment in high-dose group (P<0.01), however, fibro-fatty volume and fibro-fatty (%) was decreased significantly after the treatment in high-dose group. Fibro-fatty volume in high-dose group was decreased significantly in control and usual dose group (P<0.01 and P<0.05).
     3. Histological changes
     Plaque thickness in high-dose pitavastatin group was decreased significantly than in control and usual dose groups (P<0.05), however, fibrous cap was increased significantly (P<0.01). Lower macrophage and higher SMCs were found in high-dose pitavastatin group than in control and usual dose groups (P<0.01).
     4. Quantitative Real-time RT-PCR
     The relative mRNA expressions of LOX-l,MMP-3,MMP-9 were lower in treatment groups than in control group (all P<0.01), and high dose group was decreased significantly than usual dose group (P<0.01). On the contrary,TIMP-1 and TIMP-2 mRNA expressions were higher in treatment groups than in control group, and high dose group was increased significantly than usual dose group.
     Conclusions
     1. Short-term pitavastatin treatment is effective in lipid lowering with a dose-dependent way.
     2. Short-term pitavastatin treatment has anti-inflammation effect with a dose-dependent way.
     3. Short-term with high-dose pitavastatin intervention enhances the vulnerable plaque stability and inhibits the plaque progression.
     4. The mechanisms involved in stabalising vulnerable plaques by short-term high-dose pitavastatin may be mainly due to its lipid lowering, anti-inflammation and anti-oxidative effects.
引文
[1] Cullen P,Baetta R,Bellosta S,et al.Rupture of the atherosclerotic plaque:does a good animal model exist? Arterioscler Thromb Vasc Biol.2003;23:535-542.
    [2]Kusumi Y, Scanu AM, McGill HC, Wissler RW. Atherosclerosis in a rhesus monkey with genetic hypercholesterolemia and elevated plasma LP(a). Atherosclerosis 1993;99:165-74.
    [3]Nagasawa K, Tomoike H, Hayashi Y, Yamada A, Yamamoto T, Nakamura M. Intramural hemorrhage and endothelial changes in atherosclerotic coronary artery after repetitive episodes of spasm in x-ray-irradiated hypercholesterolemic pigs. Circ Res 1989;65:272-82.
    [4]Holvoet P, Theilmeier G, Shivalkar B, Flameng W, Collen D. LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs. Arterioscler Thromb Vasc Biol.1998; 18:415-22.
    [5]Prescott MF, McBride CH, Hasler-Rapacz J, Von Linden J, Rapacz J. Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolifpoprotein B. Am J Pathol 1991;139:139-47.
    [6]Granada JF, Moreno PR, Burke AP, Schulz DG, Raizner AE, Kaluza GL. Endovascular needle injection of cholesteryl linoleate into the arterial wall produces complex vascular lesions identifiable by intravascular ultrasound: early development in a porcine model of vulnerable plaque. Coron Artery Dis 2005;16:217-24.
    [7]Phinikaridou A, Hallock KJ, Qiao Y, Hamilton JA. A robust rabbit model of human atheroclerosis and atherosthrombosis. J Lipid Res. 2009;50(5):787-97.
    [8]冯向飞,盛净,陈朝婷.兔动脉粥样硬化易损斑块中高表达热激蛋白70细胞与细胞凋亡的关系.临床心血管病杂志. 2006,22(4):227-230.
    [9]Rodriguez-Granillo GA, Vaina S, Garcia-Garcia HM, Valgimigli M,Duckers E, Van Geuns RJ, Regar E, Van der Giessen WJ, Bressers M,Goedhart D, Morel MA, De Feyter PJ, Serruys PW. Reproducibility of intravascular ultrasound radiofrequency data analysis: implications for the design of longitudinal studies. Int J CardiovascImaging. 2006;22:621-631.
    [10] Guidance Suggestion of Caring Laboratory Animals; The Ministry of Science and Technology of the People’s Republic of China: Beijing, China, 30 September 2006 (in Chinese).
    [11]仲琳,张运,张梅,等.兔动脉粥样硬化易损斑块模型的建立[J].基础医学与临床, 2005,25(4):370-373.
    [12]康卫华,王萍,王雪梅,等.兔腹主动脉粥样硬化模型的建立[J].临床医药实践杂志, 2007,34(11):1062-1064.
    [13]韩晓枫,张威,赵益明.高脂饲料加球囊扩张兔腹主动脉粥样硬化易损斑块模型的建立[J].临床和实验医学杂志,2006,5(11):1679-1680.
    [14]Chen WQ,Zhang丫,Zhang M,Ji XP,Yin Y,Zhu YF. Establishing an animal model of unstable atheroselerotic plaques. Chin Med J. 2004;117(9):1293- 1298
    [15]Chen WQ,Zhang L,Liu YF,Chen L,Ji XP,Zhang M,Zhao YX,Yao GH,Zhang C,Wang XL,Zhang Y.Prediction of atherosclerotic plaque ruptures with high-frequency ultrasound imaging and serum inflammatory markers.Am J Physiol Heart Circ Physiol.2007;293(5):H2836-H2844.
    [16]Zhong L,Chen WQ,Ji XP,Zhang M,Zhao YX,Yao GH,Zhang PF,Zhang C,Zhang Y.Dominant-negative mutation of monocyte chemoattractant protein-l prevents vulnerable plaques from rupture in rabbits indendent of serum lipid levels.J Cell Mol Med.2008,12(6A):2362-71.
    [17] Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37(5):1478-92.
    [18]García-García H, Goedhart D, Schuurbiers JCH, Kukreja N,Tanimoto S, Daemen J, Morel MA, Bressers M, van Es GA, Wentzel J,Gijsen F, van der Steen A, Serruys PW. Virtual histology and remodelling index allow in vivo identification of allegedly high-risk coronary plaques in patients with acute coronary syndromes: a three vesselintravascular ultrasound radiofrequency data analysis. Euro Intervention, 2006;2:338-344.
    [19]Konig A, Margolis MP, Virmani R, Holmes D, Klauss V. Technology Insight: in vivo coronary plaque classification by intravascular ultrasonography radiofrequency analysis. Nat Clin Pract Cardiovasc Med. 2008 Apr;5(4):219-29.
    [20]Rekhter MD,Hicks GW,Brammer DW,Work CW,Kim JS,Gordon D,Keiser JA , Ryan MJ. Animal model that mimics atherosclerotic plaque rupture.Cir Res.1998,83:705-713
    [21]Yang PY,Almofti MR,LuL,et al.Reduction of atherosclerosis in cholesterolfed rabbits and decrease of expressions of intracellular adhesion molecule-1 and vascular endothelial growth factorin foam cells by a water-soluble fraction of poly-gonum multiflorum.J Pharmacol Sci,2005,99(3): 294-300
    [22]Steinberg D. Lipoprotein and the pathogenesis of atheroslerosis. Chol Cardiovasc Dis,1987,76(3):508-513
    [23]Fuster V,Badimon L,Badimon JJ,Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes.N Eng J Med.1992, 326(5):310-318.
    [24]Naghavi M,Libby P,Falk E,Casseells SW,Litovsky S,Rumberger J,Badimon JJ,Stefanadis C,Moreno P,Pasterkam PG,Fayad Z,Stone PH,Waxman S,Raggi P,Madjid M,Zarrabi A,Burke A,Yuan C,FitZgerald PJ,Siseoviek DS,deKorte CL,Aikawa M,JuhaniAiraksinen KE,Assmann G,Beeker CR,Chesebro JH,Farb A,Galis 25,Jackson C,Jang IK,Koenig W,Lodder RA,March K,Demirovie J,Navab M,Priori SG,Rekhter MD,Bahr R,Grundy SM,Mehran R,Colombo A,Boerwinkle E,Ballantyne C,Insull W Jr,Schwartz RS,Vogel R,Semiys PW,Hansson GK,Faxon DP,Kaul S,Drexler H,Greenland P,Muller JE,Virmani R,Ridker PM,ZiPes DP,Shah PK,Willerson JT.From vulnerable plaque to vulnerable patient.A call for new definition and risk assessment strategies:PartⅠand partⅡ.Circulatton. 2003;108:1664-1778
    [25] Moreno PR,Ladder RA.Purushothaman KR,et a1.Detection of lipid pool,thin fibrouscap.and inflammatory cells in human aortic atheresclerotie plaques bynear infrared spectroscopy.Circulation,2002,105(8):923
    [26]Tsimikas S. Oxidized low-density lipoprotein biomarkers in atherosclerosis [J ]. Curr Atheroscler Rep,2006,8(1):55-61.
    [27]Mehta JL,Chen J,Heronat PL ,et al.Lectin-like ,oxidized low density lipoprotein receptor-1(LOX-1):a critical player in the development of atherosclerosis and related disorders[J].Cardiovasc Res,2006,69(1):36 - 45.
    [28]Yamashta H, Ehara S, Yoshiyama M,et al.Elevated plasma levels of oxidized low-density lipoprotein relate to the presence of angiographically detected complex and thrombotic coronary artery lesion morphology in patients with unstable angina[J].Circ J,2007,71(5):681- 687
    [29] Shimizu T, Nakai K, Morimoto Y, Ishihara M, Oishi H, Kikuchi M, Arai H. Simple rabbit model of vulnerable atherosclerotic plaque. Neurol Med Chir (Tokyo). 2009;49(8):327-32.
    [30]Ross R. Atherosclerosis-an inflammatory disease [J]. N Engl J Med, 1999,340(2):115.
    [31]Wen Y,Leake DS. Low density lipoprotein undergoes oxidation within lysosomes in cells[J].Circ Res,2007,100(9):1337-1343
    [32]Minnema MC,Peters RJ,de Winter R,et al. Activation of clotting factorsⅪandⅨin patients with acute myocardial infarction.Arterioscler Thromb Vasc Biol,2000.20(11):2489-2493.
    [33] ElIiott MR, Thrush AJ. Measurement of resolution in intravascular ultrasound images [J].Phyhiol Meas.1996,17:259-265.
    [34]Brezinski ME,Tearney GJ,Weissman NJ,et al. Assessing atherosclerotic plaque morphology,comparison of optical coherence tomography and high ferquency intravascular ultrasound[J]. Heart,1996,77:397-403.
    [35]Prati F,Arbustini E,Labellarte A,et al. Intravascular ultrasound insights into plaque composition[J], Z Kardiol,2000,89(suPPl 2):117-123.
    [36]Nair A, Margolis MP, Kuban BD, et al. Automated coronary plaque characterization with intravascular ultrasound backscatter:ex vivo validation[J]. EuroIntervention.2007.3:113-120.
    [37]Nasu K,Tsuchikane E,Katooh O,et al. Accuracy of in vivo coronary plaque morphology assessment.A Validation study of in vivo virtual histology compared with in vitro histopathology[J].J Am Coll Cardiol,2006,47:2405-2412.
    [38]Rodriguez-Granillo GA,Garcia-Garcia HM,Mcfadden EP, et al.In vivo intravascular ultrasound-derived thin-cap fibroatherema detection using ultrasound radiofrequeney data analysis.J Am Coil Cardiol.2005,46:2038- 2042.
    [39]Heng MK,Mintz GS,Lee CW,et a1.A three-vessel virtual histology intravascular ultrasound analysis of frequency and distribution of thin-cap fibroatheromes in patients with acute corounly syndrome or stable angina pectoris.Am J Cardiol,2008,101:568-572.
    [40]Yamamoto M,Takano M,Okamatsu K,et al.Relationship between thin cap fibroathemma identified by virtual histology and angioecopic yellow plaque in quantitative analysis with colorimetry.Circ J,2009,73:497-502.
    [41]Nair A , Margolis MP , Kubun VD , et al . Automated coronary phque characterisation with intravascular ultrasound backscatter: Ex vivo validation.Eurointervention,2007.3:113-120.
    [42]Satbyanarayana S,Carlier S,Li W, et al.Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals.EuroIntervention,2009,5:133-139.
    [43]Diethrich EB,Pauliiun Margolis M,Reid DB,et al.Virtual histology intravascular ultrasound assessment of carotid artery disease:The Carotid Artery Plaque Virtual Histology Evaluation(CAPITAL)Study . J Endovasc Ther ,2007,14:676-686.
    [44] Van Herck J, De Meyer G, Ennekens G, Van Herck P, Herman A, Vrints C. Validation of in vivo plaque characterisation by virtual histology in a rabbit model of atherosclerosis. EuroIntervention. 2009;5(1):149-56.
    [1].Falk E. Why do plaques rupture? Circulation.1992;86:Ⅲ30-42.
    [2].Burke AP,Farb A,Malcom GT,Liang YH,Smialek J,Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly.N Engl J Med.1997:336:1276-1282
    [3].Moreno PR,Falk E,Palacios IF,Newell JB,Fuster V,Fallon JT. Macrophages infiltration in acute coronary syndromes:Implications for plaque rupture.Circulation.1994;90:775-778
    [4].van der Wal AC,Piek JJ,de Boer OJ,Koeh KT,Teeling P,van der Loos CM,Becker AE. Recent activation of the plaque immune response in coronary lesions under lying acute coronary syndromes.Heart.1998:80:14-18
    [5].Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383-1389.
    [6].Sacks FM, Peffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of Pravastatin on coronary events after myocadial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001-1009.
    [7].The Long-Term Intervention with pravastatin in Ischaemic Disease (LIPID) Study Group. prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339: 1349-1357.
    [8]. Pitt B, Waters D, Brown WV, van Boven AJ, Schwartz L, Title LM, et al. Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease. N Engl J Med 1999; 341: 70-76.
    [9]. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, et al. Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes. JAMA 2001; 285: 1711-1718.
    [10]. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Studyof cholesterol lowering with simvastatin in 20536 high-risk individuals: A randomized placebo-controlled trial. Lancet 2002; 360: 7-22.
    [11]. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruncher JC, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005; 352: 1425-1435.
    [12]. Cannon CP, Braunworld E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350: 1495-1504.
    [13] Nissen SE, Nicholls SJ, SiPahi I, Libby P, Raichlen JS, Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556-65.
    [14] Okazaki S, Yokoyama T, Miyauchi K, Shimada K,Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study.Circulation. 2004 ;110(9):1061-1068.
    [15]Pasceri V, Patti G, Nusca A, et al. Randomized Trial of Atorvastatin for Reduction of Myocardial Damage During Coronary Intervention Results From the ARMYDA (Atorvastatin for Reduction of Myocardial Damage during Angioplasty) Study[J]. Circulation,2004,110:674-678.
    [16]Giuseppe Patti, MD; Massimo Chello, MD; Dario Candura, MD; et al. Randomized Trial of Atorvastatin for Reduction of Postoperative Atrial Fibrillation in Patients Undergoing Cardiac Surgery: Results of the ARMYDA-3 (Atorvastatin for Reduction of Myocardial Dysrhythmia After cardiac surgery) Study. Circulation 2006;114;1455-1461.
    [17]Patti G, Pasceri V, Colonna G, et al. Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention: results of the ARMYDAACS randomized trial. J Am Coll Cardiol,2007,49:1272-1278.
    [18]SUZUKIH,YAMAZAKIH,AOKIT,et al. Hypolipidemic effect of NK-104 andother 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor in guinea pigs[J]. Arzneimittelforschung,2001,51(1):38-45.
    [19] Toi T, Taguchi I, Yoneda S, Kageyama M, Kikuchi A, Early effect of lipid-lowering therapy with pitavastatin on regression of coronary atherosclerotic plaque. Circ J. 2009;73(8):1466-72.
    [20].Pedersen TR,Wilhellnsen L,Faergemano,Strandberg TE,Thorgeirsson G,Troedsson L,Kristianson J,Berg K,Cook TJ,Haghfelt T,Kjekshus J,Miettine T,Olsson AG,Pyorala K,and Wedel H. Follow-up study of patients randomize in the scandinavian simvastatin survival study(4S) of cholesterol lowering. Am J Cardiol.2000;86:257-62
    [21].Heart Protection Study Collaborative Group. MRC/BHF Heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals:randomised placebo-controlled trial. Lancet.2002:360:7-22
    [22].ShePherd J,Cobbe SM,Ford I,Isles CG,Lorimer AR,MacFarlane PW,McKilloP JH,Paekard CJ. Prevention of coronary heart disease with pravastati in men with hypercholesterolemia:West of Scotland Coronary Prevention Study Group. N ENGI J Med.1995:333:1301-1307
    [23]董亚琳,董卫华.他汀类药物的研究进展[J].中国新药杂志2003,12(3):175 - 178.
    [24]国大亮,张广雪,孙海英.超级他汀家族新成员----匹伐他汀[J].齐鲁药事,2004, 23(1):61-62.
    [25]Bolego C, Pol IA, Cignarella A, et al. Novel statins: Pharmacological and clinical results[J].Cardiovasc Drugs Ther,2002,16(3):251-257.
    [26] Mukhtar RY, Reid J, Reckless JP. Pitavastatin. Int J Clin Pract. 2005;59(2):239-52
    [27]Kajinami K,Takekoshi N,Saito Y.Pitavastatin: Efficacy and safety profiles of a novel synthetic HMG-CoA reductase inhibitor. Cardiovasc Drug Rev 2003; 21:199-215.
    [28]Kajinami K, Mabuchi H, Saito Y. NK-104: A novel synthetic HMG-CoA reductase inhibitor. Expert Opin Invest Drugs 2000;9: 2653–2661.
    [29] Garcia MJ,Reinoso RF,Navarro AS,Prous JR. Clinical pharmacokinetics of statins. Methods Find Exp Clin Pharmacol 2003;25: 457-481.
    [30]Fujino H,Kojina J,Yamada Y,Kimata H. Studies on the metabolic fate of NK-104,a new inhibitor of HMG-CoA reductase(4):Inter species variation in laboratory animals and humans. Xenobiol Metab DisPos 1999;14: 79-81.
    [31]Martin PD, Warwick MJ, Dane AL et al. Metabolism, excretion and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther 2003; 25: 2822-2835.
    [32] Kajinami K, Takekoshi N, Saito Y. Pitavastatin: Efficacy and safety profiles of a novel synthetic HMG-CoA reductase inhibitor. Cardiovasc Drug Rev 2003; 21: 199-215.
    [33] Bolego C, Poli A, Cignarella A, CataPano AL, Paoletti R. Novel statins: pharmacological and clinical results. Cardiovasc Drugs Ther 2002;16:251- 257.
    [34] Suzuki H, Yamazaki H, Aoki T, et al. Hypolipidemic effect of NK-104 and other 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in guinea pigs. Arzneimittelforschung.2001; 51: 38-45.
    [35] Weitz-Schmidt G..Statins as anti-inflammatory agents. Trends Pharmacol Sci 2002; 23: 482-486.
    [36] Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels.Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335:1001-1009.
    [37]Nissen SE, Murat TE, Schoenhagen P,et al.Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis a randomized controlled trial[J].JAMA 2004;291:1071-1080.
    [38]Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Leffer DJ, Sessa WC, Walsh K. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nature Med. 2000;6:1004–1010.
    [39].Sata M, Nishimatsu H, Suzuki E, Sugiura S, Yoshizumi M, Ouchi Y, Hirata Y,Nagai R. Endothelial nitricoxide synthase is essential for the HMG-CoA reductase in hibitor cerivastatin to promote collateral growth in response to ischemia. FASEBJ. 2001;15:2530-2532.
    [40] Nakagata N, Cryop reservation of mouse spermatozoa [ J ]. J Mamm, Ova Res, 2000, 17(1) : 1-8.
    [41] Ikeda U, ShimPo M, Ohki R, et al. Fluvastatin inhibits matrix metalloproteinase-Ⅰexpression in human vascular endothelial cells. Hypertension. 2000:36:325-329.
    [40]Gertz SD, Kalan JM , Kragel AH , Roberts WC , Braunwald E.Cardiac morphologic findings in patients with acute myocardial infarction treated with recombinant tissue plasminogen activator.Am J Ca rdiol.1990;65:953-961
    [42] Sata M, Nishimatsu H, Osuga J, Tanaka K, Ishizaka N, Ishibashi S, Hirata Y, Nagai R. Statins augment collateral growth in response to ischemia but they do not promote cancer and atherosclerosis. Hypertension. 2004 Jun;43(6):1214-20.
    [44] Nissen SE,Nicholls SJ,Woiski K,et at.Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes:The PERISCOPE randomized controlled trial[J].JAMA,2008,299:1561-1573.
    [45] Madjid M, Vela D, Khalili-Tabrizi H, et al. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: clues to the triggering effect of acute infections on acute coronary syndromes[J]. Texas Heart Institute J, 2007, 34 (1): 11-18 .
    [46]Suzuki M, Saito M, Nagai T, et al. Systemic versus coronary levels of inflammation in acute coronary syndromes[J]. Angiology,2006,57(4): 459-463 .
    [47]Hansson GK. Inflammation,atheroselerosis,and coronary artery disease. N Eng J Med.2005,352:1685-1695
    [48]Schlager O, Exner M, Mlekusch W, et al. C-reactive protein predicts future cardiovascular events in patients with carotid stenosis. Stroke,2007,38:1263- 1268
    [49] Falk E. Why do plaques rupture? Circulation.1992;Dec,86:11130-42.
    [50] Moreno PR,Falk E,Palacios IF,Newell JB,Fuster V,Fallon JT. Macrophages infiltration in acute coronary syndromes:Implications for plaque rupture. Circulation.1994;90:775-778
    [51]Hartung D,Sarai M,Petror A,et al. Resolution of apoptosis in atherosclerotic plaque by dietary modification and statin therapy. J Nucl Med,2005,46(12):2051-2056.
    [52]Tesfamariam B, DeFelice AF.Endothelial injury in the initiation and progression of vascular disorders[J].Vasc Pharmacol,2007,Apr,46(4):229-237
    [53] Mukherjee S, Coaxum SD, Maleque M, et al. Effects of oxidized low density lipoprotein on nitric oxide synthetase and protein kinase C activities in bovine endothelial cells[J], Cell Mol Biol,2001,47(6):1051-1058
    [54]Ross R. Atherosclerosis is an inflammatory disease[J]. Am Heart J,1999, 138:S419-S420.
    [55]Li DY, Williams V, Liu L, et al. Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction[J]. J Am Coll Cardiol,2003, 41(6):1048-1055
    [56]Sawamura T,Kume N,Aoyama T,Moriwaki H,Hoshikawa H,Aiba Y,Tanaka T,Miwa S,Katsura Y,Kita T,Masaki T. An endothelial receptor for oxidzed low-density lipoprotein. Nature.1997:386:73-77
    [57]Hayashida K,Kume N,Murase T,Inada T,Tanaka M,Ueda A,Kominami G, Kambara H, Kimura T, Kita T. Serum Soluble Lectin-Like Oxidized Low-Density Lipoprotein Receptor-l Levels Are Elevated in Acute Coronary Syndrome:a novel marker for early diagnosis.Circulation.2005:112:812-818
    1. Thavendiranathan P, Bagai A, Brookhart MA, Choudhry NK. Primary prevention of cardiovascular diseases with statin therapy. A meta-analysis of randomized controlledtrials. Arch Intern Med. 2006;166:2307-2313.
    2. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvaastatin Survival Study (4S). Lancet. 1994;344:1383-1389.
    3. ShePherd J, Blauw G, MurPhy M, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomized controlled trial. Lancet. 2002;360:1623-1630.
    4. Mills EJ, Rachlis B, Wu P, et al. Primary prevention of cardiovascular mortality and events with statin treatments. A network meta-analysis involving more than 65,000 patients. J Am Coll Cardiol. 2008;52:1769-1781.
    5. Pedersen TR, Facrgeman O, Kastelein JJP, et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction. The IDEAL study: a randomized controlled trial. JAMA. 2005;294:2437-2445.
    6. Cannon CP, Braunwald D, McCabe CH, et al.Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495-1504.
    7. Josan K, Majumdar SR, McAlister FA. The effcacy and safety of intensive statin therapy: a meta-analysis of randomized trials. CMAJ. 2008;178:576-584.
    8. Cholesterol Treatment Trialists’(CTT) Collaborators. Effcacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267-1278.
    9. Robinson JG, Wang S, Smith BJ, Jacobson TA. Meta-analysis of the relationship between nonhigh-density lipoprotein cholesterol reduction and coronary heart disease risk. J Am Coll Cardiol.2009;53:316-322.
    10. Armitage J. The safety of statins in clinical practice.Lancet. 2007;370:1781-1790.
    11. Joy TR, Hegele RA. Narrative review: statin-related myopathy. Ann Intern Med. 2009;150:858-868.
    12. Kotseva K, Stagmo M, De Bacquer D, et al. Treatment Potential for cholesterol management in patients with heart disease in 15 European countries: fndings from the EUROASPIRE II survey. Atherosclerosis. 2008;197:710-717.
    13.Livalo (pitavastatin) product information.Montgomery,AL: Kowa Pharmaceuticals America, Inc.; 2010.
    14. Aoki T, Nishimura H, Nakagawa S, et al. Pharmacologic profle of a novel synthetic inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Arzneim Forsch. 1997;47:904-909.
    15. Acemoglu M, Brodbeck A, Garcia A, et al. A new and effcient synthesis of the HMG-CoA reductase inhibitor pitavastatin. Helv Chim Acta. 2007;90:1069-1081.
    16. Hayashi T, Yohote K, Saito Y, Iguchi A. Pitavastatin: effcacy and safety in intensive lipid lowering. Expert Opin Pharmacother. 2007;8;2315-2327.
    17. Morikawa S, Umetani M, Nakagawa S, et al. Relative induction of mRNA for HMG CoA reductase and LDL receptor by fve different HMG-CoA reductase inhibitors in cultured human cells. J Atheroscler Thromb. 2000;7:138-144.
    18. Yokoyama T, Miyauchi K, Kurata T, et al. Inhibitory effcacy of pitavastatin on the early infammatory response and neointimal thickening in a porcine coronary after stenting. Atherosclerosis. 2004;174:253-259.
    19. Hiraoka M, Yoshida M. A novel HMG-CoA reductase inhibitor, pitavastatin inhibits IL-6-induced CRP in liver cells via ERK 1/2-dependent but not STAT3-dependent signaling transduction. Circ J. 2003;67(suPPl. 1):271.
    20. Hayashi T, Rani P, Fukatsu A, et al. A new HMG-CoA reductase inhibitor, pitavastatin remarkably retards the progression of high cholesterol induced atherosclerosis in rabbits. Atherosclerosis. 2004;176:255-263.
    21. Wang J, Tokoro T, Matsui K, et al. Pitavastatin at low dose activates endothelial nitric oxide synthase through PI3K-AKT pathway in endothelial cells. Life Sci. 2005;76:2257-2268.
    22. Maeda K, Yasunari K, Sato E, et al. Enhanced oxidative stress in neutrophils from hyperlipidemic guinea Pig. Atherosclerosis. 2005;181:87-92.
    23. Kohno M, Shinomiya K, Abe S, et al. Inhibition of migration and proliferation of rat vascular smooth muscle cells by a new HMG-CoA reductase inhibitor, pitavastatin. HyPertens Res. 2002;25:279-285.
    24. Markle RA, Han J, Summers BD, et al. Pitavastatin alters the expression ofthrombotic and fbrinolytic proteins in human vascular cells. J Cell Biochem. 2003;90:23-32.
    25. Masamura K, Oida K, Kanehara H, et al. Pitavastatin-induced thrombomodulin expression by endothelial cells acts via inhibition of small G proteins of the Rho family. Arterioscler Thromb Vasc Biol. 2003;23:512-517.
    26. SATAM, N ISH I MATSU H, SUZUKI E, et al. Endothelial nitric oxide synthase is essential for the HMG-CoA reductase inhibit or cerivastatin to promote collateral growth in response to ischemia[J]. FASEB J, 2001, 15 (13): 2530-2532.
    27. POURATI I , KI MMELSTIEL C, RAND W, et al . Statin use is associated with enhanced collateralization of severely diseased coronary arteries[J]. Am Heart J, 2004, 148 (5): 21-23.
    28. TOK ORO T, WANG J, KIT AJ I MA I , et al . The novel HMG-CoA reductase inhibitor, pitavastatin, induces a protective action in vascular endothelial cells through the production of nitric oxide(NO) [ J ]. Yakugaku Zasshi, 2004, 124 (3): 121-126.
    29.张月兰,田文,张子新,等.匹伐他汀对Klotho基因敲除杂合子小鼠血管新生的促进作用[ J ].中国应用生理学杂志,2006, 22 (2) : 163 - 166.
    30.张月兰,程颖,李轶男,等.不同剂量匹伐他汀对小鼠缺血肢血流恢复的影响[ J ].中国医科大学学报, 2006, 35 (3) : 251 - 255 .
    31 . WANG JY, TOKORO T, HIGA S, et al . Anti-inflammatory effect of pitavastatin on NF-κB activated by TNF-αin hepatocellular carcinoma Cells[ J ]. Biol Pharm Bull, 2006, 29 (4) : 634-639.
    32. Fujino H, Yamada I, Shimada S, et al. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: human UDP-glucuronosyltransferase enzymes involved in lactonization. Xenobiotica. 2003;33:27-41.
    33. KAJ I NAMI K, TAKEKOSH IN, SA ITO Y . Pitavastatin: efficacy and safety profiles of a novel synthetic HMG-CoA reductase inhibitor[J]. Cardiovasc Drug Rev, 2003, 21 (3):199-215.
    34. KOJ I MA J, FUJ I NO H, YOSIMURA M, et al. Simultaneous determination of NK-104 and its lactone in biological samples by column-switching high-performance liquid chromatography with ultraviolet detection [ J ]. Chrom atogr B B iom ed SciAPPl, 1999,724 (1): 173-180.
    35 . KOJIMA J, FUJINO H, ABE H, et al . Identification of metabolites of NK-104, an HMG-CoA reductase inhibitor, in rat, rabbit and dog bile[J]. B iol Pharm Bull, 1999, 22 (2) : 142-150.
    36 . HIRANO M, MAEDA K, SHITARA Y, et al. Contribution of OATP2 (OATPIB I) and OATP8 (OATPIB3 ) to the hepatic uptake of pitavastatin in humans[J]. Pharmacol Exp Ther, 2004,311 (1): 139 -146.
    37. CHUNG JY, CHO JY, YU KS, et al . Effect of OATP1B1 ( SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers [J].Clin Pharma Ther, 2005, 78 (4) :342 - 350 .
    38. Lovastatin product information. Princeton, NJ: Sandoz Inc.; 2007.
    39. LiPitor (atorvastatin) product information. New York, NY: Pfzer; 2009.
    40.Crestor (rosuvastatin) product information.Wilmington, DE:AstraZeneca Pharmaceuticals LP; 2010.
    41.Simvastatin product information. Dayton, NJ: Aurobindo Pharma USA, Inc.; 2008.
    42.Pravastatin product information. Sellersville, PA: Teva Pharmaceuticals USA; 2009.
    43.Lescol (fuvastatin) product information. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2006.
    44.FUJINO H, YAMADA I , SH MADA S, et al. Metabolic fate of pitavastatin (NK-104), a new inhibitor of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Effects on drug-metabolizing systems in rats and humans [J]. A rzneim ittelforschung, 2002, 52(10) : 745-753.
    45.YOSHIHISA S, YUICHI S . Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug- drug interactions and interindividual differences in transporter and metabolic enzyme functions[J]. Pharm Ther, 2006, 112 (1) : 71-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700