基于生物质谱的糖蛋白组学新技术新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究内容涉及化学学科的分析化学、化学生物学,是属于交叉学科的研究。研究主要通过对糖基化相关分离富集技术、生物质谱技术和生物信息学等技术方法的运用和创新,以准确、高效的揭示重要样本的糖基化修饰,包括糖基化位点和糖链信息。
     鉴于蛋白质糖基化翻译后修饰的重要性,糖蛋白质组学成为后蛋白质组学研究的热门领域。近些年来,随着与糖基化相关的分离富集技术、生物质谱技术等的发展和进步,越来越多具有重要意义的生物样本中的糖基化修饰现象被揭示和深入研究。尽管如此,现阶段,在与糖基化研究相关的很多方面,方法学上的探索和发展还在不断继续。例如,分离富集技术还处于不断优化、完善,甚至发掘更优途径的阶段;另外,生物质谱技术也正被全方面挖掘可以传达出来的信息,以用于糖基化的解析。日益增加的糖基化研究相关数据的产出,以及人工解析糖基化的难度,也催生了生物信息学手段被不断开发、应用到这一领域,以实现准确的、高通量的数据解读,为更深入的糖基化研究提供支持。尽管如此,由于糖基化修饰的复杂性,使这一领域还有很多的机遇和挑战,仍然有很多亟待探索的重要的生物样本,完整糖肽的分析仍处于起步阶段等。
     本论文工作主要基于生物质谱技术的优势,联合并改善糖基化相关的分离富集技术,致力于为糖蛋白质组学领域提供重要、独特的数据,以及建立具高效性和实用性的糖基化解析平台。本论文工作的主要贡献是:
     (1)首次揭示了正常人肝的N-糖基化修饰谱,获得了迄今最大的正常人肝N-糖基化蛋白/位点的数据集,是相关后续研究的重要参考和生物信息学解读的数据基础:研究共获得了915个N-糖蛋白及其包含的1,786个糖基化位点信息;是正常人肝蛋白表达谱的有利补充,提供了382个新增蛋白;基于该数据集,通过生物信息学解读获得了丰富信息。
     (2)建立了处于国际领先水平的、高通量的完整糖基化肽段解析平台(GRIP):应用精简的、基于实验的糖肽库而非巨大的糖肽理论库作为软件检索的基础,通过严格的质量控制,在实际样品鉴定中获得出色的效果;目前已实现血清样本中上千条N-糖肽的解析,并充分揭示了糖基化的微观不均一性,不但在高通量完整糖肽的研究领域处于前沿地位,而且有望成为血清糖基化检测的有力工具。
     (3)新颖的将串联多酶切技术与糖基化富集技术联合,建立了改善传统糖基化实验路线不足的新策略:策略之一,可改善高特异性富集下仅依赖去糖基化肽段实现蛋白、位点的鉴定,而使糖蛋白序列覆盖度较低的问题,以及增加糖基化位点鉴定的可靠度;策略之二,有别于传统完整糖肽分析中糖蛋白/位点鉴定与糖肽解析分流程进行的路线,可仅使用一个流程、一步到位的实现蛋白鉴定和糖肽解析。
     (4)首次将几种基于p-消除反应原理的O-糖基化研究方法比较、应用于实际样本血清:不但获得了初具规模的O-糖基化数据集,而且方法间表现出的低互补性等重要特征,为相关方法学的应用和发展提共了有利的参考和指导。
     论文一共分为以下四章进行阐述:
     第一章绪论:阐述糖基化蛋白的重要性,并介绍糖蛋白质组研究相关领域的发展现状。
     作为最主要和普遍的蛋白质翻译后修饰之一,糖基化的作用涉及生理、病理等众多方面。糖蛋白数量变化或糖链结构的改变,都可能导致疾病发生。不但目前已知的很多疾病的诊断标志物是糖蛋白,而且通过国际标准认证的药物中,糖蛋白也占到较高的比例。糖蛋白主要有四类(N-连接、O-连接、GPI锚定和C-连接),研究最多的是其中的N-连接糖基化和O-连接糖基化,这也是我们目前研究工作主要关注的类型。糖基化的研究虽然至今仍是个难题,但在各种技术发展的推动下已有长足进步。例如,糖基化分离富集技术一定程度上改善了高丰度非糖基化蛋白/肽段对糖基化目标物的掩盖和抑制;各种特异性或非特异性的蛋白水解酶、糖苷水解酶的运用使对于糖基化位点、糖链的研究更为便利;生物质谱技术的发展使糖基化研究的规模化日趋成型等等。即便如此,由于糖基化的复杂性,各种技术的发展和优化仍是该领域的重点和热点。同时,大量糖基化数据,特别是大量质谱数据的产出,也催生了相关的生物信息学分析工具的发展。各种工具,不论是针对纯糖链分析的,还是可用于糖肽分析的,尽管一定程度上解决了人工分析遇到的问题,但是仍然有很大局限性,例如对样本纯度、规模等的要求都十分有限。总体来讲,蛋白糖基化修饰的研究还处于发展阶段,充满机遇和挑战。
     第二章高通量N-糖基化位点研究:分为两个章节(1)正常人肝蛋白质N-糖基化位点谱研究,以及(2)串联双酶解、高特异性N-糖基化富集鉴定新策略。
     (1)作为人体最大的器官和主要的代谢器官,肝脏的功能及相关疾病的研究一直都备受关注。至2010年,中国人肝蛋白质组计划(CNHLPP)已获得了六千多个蛋白的表达信息。然而,由于生物样本的复杂程度高、蛋白丰度分布广,所以时至今日如何扩大蛋白鉴定规模仍然是研究人员致力于解决的一个问题。将针对糖基化后修饰的分离富集作为一种降低样本复杂程度的方式,不但可以针对性的获得糖基化蛋白的相关信息,也有利于表达谱蛋白更全面的检测。我们的工作联合了不同分离富集技术(肼腙反应法、亲水相互作用法)和串级质谱碎裂技术(碰撞诱导解离、电子转移解离),获得了大规模的正常人肝N-糖基化蛋白/位点数据集:915个N-糖蛋白及其包含的1,786个糖基化位点;382个蛋白是原正常人肝蛋白表达谱中未鉴定到的,其中更有120个蛋白为肝脏组织特异性表达的。通过大量生物信息学分析,该数据集提供/体现出糖基化在正常人肝中的重要规律和特征,是后续深入研究重要的数据基础。
     (2)高通量的糖基化位点鉴定,特别是N-糖基化位点鉴定,也已在分离富集技术以及糖苷内切酶(如PNGase F)的帮助下成为常规流程。然而,由于高特异性的富集(例如迄今最为稳定表现出高特异性的肼腙化学反应法),使获得鉴定的糖蛋白序列覆盖度偏低,有的甚至只有一条肽段覆盖;另外,仅基于PNGase F酶切产生的糖基化位点Asn分子量变化(+0.98 Da)作为糖基化发生的证据也有不尽人意之处,例如该分子量变化较小、Asn可能发生自然水解等产生的假阳性。为了改善这些问题,我们统计并根据人类蛋白数据库中的各种氨基酸分布频率,以及蛋白酶的不同水解特异性,将两种蛋白水解酶Lys-C和trypsin串联使用,新颖的引入肼腙反应法对糖肽的富集和鉴定中。该策略在通过标准蛋白的测试后,成功用于实际样本细胞全蛋白裂解液。结果表明,在未牺牲富集方法高特异性的情况下,糖蛋白鉴定的序列覆盖度平均增加了79.4%,约1/3的蛋白序列覆盖度增加了一倍以上,有的增幅甚至高达350%。
     第三章高通量N-糖基化肽段研究:分为两个章节(1)一步到位(one-pipeline)糖蛋白鉴定糖肽解析新策略,以及(2)高通量血清糖肽鉴定平台(GRIP)的建立。
     (1)糖肽的解析,往往依赖于前期的分离富集。然而传统方式上,在经过肽段水平的富集后,糖蛋白的鉴定和糖肽分析需要分为两个流程进行:一个流程进行去糖基化处理,以实现蛋白的质谱鉴定(因为糖基化后修饰状态目前无法实现数据库检索鉴定);另一个流程保留糖链完整进行结构分析。我们认为这些目的通过一个流程即可达到,而且能获得附加信息。根据人类蛋白数据库中的各种氨基酸分布频率统计,以及蛋白酶的不同水解特异性,我们将两次酶解(Lys-C和trypsin酶解)与两个水平上的糖基化富集(蛋白水平和肽段水平)进行了穿插联合,使即使进行了肽段水平上的富集,最终用于质谱分析的混合物中既保留了完整糖肽,又包含了存在和数量都合理的非糖肽可用于蛋白鉴定,一举两得。该策略在通过标准蛋白的测试后,成功用于经一维凝胶电泳分离的血清样本条带中,结果通过55条非糖肽鉴定到23个糖基化蛋白,同时解析出25条的完整糖肽,其中包括2条O-糖肽(均为非冗余统计)。该策略不但实现了目前来讲数目可观的复杂样本的糖肽解析,而且末端唾液酸化、核心岩藻糖化、bisecting乙酰葡糖胺化等重要的糖链特征结构信息均被保留和揭示;糖基化微观不均一性也被准确揭示。
     (2)高通量的完整糖肽解析是目前糖基化研究中亟待攻克的一个难题。由于糖基化的复杂性高、存在丰度低等问题,以及糖肽异于一般肽段的特殊的物化性质,使高通量质谱分析或者获得的数据复杂性大,或者无法通过单一的方式取得足够信息;另外,目前仍没有一种针对完整糖肽的富集方法,能高效的去除非糖肽的影响。这都对糖肽的解析造成难度。目前瞄准糖肽解析的应用程序已有开发,但是绝大多数或者对样本复杂性的耐受度很低,或者给出使用者难以决断的众多结果,能被用户方便、规模化使用的平台十分欠缺。GRIP是我们建立的糖肽解析平台Glycopeptide Revealing and Interpretation Platform的简称,该平台软件的检索基于实验产生的、来自目标样本的肽段库和糖链库生成的糖肽库,而非巨大的理论糖肽库;这使得该糖肽库不但适于具体样本,可随样本而变,而且减少了理论库检索的假阳性。另外,我们充分利用糖肽在质谱中的碎裂特征,将这些特征作为谱图筛选及假阳性控制的重要手段,准确的从海量谱图中筛选出糖肽谱图并进行解析。该研究目前已实现血清样本中上千条非冗余糖肽的解析,结果中展示了蛋白糖基化微观不均一性等重要信息,不但在国际上处于领先水平,也具有很好的实际应用前景。
     第四章基于β-消除反应的O-糖基化研究:比较和使用了现有的几种beta-消除反应在实际样品中的应用效果,为相关技术的实际应用和发展研究提供了有利的参考和指导。
     虽然分离富集方法以及广谱性糖苷内切酶的使用,使得N-糖基化位点的鉴定常规化,但对于O-糖基化的研究,由于其核心结构众多,且没有广谱性的糖苷水解酶,因而常规化、规模化的O-糖基化位点鉴定至今仍是个难题。多数以实现该目标为目的的研究多采用基于β-消除/加成反应的策略:消除反应实现去糖基化,Ser/Thr侧链形成不饱和键;加成反应为原糖基化位点带上利于后续分析、处理的质量或富集标签。尽管有研究对这类方法进行了改善和使用,但范围往往限于标准肽段等简单样本。我们首次平行、比较使用了DTT加成法、氨水法、甲胺法等三种处理方法,不但考察了它们对同样发生在Ser/Thr氨基酸上的磷酸化后修饰的影响,更将其应用到实际血清样本中,获得了来自96个蛋白的157个O-糖基化位点,但其中只有4个位点为一种以上方法共同鉴定。我们对这些位点进行分析还发现修饰发生在Ser氨基酸的比例高于Thr氨基酸(61% vs 39%);同一蛋白中的糖基化位点常出现在邻近区域,与文献记载相符。另外,我们还比较了还原性β-消除反应法在蛋白或肽段水平上进行时,对于O-糖链解析效果的差异。结果表明,前者有利于低分子量糖链的检测,而后者在高分子量糖链的检测上具优势,两者联合能更全面的实现糖链解析。
This thesis presents an interdisciplinary research involved in analytical chemistry and chemical biology. Glycosylation enrichment methods, mass spectrometry techniques and bioinformatics tools have been combined, for the goal revealing glycosylation information in important biological samples accurately and efficiently.
     Glycosylation is one of the most important and universal protein post-translational modifications (PTMs), while glycoproteomics is becoming a significant field in the post-proteomics era. The development of enrichment methods and bio-mass spectrometry (MS) techniques has been facilitating glycoproteomic researches; glycosylation information has been revealed from various samples. Nevertheless, there is always room for methodological development in glycoproteomics, e.g. development and improvement of glycan-related enrichment methods and MS techniques. Meanwhile, with the increasing output of MS data, efforts from bioinformatics have been made on glycoproteomics, to assist or even replace time-consuming manual interpretation. However, because of the complexity of protein glycosylation, it is still full of chances and challenges in this field:many important samples need interpretation, and automatic analysis of intact glycopeptides is at the initial stage.
     The major contributions of this work are as follows:
     (1) N-glycoproteins of normal human liver have been profiled for the first time, and the large dataset, which is not only a valuable supplement for normal human liver proteome, but also the basis of meaningful bioinformatic analysis.
     (2) An internationally advanced platform for intact glycopeptide interpretation and revealing (GRIP) has been established; it newly introduced experiment-based de-glycopeptide and glycan datasets to form a sample-friendly glycopeptide database, which have achieved high-throughput glycopeptide analysis for human serum.
     (3) Two strategies novelly combining sequential multi-enzymatic approach and glycan-related enriching method have been developed, assisting glycoprotein sequence coverage improvement and accurate glycosite/glycopeptide identification.
     (4) First comparison of differentβ-elimination-based methods for O-glycosylation study on practical sample has been carried out; features of our results could be useful references for the application and development of the methodology.
     This thesis consists of four parts which are summarized as follows:
     Part 1. Introduction:a brief and comprehensive introduction of protein glycosylation and glycoproteomics-related fields.
     As one of the most important and universal protein PTMs, glycosylation takes part in many physiological processes. The alteration of glycoprotein amount and glycan structure probably indicates pathological changes, while many FDA approved drugs are glycoproteins. There are four major types of protein glycosylation; the two mostly studied are N-linked and O-linked glycosylation. Although it is still a tough job, glycoproteomics has been largely facilitated by the development of different technologies, e.g. glycan-related enrichment methods, MS techniques. Meanwhile, bioinformatics on glycoproteomics is another related field rapidly developing but just in the start. Generally, glycosylation study now is still full of chances and challenges.
     Part 2. High-throughput N-glycosite Studies:two sections included (1) normal human liver N-glycoproteome profiling; (2) sequential multi-enzymatic assisted and high specific glycoprotein/site identification.
     (1) As the largest human organ, liver plays vital roles especially in metabolism. Biological functions and related disease of liver have always been paid close attention to. Till 2010, Chinese human liver proteome project (CNHLPP) has identified over six thousand proteins from normal human liver. However, because of the high complexity and the wide dynamic range of proteins in practical samples, revealing of low-abundance proteins is still a tough and on-working task. PTM-enriching could act not only as a targeted approach, but also as an efficient way to reduce sample complexity, so probably revealing supplementary information. Here, for the study of normal human liver N-glycoproteome, we have combined two enrichment methods (hydrazide chemistry and hydrophilic affinity) and two MS dissociation methods (collision-induced dissociation and electron-transfer dissociation), and obtained the largest human liver N-glycoproteome dataset, containing 915 N-glycoproteins and 1,786 N-glycosites. The dataset is not only a valuable supplement for normal human liver proteome (382 newly identified proteins), but also important basis of further researches in the field.
     (2) Outstanding specificity of hydrazide chemistry (usually above 90%) means the capability to reduce sample complexity and also reliable N-glycosite identification. However, due to its high specificity, usually glycoprotein identification can only rely on a limited number of de-glycopeptides. Those identified glycoproteins have low sequence coverage, and some are single-peptide-hit identification likely. A novel two-step protease digestion and glycopeptide capture approach has been developed. Through controllable release, separate identification and combined interpretation of non-glycopeptides (newly introduced LT-peptides) and traditional de-glycopeptides (DG-peptide), the approach could not only achieve routine N-glycosite identification, but also provide further proofs of N-glycosites and increase glycoprotein sequence coverage. The approach has been successfully applied to cell lysate. Without sacrificing enrichment specificity, glycoproteins got improved sequence coverage with increase even up to 350%(averagely 79.4%), and DG-peptide-revealed N-glycosites got further confirmation by related LT-peptides.
     Part 3. High-throughput N-glycopeptide Studies:two sections included (1) One-pipeline approach achieving glycoprotein identification and obtaining intact glycopeptide information; (2) Glycopeptide revealing and interpretation platform (GRIP).
     (1) Analysis of intact glycopeptides largely depends on glycosylation enrichment; traditionally, after peptide-level enrichment, protein identification and glycopeptides interpretation would be in two separated flow paths:one carries out de-glycosylation, the other keeps glycopeptides intact. A novel one-pipeline approach has been developed. Without de-glycosylation, this approach has been demonstrated to achieve glycoprotein identification and obtain intact glycosylation information after peptide-level enrichment. The proposed workflow has two enrichment steps plus two proteolytic processes:enriched glycoproteins were digested by Lys-C, and then enriched again and secondly digested by trypsin. In the resulting mixture, with a reasonable complexity, intact glycopeptides could be preserved and utilized informatively for glycosylation analysis, and non-glycopeptides for protein identification. In both standard protein mixture tests and real sample analysis, the resulting glycopeptides and non-glycopeptides were proved to play their expected roles, thus more confident protein glycosylation information was obtained.
     (2) High-throughput intact glycopeptides analysis is one of the most difficult tasks in glycoproteomics. Several reasons, e.g. high complexity of glycosylation, relatively low abundance and special physiochemical properties of glycopeptides, make the study on intact glycopeptides difficult. Enriching methods have not achieved a stable high specific separation for intact glycoprotein/peptides. Till now, there has not been a widely used routine for glycopeptide analysis, as that for N-glycosites. Bioinformatics tools targeting glycopeptides have been developed, but existing tools usually could not endure complex samples, or would provide too many results to choose. In our glycopeptide revealing and interpretation platform (GRIP), we introduced experiment-based de-glycopeptide and glycan datasets to form a sample-friendly glycopeptide database, and used novel algorithm designed for glycopeptides "sequence tag" searching and composition interpretation. GRIP has achieved high-throughput glycopeptide analysis for human serum:3,091 spectra (1% false positive rate), corresponding to 1,020 different glycopeptides were identified; micro-heterogeneity of glycosylation was also revealed in the result. Analysis of those glycopeptides by another MS fragmentation technique HCD (higher-energy collision-induced dissociation) proved the accuracy of aforementioned results.
     Part 4.β-elimination Methodology Based O-glycosylation Studies:comparative studies differentβ-elimination methods on practical sample for O-glycosite and O-glycan identification.
     Because there is neither consensus sequence for O-glycosylation, nor a universal O-glycosidase which could function the way as peptide-N-glycosidase F (PNGase F) do in de-N-glycosylation, recognition of O-glycosylation sites (O-glycosites) is still challenging. Recent investigations have worked on mild P-elimination/addition methods which could remove O-glycans while preserve peptide backbones, but most of those studies focused on samples with low complexity (e.g. synthetic peptides, purified proteins) rather than complex samples. Here, for the first time, we applied three differentβ-elimination/addition approaches, to explore the O-glycosite profile of human serum. Surprisingly quite different results were obtained from different approaches, though they were based on similar mechanism. Totally,157 O-glycosites from 96 proteins were revealed, only four of them were identified from two or more approaches; the number of detected modification on Ser was higher than that on Thr (61% vs.39%); glycosites identified from the same proteins showed close appearances. Meanwhile, reductiveβ-elimination of O-glycans from serum sample was also performed from both protein and peptide levels. MS analysis showed the former favored glycans with lower molecular weight, while the latter favored glycans in the higher mass range.
引文
[1]Chalkley, R. J.; Bradshaw, R. A.; Medzihradszky, K. F., Protein PTMs: post-translational modifications or pesky trouble makers? J Mass Spectrom 2010,45 (10),1095-1097.
    [2]Walsh, G.; Jefferis, R., Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006,24 (10),1241-52.
    [3]Apweiler, R.; Hermjakob, H.; Sharon, N., On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1999,1473 (1),4-8.
    [4]Bunkenborg, J.; Pilch, B. J.; Podtelejnikov, A. V.; Wisniewski, J. R., Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 2004,4 (2),454-65.
    [5]Kuster, B.; Krogh, T. N.; Mortz, E.; Harvey, D. J., Glycosylation analysis of gel-separated proteins. Proteomics 2001,1 (2),350-61.
    [6]Haltiwanger, R. S.; Lowe, J. B., Role of glycosylation in development. Annu Rev Biochem 2004,73,491-537.
    [7]Helenius, A.; Aebi, M., Intracellular functions of N-linked glycans. Science 2001, 291 (5512),2364-2369.
    [8]Ohtsubo, K.; Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006,126 (5),855-67.
    [9]Zhang, Y.; Zhao, J. H.; Zhang, X. Y.; Guo, H. B.; Liu, F.; Chen, H. L., Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions. Mol Cell Biochem 2004,260 (1-2),137-46.
    [10]Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A., Glycosylation and the immune system. Science 2001,291 (5512),2370-6.
    [11]Peracaula, R.; Barrabes, S.; Sarrats, A.; Rudd, P. M.; de Llorens, R., Altered glycosylation in tumours focused to cancer diagnosis. Dis Markers 2008,25 (4-5), 207-218.
    [12]Ceciliani, F.; Pocacqua, V., The acute phase protein alpha 1-acid glycoprotein:A model for altered glycosylation during diseases. Curr Protein Pept Sc 2007,8 (1), 91-108.
    [13]Song, E. Y.; Kim, K. A.; Kim, Y. D.; Lee, E. Y.; Lee, H. S.; Kim, H. J.; Ahn, B. M.; Choe, Y. K.; Kim, C. H.; Chung, T. W., Elevation of serum asialo-alpha(1) acid glycoprotein concentration in patients with hepatic cirrhosis and hepatocellular carcinoma as measured by antibody-lectin sandwich assay. Hepatol Res 2003,26 (4), 311-317.
    [14]Mehta, R.; Suvarna, D.; Mustafa, C. P.; Sadasivan, S., Role of soluble transferrin receptors study in hepatocellular carcinoma with underlying cirrhosis. Indian J Cancer 2005,42 (4),215.
    [15]Roth, J., Protein N-glycosylation along the secretory pathway:relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 2002,102 (2),285-303.
    [16]Calvano, C. D.; Zambonin, C. G.; Jensen, O. N., Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. JProteomics 2008,71 (3),304-17.
    [17]Liu, T.; Qian, W. J.; Gritsenko, M. A.; Camp, D. G.,2nd; Monroe, M. E.; Moore, R. J.; Smith, R. D., Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 2005,4 (6), 2070-80.
    [18]Liu, T.; Qian, W. J.; Gritsenko, M. A.; Xiao, W.; Moldawer, L. L.; Kaushal, A.; Monroe, M. E.; Varnum, S. M.; Moore, R. J.; Purvine, S. O.; Maier, R. V.; Davis, R. W.; Tompkins, R. G.; Camp, D. G.,2nd; Smith, R. D., High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics 2006,5 (10),1899-913.
    [19]Butler, M.; Quelhas, D.; Critchley, A. J.; Carchon, H.; Hebestreit, H. F.; Hibbert, R. G.; Vilarinho, L.; Teles, E.; Matthijs, G.; Schollen, E.; Argibay, P.; Harvey, D. J.; Dwek, R. A.; Jaeken, J.; Rudd, P. M., Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 2003, 13 (9),601-22.
    [20]Kirmiz, C.; Li, B.; An, H. J.; Clowers, B. H.; Chew, H. K.; Lam, K. S.; Ferrige, A.; Alecio, R.; Borowsky, A. D.; Sulaimon, S.; Lebrilla, C. B.; Miyamoto, S., A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics 2007,6 (1), 43-55.
    [21]Bones, J.; Mittermayr, S.; O'Donoghue, N.; Guttman, A.; Rudd, P. M., Ultra performance liquid chromatographic profiling of serum N-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal Chem 2010,82(24),10208-15.
    [22]Hossler, P.; Khattak, S. F.; Li, Z. J., Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 2009,19 (9),936-49.
    [23]Morelle, W.; Canis, K.; Chirat, F.; Faid, V.; Michalski, J. C., The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 2006,6 (14), 3993-4015.
    [24]Sun, B.; Ranish, J. A.; Utleg, A. G.; White, J. T.; Yan, X.; Lin, B.; Hood, L., Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics 2007,6 (1),141-9.
    [25]Rudiger, H.; Gabius, H. J., Plant lectins:occurrence, biochemistry, functions and applications. Glycoconj J 2001,18(8),589-613.
    [26]Dai, Z.; Liu, Y. K.; Cui, J. F.; Shen, H. L.; Chen, J.; Sun, R. X.; Zhang, Y.; Zhou, X. W.; Yang, P. Y.; Tang, Z. Y., Identification and analysis of altered alpha1,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics 2006,6 (21),5857-67.
    [27]Wang, L.; Li, F.; Sun, W.; Wu, S.; Wang, X.; Zhang, L.; Zheng, D.; Wang, J.; Gao, Y., Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 2006,5 (3),560-2.
    [28]Dai, Z.; Fan, J.; Liu, Y.; Zhou, J.; Bai, D.; Tan, C.; Guo, K.; Zhang, Y.; Zhao, Y.; Yang, P., Identification and analysis of alphal,6-fucosylated proteins in human normal liver tissues by a target glycoproteomic approach. Electrophoresis 2007,28 (23), 4382-91.
    [29]Vosseller, K.; Trinidad, J. C.; Chalkley, R. J.; Specht, C. G.; Thalhammer, A.; Lynn, A. J.; Snedecor, J. O.; Guan, S.; Medzihradszky, K. F.; Maltby, D. A.; Schoepfer, R.; Burlingame, A. L., O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 2006,5 (5),923-34.
    [30]Drake, R. R.; Schwegler, E. E.; Malik, G.; Diaz, J.; Block, T.; Mehta, A.; Semmes, O. J., Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 2006,5(10),1957-67.
    [31]Lubman, D. M.; Zhao, J.; Simeone, D. M.; Heidt, D.; Anderson, M. A., Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis:Application to pancreatic cancer serum. Journal of Proteome Research 2006,5 (7),1792-1802.
    [32]Yang, Z. P.; Hancock, W. S., Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 2004,1053 (1-2),79-88.
    [33]Zielinska, D. F.; Gnad, F.; Wisniewski, J. R.; Mann, M., Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 2010,141 (5),897-907.
    [34]Qiu, R.; Regnier, F. E., Use of multidimensional lectin affinity chromatography in differential glycoproteomics. Anal Chem 2005,77 (9),2802-9.
    [35]Schwientek, T.; Mandel, U.; Roth, U.; Muller, S.; Hanisch, F. G., A serial lectin approach to the mucin-type O-glycoproteome of Drosophila melanogaster S2 cells. Proteomics 2007,7(18),3264-77.
    [36]Kaji, H.; Saito, H.; Yamauchi, Y.; Shinkawa, T.; Taoka, M.; Hirabayashi, J.; Kasai, K.; Takahashi, N.; Isobe, T., Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 2003,21 (6),667-72.
    [37]Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003,21 (6),660-6.
    [38]Lewandrowski, U.; Moebius, J.; Walter, U.; Sickmann, A., Elucidation of N-glycosylation sites on human platelet proteins:a glycoproteomic approach. Mol Cell Proteomics 2006,5 (2),226-33.
    [39]Ramachandran, P.; Boontheung, P.; Xie, Y.; Sondej, M.; Wong, D. T.; Loo, J. A., Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J Proteome Res 2006,5 (6),1493-503.
    [40]Zhang, H.; Yi, E. C.; Li, X. J.; Mallick, P.; Kelly-Spratt, K. S.; Masselon, C. D.; Camp, D. G.,2nd; Smith, R. D.; Kemp, C. J.; Aebersold, R., High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 2005,4 (2),144-55.
    [41]Bernhard, O. K.; Kapp, E. A.; Simpson, R. J., Enhanced analysis of the mouse plasma proteome using cysteine-containing tryptic glycopeptides. J Proteome Res 2007, 6(3),987-95.
    [42]Zhou, Y.; Aebersold, R.; Zhang, H., Isolation of N-linked glycopeptides from plasma. Anal Chem 2007,79 (15),5826-37.
    [43]Tian, Y.; Zhou, Y.; Elliott, S.; Aebersold, R.; Zhang, H., Solid-phase extraction of N-linked glycopeptides. Nat Protoc 2007,2 (2),334-9.
    [44]Berven, F. S.; Ahmad, R.; Clauser, K. R.; Carr, S. A., Optimizing performance of glycopeptide capture for plasma proteomics. J Proteome Res 2010,9 (4),1706-15.
    [45]Zeng, Y; Ramya, T. N.; Dirksen, A.; Dawson, P. E.; Paulson, J. C., High-efficiency labeling of sialylated glycoproteins on living cells. Nat Methods 2009, 6(3),207-9.
    [46]Arcinas, A.; Yen, T. Y.; Kebebew, E.; Macher, B. A., Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J Proteome Res 2009,8 (8),3958-68.
    [47]Nilsson, J.; Ruetschi, U.; Halim, A.; Hesse, C.; Carlsohn, E.; Brinkmalm, G.; Larson, G., Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods 2009,6 (11),809-11.
    [48]Shakey, Q.; Bates, B.; Wu, J., An approach to quantifying N-linked glycoproteins by enzyme-catalyzed 18O3-labeling of solid-phase enriched glycopeptides. Anal Chem 2010,82 (18),7722-8.
    [49]Wada, Y.; Tajiri, M.; Yoshida, S., Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 2004,76 (22),6560-5.
    [50]Hagglund, P.; Bunkenborg, J.; Elortza, F.; Jensen, O. N.; Roepstorff, P., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 2004,3 (3),556-66.
    [51]Tajiri, M.; Yoshida, S.; Wada, Y., Differential analysis of site-specific glycans on plasma and cellular fibronectins:application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 2005,15 (12),1332-40.
    [52]Wuhrer, M.; Koeleman, C. A.; Hokke, C. H.; Deelder, A. M., Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides. Anal Chem 2005,77 (3),886-94.
    [53]Zhang, Y.; Go, E. P.; Desaire, H., Maximizing coverage of glycosylation heterogeneity in MALDI-MS analysis of glycoproteins with up to 27 glycosylation sites. Anal Chem 2008,80 (9),3144-58.
    [54]Cao, J.; Shen, C.; Wang, H.; Shen, H.; Chen, Y.; Nie, A.; Yan, G.; Lu, H.; Liu, Y.; Yang, P., Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomics approach. J Proteome Res 2009,8 (2),662-72.
    [55]Sparbier, K.; Koch, S.; Kessler, I.; Wenzel, T.; Kostrzewa, M., Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 2005,16 (4),407-13.
    [56]Xu, Y.; Wu, Z.; Zhang, L.; Lu, H.; Yang, P.; Webley, P. A.; Zhao, D., Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem 2009,81 (1),503-8.
    [57]Alvarez-Manilla, G.; Atwood, J.,3rd; Guo, Y.; Warren, N. L.; Orlando, R.; Pierce, M., Tools for glycoproteomic analysis:size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 2006,5 (3),701-8.
    [58]Ding, W.; Nothaft, H.; Szymanski, C. M.; Kelly, J., Identification and Quantification of Glycoproteins Using Ion-Pairing Normal-phase Liquid Chromatography and Mass Spectrometry. Molecular & Cellular Proteomics 2009,8 (9),2170-2185.
    [59]Larsen, M. R.; Palmisano, G.; Lendal, S. E.; Engholm-Keller, K.; Leth-Larsen, R.; Parker, B. L., Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nature Protocols 2010,5 (12),1974-1982.
    [60]Olsen, J. V.; Ong, S. E.; Mann, M., Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics 2004,3 (6),608-614.
    [61]Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F., Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. P Natl Acad Sci USA 2004,101 (26),9528-9533.
    [62]Kvaratskhelia, M.; Clark, P. K.; Hess, S.; Melder, D. C.; Federspiel, M. J.; Hughes, S. H., Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry. Virology 2004,326 (1),171-181.
    [63]Chalkley, R. J.; Burlingame, A. L., Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Molecular & Cellular Proteomics 2003,2 (3), 182-190.
    [64]Itoh, S.; Kawasaki, N.; Harazono, A.; Hashii, N.; Matsuishi, Y.; Kawanishi, T. Hayakawa, T., Characterization of a gel-separated unknown glycoprotein by liquid chromatography/multistage tandem mass spectrometry-Analysis of rat brain Thy-1 separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Chromatogr A 2005,1094 (1-2),105-117.
    [65]Ye, M. L.; Chen, R.; Jiang, X. N.; Sun, D. G.; Han, G. H.; Wang, F. J.; Wang, L. M.; Zou, H. F., Glycoproteomics Analysis of Human Liver Tissue by Combination of Multiple Enzyme Digestion and Hydrazide Chemistry. Journal of Proteome Research 2009,8(2),651-661.
    [66]Bunkenborg, J.; Pilch, B. J.; Podtelejnikov, A. V.; Wisniewski, J. R., Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 2004,4 (2),454-465.
    [67]Larsen, M. R.; Hojrup, P.; Roepstorff, P., Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Molecular & Cellular Proteomics 2005,4 (2), 107-119.
    [68]An, H. J.; Peavy, T. R.; Hedrick, J. L.; Lebrilla, C. B., Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Analytical Chemistry 2003,75 (20),5628-5637.
    [69]Wuhrer, M.; Koeleman, C. A. M.; Hokke, C. H.; Deelder, A. M., Protein glycosylation analyzed by normal-phase nano-liquid chromatography-mass spectrometry of glycopeptides. Analytical Chemistry 2005,77 (3),886-894.
    [70]Lebrilla, C. B.; Dodds, E. D.; Seipert, R. R.; Clowers, B. H.; German, J. B., Analytical Performance of Immobilized Pronase for Glycopeptide Footprinting and Implications for Surpassing Reductionist Glycoproteomics. Journal of Proteome Research 2009,8 (2),502-512.
    [71]Kakehi, K.; Yamada, K.; Kinoshita, M.; Hayakawa, T.; Nakaya, S., Comparative Studies on the Structural Features of O-Glycans between Leukemia and Epithelial Cell Lines. Journal of Proteome Research 2009,8 (2),521-537.
    [72]Muddiman, D. C.; Williams, T. I.; Saggese, D. A., Studying O-linked protein glycosylations in human plasma. Journal of Proteome Research 2008,7 (6), 2562-2568.
    [73]Bause, E., Structural Requirements of N-Glycosylation of Proteins-Studies with Proline Peptides as Conformational Probes. Biochem J 1983,209 (2),331-336.
    [74]Kuster, B.; Mann, M., O-18-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Analytical Chemistry 1999,71 (7),1431-1440.
    [75]Kaji, H.; Saito, H.; Yamauchi, Y.; Shinkawa, T.; Taoka, M.; Hirabayashi, J.; Kasai, K.; Takahashi, N.; Isobe, T., Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nature Biotechnology 2003,21 (6), 667-672.
    [76]Hagglund, P.; Bunkenborg, J.; Elortza, F.; Jensen, O. N.; Roepstorff, P., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. Journal of Proteome Research 2004,3 (3),556-566.
    [77]Ying, W. T.; Jia, W.; Lu, Z.; Fu, Y.; Wang, H. P.; Wang, L. H.; Chi, H.; Yuan, Z. F.; Zheng, Z. B.; Song, L. N.; Han, H. H.; Liang, Y. M.; Wang, J. L.; Cai, Y.; Zhang, Y. K.; Deng, Y. L.; He, S. M.; Qian, X. H., A Strategy for Precise and Large Scale Identification of Core Fucosylated Glycoproteins. Molecular & Cellular Proteomics 2009,8(5),913-923.
    [78]Mechref, Y.; Segu, Z. M.; Hussein, A.; Novotny, M. V., Assigning N-Glycosylation Sites of Glycoproteins Using LC/MSMS in Conjunction with Endo-M/Exoglycosidase Mixture. Journal of Proteome Research 2010,9 (7), 3598-3607.
    [79]Greis, K. D.; Hayes, B. K.; Comer, F. I.; Kirk, M.; Barnes, S.; Lowary, T. L.; Hart, G. W., Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal Biochem 1996, 234(1),38-49.
    [80]Wells, L.; Vosseller, K.; Cole, R. N.; Cronshaw, J. M.; Matunis, M. J.; Hart, G. W., Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Molecular & Cellular Proteomics 2002,1 (10), 791-804.
    [81]Rademaker, G. J.; Pergantis, S. A.; Blok-Tip, L.; Langridge, J. I.; Kleen, A.; Thomas-Oates, J. E., Mass spectrometric determination of the sites of O-glycan attachment with low picomolar sensitivity. Anal Biochem 1998,257 (2),149-160.
    [82]Mirgorodskaya, E.; Hassan, H.; Clausen, H.; Roepstorff, P., Mass spectrometric determination of O-glycosylation sites using beta-elimination and partial acid hydrolysis. Analytical Chemistry 2001,73 (6),1263-1269.
    [83]Cai, Z. W.; Zheng, Y. F.; Guo, Z. H., Combination of beta-elimination and liquid chromatography/quadrupole time-of-flight mass spectrometry for the determination of O-glycosylation sites. Talanta 2009,78 (2),358-363.
    [84]Dwek, R. A.; Edge, C. J.; Harvey, D. J.; Wormald, M. R.; Parekh, R. B., Analysis of Glycoprotein-Associated Oligosaccharides. Annual Review of Biochemistry 1993, 62,65-100.
    [85]Rudd, P. M.; Dwek, R. A., Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr Opin Biotech 1997,8 (4),488-497.
    [86]Sutton, C. W.; Oneill, J. A.; Cottrell, J. S., Site-Specific Characterization of Glycoprotein Carbohydrates by Exoglycosidase Digestion and Laser-Desorption Mass-Spectrometry. Anal Biochem 1994,218 (1),34-46.
    [87]BARBER, M.; BORDOLI, R. S.; SEDGWICK, R. D.; TYLER, A. N., Fast atom bombardment of solids as an ion source in mass spectrometry. Nature 1981,293, 270-275.
    [88]Van Langenhove, A.; Reinhold, V. N., Determination of polysaccharide linkage and branching by reductive depolymerization. Gas-liquid chromatography and gas-liquid chromatography-mass spectrometry reference data. Carbohydr Res 1985, 143,1-20.
    [89]杨芃原;钱小红;盛龙生,生物质谱技术与方法.科学出版社:北京,2003.
    [90]Mann, M.; Olsen, J. V.; Schwartz, J. C.; Griep-Raming, J.; Nielsen, M. L. Damoc, E.; Denisov, E.; Lange, O.; Remes, P.; Taylor, D.; Splendore, M.; Wouters, E. R.; Senko, M.; Makarov, A.; Horning, S., A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed. Molecular & Cellular Proteomics 2009,8(12),2759-2769.
    [91]Chen, X.; Smith, L. M.; Bradbury, E. M., Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Analytical Chemistry 2000,72(6),1134-1143.
    [92]Ong, S. E.; Kratchmarova, I.; Mann, M., Properties of C-13-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). Journal of Proteome Research 2003,2 (2),173-181.
    [93]Ross, P. L.; Huang, Y. L. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics 2004,3(12),1154-1169.
    [94]Barnidge, D. R.; Dratz, E. A.; Martin, T.; Bonilla, L. E.; Moran, L. B.; Lindall, A., Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Analytical Chemistry 2003,75 (3),445-451.
    [95]Ucda, K.; Takami, S.; Saichi, N.; Daigo, Y.; Ishikawa, N.; Kohno, N.; Katsumata, M.; Yamane, A.; Ota, M.; Sato, T. A.; Nakamura, Y.; Nakagawa, H., Development of Serum Glycoproteomic Profiling Technique; Simultaneous Identification of Glycosylation Sites and Site-Specific Quantification of Glycan Structure Changes. Molecular & Cellular Proteomics 2010,9 (9),1819-1828.
    [96]Beuerman, R. W.; Zhou, L.; Chew, A. P.; Koh, S. K.; Cafaro, T. A.; Urrets-Zavalia, E. A.; Urrets-Zavalia, J. A.; Li, S. F. Y.; Serra, H. M., Quantitative Analysis of N-Linked Glycoproteins in Tear Fluid of Climatic Droplet Keratopathy by Glycopeptide Capture and iTRAQ. Journal of Proteome Research 2009,8 (4), 1992-2003.
    [97]Yang, P. Y.; Liu, Z.; Cao, L,; He, Y. F.; Qiao, L.; Xu, C. J.; Lu, H. J., Tandem (18)0 Stable Isotope Labeling for Quantification of N-Glycoproteome. Journal of Proteome Research 2010,9 (1),227-236.
    [98]Domon, B.; Stahl-Zeng, J.; Lange, V.; Ossola, R.; Eckhardt, K.; Krek, W.; Aebersold, R., High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Molecular & Cellular Proteomics 2007,6 (10), 1809-1817.
    [99]DeHoffman, D.; Stroobant, V., Oligosaccharides in Mass Spectrometry: Principles and Applications.2nd ed.; ohn Wiley & Sons Ltd:West Sussex, UK,2001.
    [100]Montilla, A.; van de Lagemaat, J.; Olano, A.; del Castillo, M. D., Determination of oligosaccharides by conventional high-resolution gas chromatography. Chromatographia 2006,63 (9-10),453-458.
    [101]Harvey, D. J., Proteomic analysis of glycosylation:structural determination of N- and O-linked glycans by mass spectrometry. Expert Rev Proteomic 2005,2 (1), 87-101.
    [102]Mechref, Y.; Novotny, M. V., Structural investigations of glycoconjugates at high sensitivity. Chemical Reviews 2002,102 (2),321-369.
    [103]Zaia, J., Mass spectrometry of oligosaccharides. Mass Spectrom Rev 2004,23 (3),161-227.
    [104]Wuhrer, M.; Catalina, M. I.; Deelder, A. M.; Hokke, C. H., Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2007,849 (1-2),115-28.
    [105]Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal 1988,5 (4),397-409.
    [106]Hogan, J. M.; Pitteri, S. J.; Chrisman, P. A.; McLuckey, S. A., Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 2005,4 (2), 628-32.
    [107]Chi, A.; Huttenhower, C.; Geer, L. Y.; Coon, J. J.; Syka, J. E.; Bai, D. L. Shabanowitz, J.; Burke, D. J.; Troyanskaya, O. G.; Hunt, D. F., Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 2007,104 (7), 2193-8.
    [108]Swaney, D. L.; Wenger, C. D.; Thomson, J. A.; Coon, J. J., Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 2009,106 (4),995-1000.
    [109]Perdivara, I.; Petrovich, R.; Allinquant, B.; Deterding, L. J.; Tomer, K. B.; Przybylski, M., Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J Proteome Res 2009,8 (2),631-42.
    [110]Takahashi, K.; Wall, S. B.; Suzuki, H.; Smith, A. D. t.; Hall, S.; Poulsen, K.; Kilian, M.; Mobley, J. A.; Julian, B. A.; Mestecky, J.; Novak, J.; Renfrow, M. B., Clustered O-glycans of IgA1:defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics 2010,9 (11),2545-57.
    [111]Olsen, J. V.; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M., Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 2007,4(9),709-12.
    [112]Segu, Z. M.; Mechref, Y., Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun Mass Spectrom 2010,24 (9), 1217-25.
    [113]Scott, N. E.; Parker, B. L.; Connolly, A. M.; Paulech, J.; Edwards, A. V.; Crossett, B.; Falconer, L.; Kolarich, D.; Djordjevic, S. P.; Hojrup, P.; Packer, N. H.; Larsen, M. R.; Cordwell, S. J., Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 2011,10 (2), M000031MCP201.
    [114]North, S. J.; Hitchen, P. G.; Haslam, S. M.; Dell, A., Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 2009,19 (5), 498-506.
    [115]Sadygov, R. G.; Cociorva, D.; Yates, J. R.,3rd, Large-scale database searching using tandem mass spectra:looking up the answer in the back of the book. Nat Methods 2004,1 (3),195-202.
    [116]Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999,20 (18),3551-67.
    [117]Havilio, M.; Haddad, Y.; Smilansky, Z., Intensity-based statistical scorer for tandem mass spectrometry. Anal Chem 2003,75 (3),435-44.
    [118]Atwood, J. A.,3rd; Sahoo, S. S.; Alvarez-Manilla, G.; Weatherly, D. B.; Kolli, K.; Orlando, R.; York, W. S., Simple modification of a protein database for mass spectral identification of N-linked glycopeptides. Rapid Commun Mass Spectrom 2005,19 (21),3002-6.
    [119]Aoki-Kinoshita, K. F., An introduction to bioinformatics for glycomics research. PLoS Comput Biol 2008,4 (5), e1000075.
    [120]Goldberg, D.; Sutton-Smith, M.; Paulson, J.; Dell, A., Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics 2005,5 (4), 865-75.
    [121]Ceroni, A.; Maass, K.; Geyer, H.; Geyer, R.; Dell, A.; Haslam, S. M., GlycoWorkbench:a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 2008,7 (4),1650-9.
    [122]Peltoniemi, H.; Joenvaara, S.; Renkonen, R., De novo glycan structure search with the CID MS/MS spectra of native N-glycopeptides. Glycobiology 2009,19 (7), 707-14.
    [123]Ozohanics, O.; Krenyacz, J.; Ludanyi, K.; Pollreisz, F.; Vekey, K.; Drahos, L. GlycoMiner:a new software tool to elucidate glycopeptide composition. Rapid Commun Mass Spectrom 2008,22 (20),3245-54.
    [124]Joenvaara, S.; Ritamo, I.; Peltoniemi, H.; Renkonen, R., N-glycoproteomics-an automated workflow approach. Glycobiology 2008,18 (4),339-49.
    [125]Goldberg, D.; Bern, M.; Parry, S.; Sutton-Smith, M.; Panico, M.; Morris, H. R.; Dell, A., Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res 2007,6 (10),3995-4005.
    [126]Go, E. P.; Rebecchi, K. R.; Dalpathado, D. S.; Bandu, M. L.; Zhang, Y.; Desaire, H., GlycoPep DB:a tool for glycopeptide analysis using a "Smart Search". Anal Chem 2007,79(4),1708-13.
    [127]Cooper, C. A.; Gasteiger, E.; Packer, N. H., GlycoMod--a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 2001,1 (2),340-9.
    [128]An, H. J.; Tillinghast, J. S.; Woodruff, D. L.; Rocke, D. M.; Lebrilla, C. B., A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. J Proteome Res 2006,5 (10), 2800-8.
    [129]Wu, Y.; Mechref, Y.; Klouckova, I.; Novotny, M. V.; Tang, H., A Computational Approach for the Identification of Site-Specific Protein Glycosylations Through Ion-Trap Mass Spectrometry. Lecture Notes in Bioinformatics 2007,4532,96-107.
    [1]Eastman,Q.M.,Mammoth data set from human liver reported.J Proteome Res 2010,9(1),1.
    [2]Lisitsa,A.V.;Petushkova,N.A.;Thiele,H.;Moshkovskii,S.A.;Zgoda,V.G.; Karuzina,I.I.;Chernobrovkin,A.L.;Skipenko,O.G.;Archakov,A.I.,Application of Slicing of One-Dimensional Gels with Subsequent Slice-by-Slice Mass Spectrometry for the Proteomic Profiling of Human Liver Cytochromes P450.J Proteome Res 2010,9(1),95-103.
    [3]Song,Y.P.;Jiang,Y.;Ying,W.T.;Gong,Y.;Yan,Y.J.;Yang,D.;Ma,J.;Xue, X.F.;Zhong,F.;Wu,S.F.;Hao,Y.W.;Sun,A.H.;Li,T.;Sun,W.;Wei,H.D.;Zhu, Y.P.;Qian,X.H.;He,F.C.,Quantitative Proteomic Survey of Endoplasmic Reticulum in Mouse Liver.J Proteome Res 2010,9(3),1195-1202.
    [4]Sun,W.;Ma,J.;Wu,S.F.;Yang,D.;Yan,Y.J.;Liu,K.H.;Wang,J.L.;Sun,L Q.;Chen,N.;Wei,H.D.;Zhu,Y.P.;Xing,B.C.;Zhao,X.H.;Qian,X.H.;Jiang,Y.; He,F.C.,Characterization of the Liver Tissue Interstitial Fluid(TIF)Proteome Indicates Potential for Application in Liver Disease Biomarker Discovery.J Proteome Res 2010,9(2),1020-1031.
    [5]Codarin,E.;Renzone,G.;Poz,A.;Avellini,C.;Baccarani,U.;Lupo,F.;di Maso, V.;Croce,S.L.;Tiribelli,C.;Arena,S.;Quadrifoglio,F.;Scaloni,A.;Tell,G., Differential Proteomic Analysis of Subfractioned Human Hepatocellular Carcinoma Tissues.J Proteome Res 2009,8(5),2273-2284.
    [6]Sun,A.H.;Jiang,Y.;Wang,X.;Liu,Q.J.;Zhong,F.;He,Q.Y.;Guan,W.;Li,H.; Sun,Y.L.;Shi,L.;Yu,H.;Yang,D.;Xu,Y.;Song,Y.P.;Tong,W.;Li,D.;Lin,C. Z.;Hao,Y.W.;Geng,C.;Yun,D.;Zhang,X.Q.;Yuan,X.Y.;Chen,P.;Zhu,Y.P.; Li,Y.X.;Liang,S.P.;Zhao,X.H.;Liu,S.Q.;He,F.C.,Liverbase:A Comprehensive View of Human Liver Biology.J Proteome Res 2010,9(1),50-58.
    [7]Jiang,Y.;Ying,W.T.;Wu,S.F.;Chen,M.;Guan,W.;Yang,D.;Song,Y.P.;Liu, X.;Li,J.Q.;Hao,Y.W.;Sun,A.H.;Geng,C.;Li,H.;Mi,W.;Zhang,Y.J.;Zhang,J. Y.;Chen,X.L.;Li,L.;Gong,Y.;Li,T.;Ma,J.;Li,D.;Yuan,X.Y.;Zhang,X.Q.; Xue,X.F.;Zhu,Y.P.;Qian,X.H.;He,F.C.;Zhong,F.;Shen,H.L.;Lin,C.Z.;Lu, H.J.;Liu,X.H.;Wei,L.M.;Cao,J.;Yun,D.;Zhang,J.;Gao,M.X.;Fan,H.Z.; Zhang,Y.;Cheng,G.;Yu,Y.Y.;Xie,L.Q.;Wang,H.;Zhang,X.M.;He,F.C.; Yang,P.Y.;Shi,L.;Tong,W.;Li,X.L.;Wang,Y.;Liu,S.Q.;Sheng,Q.H.;Zeng, R.;Sun,Y.L.;Xu,Y.;Cai,J.Q.;He,P.;Gao,H.J.;Zhao,X.H.;Tan,Y.X.;Yan,H. X.;Yang,Y.;Wang,H.Y.;Huang,J.;Han,Z.G.;He,Q.Y.;Chen,P.;Liang,S.P.; Zhao,M.;Mao,X.Z.;Wei,L.P.;Yu,H.;Cao,Z.W.;Li,Y.X.;Dai,W.J.;Jiang,H. C.;Wang,D.G.;Zheng,J.J.;Gao,X.;Tang,Y.;Li,X.Y.;Cheng,J.P.;Liu,Y.H.; Zhang,X.N.;Wang,X.F.;Jia,J.D.;An,D.C.;Wang,Z.;Li,Q.;Cui,T.;Proteome, C. H. L., First Insight into the Human Liver Proteome from PROTEOMESKY-LIVERHu 1.0,a Publicly Available Database.J Proteome Res 2010,9(1),79-94.
    [8]Zhao, J.; Geng, C.; Tao, L.; Zhang, D. F.; Jiang, Y.; Tang, K. L.; Zhu, R. X.; Yu, H.; Zhang, W. D.; He, F. C.; Li, Y. X.; Cao, Z. W., Reconstruction and Analysis of Human Liver-Specific Metabolic Network Based on CNHLPP Data. J Proteome Res 2010,9(4),1648-1658.
    [9]Liu, T.; Qian, W. J.; Gritsenko, M. A.; Xiao, W.; Moldawer, L. L.; Kaushal, A.; Monroe, M. E.; Varnum, S. M.; Moore, R. J.; Purvine, S. O.; Maier, R. V.; Davis, R. W.; Tompkins, R. G.; Camp, D. G.,2nd; Smith, R. D., High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics 2006,5 (10),1899-913.
    [10]Raman, R.; Raguram, S.; Venkataraman, G.; Paulson, J. C.; Sasisekharan, R. Glycomics:an integrated systems approach to structure-function relationships of glycans. Nat Methods 2005,2(11),817-824.
    [11]De Beeck, A. O.; Dubuisson, J., Topology of hepatitis C virus envelope glycoproteins. Rev Med Virol 2003,13 (4),233-241.
    [12]Marrero, J. A.; Romano, P. R; Nikolaeva, O.; Steel, L.; Mehta, A.; Fimmel, C. J.; Comunale, M. A.; D'Amelio, A.; Lok, A. S.; Block, T. M., GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol 2005, 43(6),1007-1012.
    [13]Na, K.; Lee, E. Y.; Lee, H. J.; Kim, K. Y.; Lee, H.; Jeong, S. K.; Jeong, A. S.; Cho, S. Y.; Kim, S. A.; Song, S. Y.; Kim, K. S.; Cho, S. W.; Kim, H.; Paik, Y. K., Human plasma carboxylesterase 1, a novel serologic biomarker candidate for hepatocellular carcinoma. Proteomics 2009,9 (16),3989-3999.
    [14]Yang, G. H.; Fan, J.; Xu, Y.; Qiu, S. J.; Yang, X. R.; Shi, G. M.; Wu, B.; Dai, Z.; Liu, Y. K.; Tang, Z. Y.; Zhou, J., Osteopontin Combined with CD44, a Novel Prognostic Biomarker for Patients with Hepatocellular Carcinoma Undergoing Curative Resection. Oncologist 2008,13 (11),1155-1165.
    [15]Cao, J.; Shen, C. P.; Wang, H.; Shen, H. L.; Chen, Y. C.; Nie, A. Y.; Yan, G. Q.; Lu, H. J.; Liu, Y. K.; Yang, P. Y., Identification of N-Glycosylation Sites on Secreted Proteins of Human Hepatocellular Carcinoma Cells with a Complementary Proteomics Approach. J Proteome Res 2009,8 (2),662-672.
    [16]Chen, R.; Jiang, X.; Sun, D.; Han, G.; Wang, F.; Ye, M.; Wang, L.; Zou, H., Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. Journal of proteome research 2009,8 (2),651-61.
    [17]Albert Lee, J. M. C., Daniel Kolarich, Paul A. Haynes, Graham R. Robertson, Maria Tsoli, Lucy Jankova, Stephen J. Clarke, Nicolle H. Packer, Mark S. Baker, Liver membrane proteome glycosylation changes in mice bearing an extra-hepatic tumour. MCP Papers in Press. Published on February 18,2010 as Manuscript M900538-MCP200 2010.
    [18]Sun, B.; Ranish, J. A.; Utleg, A. G.; White, J. T.; Yan, X.; Lin, B.; Hood, L., Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics 2007, 6(1),141-9.
    [19]Tajiri, M. Y., S.; Wada, Y., Differential analysis of site-specific glycans on plasma and cellular fibronectins:application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 2005,15,9.
    [20]Wada Y, T. M., Yoshida S., Hydrophilic Affinity Isolation and MALDI Multiple-Stage Tandem Mass Spectrometry of Glycopeptides for Glycoproteomics. analytical chemistry 2004,76,6.
    [21]Liu, H. J.; Finch, J. W.; Luongo, J. A.; Li, G. Z.; Gebler, J. C., Development of an online two-dimensional nano-scale liquid chromatography/mass spectrometry method for improved chromatographic performance and hydrophobic peptide recovery. J Chromatogr A 2006,1135 (1),43-51.
    [22]Havilio, M.; Haddad, Y.; Smilansky, Z., Intensity-based statistical scorer for tandem mass spectrometry. Anal Chem 2003,75 (3),435-444.
    [23]Moore, R. E.; Young, M. K.; Lee, T. D., Qscore:An algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectr 2002,13 (4),378-386.
    [24]Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003,75 (17), 4646-4658.
    [25]Elias, J. E.; Gygi, S. P., Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007,4 (3), 207-14.
    [26]Malmstrom, J.; Beck, M.; Schmidt, A.; Lange, V.; Deutsch, E. W.; Aebersold, R., Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 2009,460 (7256),762-U112.
    [27]Bause, E., Structural Requirements of N-Glycosylation of Proteins-Studies with Proline Peptides as Conformational Probes. Biochem J 1983,209 (2),331-336.
    [28]Cao, J.; Shen, C. P.; Wang, H.; Shen, H. L.; Chen, Y. C.; Nie, A. Y.; Yan, G. Q.; Lu, H. J.; Liu, Y. K.; Yang, P. Y., Identification of N-Glycosylation Sites on Secreted Proteins of Human Hepatocellular Carcinoma Cells with a Complementary Proteomics Approach. Journal of proteome research 2009,8 (2),662-672.
    [29]McDonald, C. A.; Yang, J. Y.; Marathe, V.; Yen, T. Y.; Macher, B. A., Combining Results from Lectin Affinity Chromatography and Glycocapture Approaches Substantially Improves the Coverage of the Glycoproteome. Molecular & Cellular Proteomics 2009,8 (2),287-301.
    [30]Good, D. M.; Wirtala, M.; McAlister, G. C.; Coon, J. J., Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 2007,6(11),1942-1951.
    [31]Swaney, D. L.; Wenger, C. D.; Thomson, J. A.; Coon, J. J., Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. P Natl Acad Sci USA 2009,106(4),995-1000.
    [32]Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature biotechnology 2003,21 (6),660-6.
    [33]Apweiler, R.; Hermjakob, H.; Sharon, N., On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1999,1473 (1),4-8.
    [34]Bunkenborg, J.; Pilch, B. J.; Podtelejnikov, A. V.; Wisniewski, J. R., Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 2004,4 (2),454-65.
    [35]Helenius, A.; Aebi, M., Intracellular functions of N-linked glycans. Science 2001, 291 (5512),2364-9.
    [36]Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F., Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. P Natl Acad Sci USA 2004,101 (26),9528-9533.
    [37]Good, D. M.; Wirtala, M.; McAlister, G. C.; Coon, J. J., Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 2007,6(11),1942-51.
    [38]Swaney, D. L.; Wenger, C. D.; Thomson, J. A.; Coon, J. J., Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 2009,106(4),995-1000.
    [39]Swaney, D. L.; McAlister, G. C.; Coon, J. J., Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 2008,5(11),959-64.
    [40]Zubarev, R. A.; Zubarev, A. R.; Savitski, M. M., Electron capture/transfer versus collisionally activated/induced dissociations:Solo or duet? J Am Soc Mass Spectr 2008,19 (6),753-761.
    [41]Good, D. M.; Wenger, C. D.; McAlister, G. C.; Bai, D. L.; Hunt, D. F.; Coon, J. J., Post-Acquisition ETD Spectral Processing for Increased Peptide Identifications. J Am Soc Mass Spectr 2009,20 (8),1435-1440.
    [42]Zhong, Y.; Shuai, Y. C.; Lu, B. Y.; Hu, Y.; Wang, L. Z.; Sun, K., Forgetting Is Regulated through Rac Activity in Drosophila. Cell 2010,140 (4),579-589.
    [43]Baker, P. R.; Medzihradszky, K. F.; Chalkley, R. J., Improving Software Performance for Peptide Electron Transfer Dissociation Data Analysis by Implementation of Charge State- and Sequence-Dependent Scoring. Molecular & Cellular Proteomics 2010,9(9),1795-1803.
    [44]Deutsch, E. W.; Shteynberg, D.; Lam, H.; Sun, Z.; Eng, J. K.; Carapito, C.; von Haller, P. D.; Tasman, N.; Mendoza, L.; Farrah, T.; Aebersold, R., Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets. Proteomics 2010,10 (6),1190-1195.
    [45]Huang, D. W.; Sherman, B. T.; Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4 (1),44-57.
    [46]Huang, D. W.; Sherman, B. T.; Lempicki, R. A., Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009,37(1),1-13.
    [47]Gehlenborg, N.; O'Donoghue, S. I.; Baliga, N. S.; Goesmann, A.; Hibbs, M. A.; Kitano, H.; Kohlbacher, O.; Neuweger, H.; Schneider, R.; Tenenbaum, D.; Gavin, A. C., Visualization of omics data for systems biology. Nat Methods 2010,7 (3), S56-S68.
    [48]Linding, R.; Jensen, L. J.; Ostheimer, G. J.; van Vugt, M. A. T. M.; Jorgensen, C. Miron, I. M.; Diella, F.; Colwill, K.; Taylor, L.; Elder, K.; Metalnikov, P.; Nguyen, V. Pasculescu, A.; Jin, J.; Park, J. G.; Samson, L. D.; Woodgett, J. R.; Russell, R. B.; Bork, P.; Yaffe, M. B.; Pawson, T., Systematic discovery of in vivo phosphorylation networks. Cell 2007,129 (7),1415-1426.
    [49]Stelzl, U.; Worm, U.; Lalowski, M.; Haenig, C.; Brembeck, F. H.; Goehler, H.; Stroedicke, M.; Zenkner, M.; Schoenherr, A.; Koeppen, S.; Timm, J.; Mintzlaff, S.; Abraham, C.; Bock, N.; Kietzmann, S.; Goedde, A.; Toksoz, E.; Droege, A.; Krobitsch, S.; Korn, B.; Birchmeier, W.; Lehrach, H.; Wanker, E. E., A human protein-protein interaction network:A resource for annotating the proteome. Cell 2005,122 (6),957-968.
    [50]Roth, J., Protein N-glycosylation along the secretory pathway:Relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 2002,102 (2),285-303.
    [51]Bendtsen, J. D.; Nielsen, H.; von Heijne, G.; Brunak, S., Improved prediction of signal peptides:SignalP 3.0. J Mol Biol 2004,340 (4),783-795.
    [52]Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E. L. L., Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes. J Mol Biol 2001,305 (3),567-580.
    [53]Zhang, H.; Liu, A. Y.; Loriaux, P.; Wollscheid, B.; Zhou, Y.; Watts, J. D.; Aebersold, R., Mass spectrometric detection of tissue proteins in plasma. Mol Cell Proteomics 2007, 6(1),64-71.
    [54]Arber, D. A.; Weiss, L. M., Cd10-a Review. Appl Immunohistochem 1997,5 (3), 125-140.
    [55]Kielian, T. L.; Blecha, F., CD14 and other recognition molecules for lipopolysaccharide:a review. Immunopharmacology 1995,29 (3),187-205.
    [56]Vanderijn, M.; Rouse, R. V., Cd34-a Review. Appl Immunohistochem 1994,2 (2),71-80.
    [57]Malavasi, F.; Funaro, A.; Alessio, M.; DeMonte, L. B.; Ausiello, C. M.; Dianzani, U.; Lanza, F.; Magrini, E.; Momo, M.; Roggero, S., CD38:a multi-lineage cell activation molecule with a split personality. Int J Clin Lab Res 1992,22 (2),73-80.
    [58]Lesley, J.; Hyman, R.; Kincade, P. W., CD44 and its interaction with extracellular matrix. Adv Immunol 1993,54,271-335.
    [59]Weiss, L. M.; Arber, D. A.; Chang, K. L., Cd68-a Review. Appl Immunohistochem 1994,2 (1),2-8.
    [60]Ben-Dor, S.; Esterman, N.; Rubin, E.; Sharon, N., Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiology 2004,14 (2), 95-101.
    [61]Kaplan, H. A.; Welply, J. K.; Lennarz, W. J., Oligosaccharyl Transferase-the Central Enzyme in the Pathway of Glycoprotein Assembly. Biochimica Et Biophysica Acta 1987,906 (2),161-173.
    [62]Kasturi, L.; Eshleman, J. R.; Wunner, W. H.; Shakineshleman, S. H., The Hydroxy Amino-Acid in an Asn-X-Ser/Thr Sequon Can Influence N-Linked Core Glycosylation Efficiency and the Level of Expression of a Cell-Surface Glycoprotein. J Biol Chem 1995,270(24),14756-14761.
    [63]Crooks, G. E.; Hon, G.; Chandonia, J. M.; Brenner, S. E., WebLogo:A sequence logo generator. Genome Res 2004,14 (6),1188-1190.
    [64]Gilchrist, A.; Au, C. E.; Hiding, J.; Bell, A. W.; Fernandez-Rodriguez, J.; Lesimple, S.; Nagaya, H.; Roy, L.; Gosline, S. J.; Hallett, M.; Paiement, J.; Kearney, R. E.; Nilsson, T.; Bergeron, J. J., Quantitative proteomics analysis of the secretory pathway. Cell 2006,127(6),1265-81.
    [65]Vogel, C.; Marcotte, E. M., Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nat Protoc 2008,3 (9), 1444-1451.
    [66]Braisted, J. C.; Kuntumalla, S.; Vogel, C.; Marcotte, E. M.; Rodrigues, A. R. Wang, R.; Huang, S. T.; Ferlanti, E. S.; Saeed, A. I.; Fleischmann, R. D.; Peterson, S. N.; Pieper, R., The APEX Quantitative Proteomics Tool:Generating protein quantitation estimates from LC-MS/MS proteomics results. Bmc Bioinformatics 2008, 9,-.
    [67]Lu, P.; Vogel, C.; Wang, R.; Yao, X.; Marcotte, E. M., Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 2007,25 (1),117-124.
    [1]Zhao, J.; Qiu, W.; Simeone, D. M.; Lubman, D. M., N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spectrometric analysis. Journal of proteome research 2007,6 (3),1126-38.
    [2]Zhao, J.; Patwa, T. H.; Qiu, W.; Shedden, K.; Hinderer, R.; Misek, D. E.; Anderson, M. A.; Simeone, D. M.; Lubman, D. M., Glycoprotein microarrays with multi-lectin detection:unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. Journal of proteome research 2007,6 (5), 1864-74.
    [3]Qiu, Y.; Patwa, T. H.; Xu, L.; Shedden, K.; Misek, D. E.; Tuck, M.; Jin, G.; Ruffin, M. T.; Turgeon, D. K.; Synal, S.; Bresalier, R.; Marcon, N.; Brenner, D. E.; Lubman, D. M., Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. Journal of proteome research 2008,7 (4),1693-703.
    [4]Vandenborre, G.; Van Damme, E. J.; Ghesquiere, B.; Menschaert, G.; Hamshou, M.; Rao, R. N.; Gevaert, K.; Smagghe, G., Glycosylation signatures in Drosophila: fishing with lectins. Journal of proteome research 2010,9 (6),3235-42.
    [5]Zielinska, D. F.; Gnad, F.; Wisniewski, J. R.; Mann, M., Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 2010,141 (5),897-907.
    [6]Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature biotechnology 2003,21 (6),660-6.
    [7]Liu, T.; Qian, W. J.; Gritsenko, M. A.; Xiao, W.; Moldawer, L. L.; Kaushal, A.; Monroe, M. E.; Varnum, S. M.; Moore, R. J.; Purvine, S. O.; Maier, R. V.; Davis, R. W.; Tompkins, R. G.; Camp, D. G.,2nd; Smith, R. D., High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics 2006,5 (10),1899-913.
    [8]Chen, R.; Jiang, X.; Sun, D.; Han, G.; Wang, F.; Ye, M.; Wang, L.; Zou, H., Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 2009,8 (2),651-61.
    [9]Cao, J.; Shen, C. P.; Wang, H.; Shen, H. L.; Chen, Y. C.; Nie, A. Y.; Yan, G. Q.; Lu, H. J.; Liu, Y K.; Yang, P. Y., Identification of N-Glycosylation Sites on Secreted Proteins of Human Hepatocellular Carcinoma Cells with a Complementary Proteomics Approach. Journal of proteome research 2009,8 (2),662-672.
    [10]Schiess, R.; Mueller, L. N.; Schmidt, A.; Mueller, M.; Wollscheid, B.; Aebersold, R., Analysis of cell surface proteome changes via label-free, quantitative mass spectrometry. Mol Cell Proteomics 2009,8 (4),624-38.
    [11]Cao, J.; Shen, C.; Wang, H.; Shen, H.; Chen, Y.; Nie, A.; Yan, G.; Lu, H.; Liu, Y.; Yang, P., Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomics approach. J Proteome Res 2009,8 (2),662-72.
    [12]Tajiri, M. Y., S.; Wada, Y., Differential analysis of site-specific glycans on plasma and cellular fibronectins:application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 2005,15,9.
    [13]Wada Y, T. M., Yoshida S., Hydrophilic Affinity Isolation and MALDI Multiple-Stage Tandem Mass Spectrometry of Glycopeptides for Glycoproteomics. analytical chemistry 2004,76,6.
    [14]Kanie, Y.; Enomoto, A.; Goto, S.; Kanie, O., Comparative RP-HPLC for rapid identification of glycopeptides and application in off-line LC-MALDI-MS analysis. Carbohydr Res 2008,343 (4),758-68.
    [15]Monzo, A.; Bonn, G. K.; Guttman, A., Boronic acid-lectin affinity chromatography.1. Simultaneous glycoprotein binding with selective or combined elution. Anal Bioanal Chem 2007,389 (7-8),2097-102.
    [16]Monzo, A.; Olajos, M.; De Benedictis, L.; Rivera, Z.; Bonn, G. K.; Guttman, A., Boronic acid lectin affinity chromatography (BLAC).2. Affinity micropartitioning-mediated comparative glycosylation profiling. Anal Bioanal Chem 2008,392(1-2),195-201.
    [17]Olajos, M.; Szekrenyes, A.; Hajos, P.; Gjerde, D. T.; Guttman, A., Boronic acid lectin affinity chromatography (BLAC).3. Temperature dependence of glycoprotein isolation and enrichment. Anal Bioanal Chem 2010,397 (6),2401-7.
    [18]McDonald, C. A.; Yang, J. Y.; Marathe, V.; Yen, T. Y.; Macher, B. A., Combining Results from Lectin Affinity Chromatography and Glycocapture Approaches Substantially Improves the Coverage of the Glycoproteome. Molecular & Cellular Proteomics 2009,8 (2),287-301.
    [19]Sun, B.; Ranish, J. A.; Utleg, A. G.; White, J. T.; Yan, X.; Lin, B.; Hood, L. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics 2007,6 (1),141-9.
    [20]Angel, P. M.; Lim, J. M.; Wells, L.; Bergmann, C.; Orlando, R., A potential pitfall in 180-based N-linked glycosylation site mapping. Rapid Commun Mass Spectrom 2007,21 (5),674-82.
    [21]Kvaratskhelia, M.; Clark, P. K.; Hess, S.; Melder, D. C.; Federspiel, M. J.; Hughes, S. H., Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry. Virology 2004,326 (1),171-81.
    [22]Chalkley, R. J.; Burlingame, A. L., Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol Cell Proteomics 2003,2 (3),182-90.
    [23]Itoh, S.; Kawasaki, N.; Harazono, A.; Hashii, N.; Matsuishi, Y.; Kawanishi, T. Hayakawa, T., Characterization of a gel-separated unknown glycoprotein by liquid chromatography/multistage tandem mass spectrometry:analysis of rat brain Thy-1 separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Chromatogr A 2005,1094 (1-2),105-17.
    [24]Larsen, M. R.; Hojrup, P.; Roepstorff, P., Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 2005,4 (2),107-19.
    [25]Chen, Y.; Liu, M.; Yan, G.; Lu, H.; Yang, P., One-pipeline approach achieving glycoprotein identification and obtaining intact glycopeptide information by tandem mass spectrometry. Mol Biosyst 2010,6 (12),2417-22.
    [26]Bunkenborg, J.; Pilch, B. J.; Podtelejnikov, A. V.; Wisniewski, J. R., Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 2004,4 (2),454-65.
    [27]Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999,20 (18),3551-3567.
    [28]Havilio, M.; Haddad, Y.; Smilansky, Z., Intensity-based statistical scorer for tandem mass spectrometry. Anal Chem 2003,75 (3),435-444.
    [29]Moore, R. E.; Young, M. K.; Lee, T. D., Qscore:An algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectr 2002,13 (4),378-386.
    [30]Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003,75 (17), 4646-4658.
    [31]Elias, J. E.; Gygi, S. P., Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007,4 (3), 207-214.
    [32]Malmstrom, J.; Beck, M.; Schmidt, A.; Lange, V.; Deutsch, E. W.; Aebersold, R., Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 2009,460 (7256),762-U112.
    [33]Scigelova, M.; Makarov, A., Orbitrap mass analyzer--overview and applications in proteomics. Proteomics 2006,6 Suppl 2,16-21.
    [34]Alvarez-Manilla, G.; Atwood, J.,3rd; Guo, Y.; Warren, N. L.; Orlando, R.; Pierce, M., Tools for glycoproteomic analysis:size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 2006,5(3),701-8.
    [35]Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003,75 (17), 4646-58.
    [1]Alvarez-Manilla, G.; Atwood, J.; Guo, Y.; Warren, N. L.; Orlando, R.; Pierce, M., Tools for glycoproteomic analysis:Size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. Journal of proteome research 2006,5 (3),701-708.
    [2]Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature biotechnology 2003,21 (6),660-6.
    [3]Evans, W. J.; McCourtney, E. J.; Carney, W. B., A comparative analysis of the interaction of borate ion with various polyols. Anal Biochem 1979,95 (2),383-6.
    [4]Soundararajan, S.; Badawi, M.; Kohlrust, C. M.; Hageman, J. H., Boronic Acids for Affinity-Chromatography-Spectral Methods for Determinations of Ionization and Diol-Binding Constants. Analytical Biochemistry 1989,178 (1),125-134.
    [5]Liu, X. C., Boronic acids as ligands for affinity chromatography. Se Pu 2006,24 (1),73-80.
    [6]Darula, Z.; Medzihradszky, K. F., Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol Cell Proteomics 2009,8 (11),2515-26.
    [7]Nilsson, J.; Ruetschi, U.; Halim, A.; Hesse, C.; Carlsohn, E.; Brinkmalm, G.; Larson, G., Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods 2009,6(11),809-U26.
    [8]Scott, N. E.; Parker, B. L.; Connolly, A. M.; Paulech, J.; Edwards, A. V.; Crossett, B.; Falconer, L.; Kolarich, D.; Djordjevic, S. P.; Hojrup, P.; Packer, N. H.; Larsen, M. R.; Cordwell, S. J., Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 2011,10 (2), M000031MCP201.
    [9]Sparbier, K.; Wenzel, T.; Kostrzewa, M., Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J Chromatogr B Analyt Technol Biomed Life Sci 2006,840 (1),29-36.
    [10]Lee, J. H.; Kim, Y.; Ha, M. Y.; Lee, E. K.; Choo, J., Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom 2005,16 (9),1456-60.
    [11]Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999,20 (18),3551-3567.
    [12]Havilio, M.; Haddad, Y.; Smilansky, Z., Intensity-based statistical scorer for tandem mass spectrometry. Anal Chem 2003,75 (3),435-444.
    [13]Moore, R. E.; Young, M. K.; Lee, T. D., Qscore:An algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectr 2002,13 (4),378-386.
    [14]Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003,75 (17), 4646-4658.
    [15]Elias, J. E.; Gygi, S. P., Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007,4 (3), 207-214.
    [16]Malmstrom, J.; Beck, M.; Schmidt, A.; Lange, V.; Deutsch, E. W.; Aebersold, R., Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 2009,460 (7256),762-U112.
    [17]Arnold, J. N.; Wormald, M. R.; Suter, D. M.; Radcliffe, C. M.; Harvey, D. J.; Dwek, R. A.; Rudd, P. M.; Sim, R. B., Human serum IgM glycosylation:identification of glycoforms that can bind to mannan-binding lectin. J Biol Chem 2005,280 (32), 29080-7.
    [1]Ajit Varki, R. C., Jeffrey Esko, Hudson Freeze, Gerald Hart, and Jamey Marth, Essentials of Glycobiology. Cold Spring Harbor Laboratory Press:New York,1999.
    [2]Tajiri, M. Y., S.; Wada, Y., Differential analysis of site-specific glycans on plasma and cellular fibronectins:application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 2005,15,9.
    [3]Wada Y, T. M., Yoshida S., Hydrophilic Affinity Isolation and MALDI Multiple-Stage Tandem Mass Spectrometry of Glycopeptides for Glycoproteomics. analytical chemistry 2004,76,6.
    [4]Liu, H. J.; Finch, J. W.; Luongo, J. A.; Li, G. Z.; Gebler, J. C., Development of an online two-dimensional nano-scale liquid chromatography/mass spectrometry method for improved chromatographic performance and hydrophobic peptide recovery. J Chromatogr A 2006,1135 (1),43-51.
    [5]Havilio, M.; Haddad, Y.; Smilansky, Z., Intensity-based statistical scorer for tandem mass spectrometry. Anal Chem 2003,75 (3),435-444.
    [6]Moore, R. E.; Young, M. K.; Lee, T. D., Qscore:An algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectr 2002,13 (4),378-386.
    [7]Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003,75 (17), 4646-4658.
    [8]Elias, J. E.; Gygi, S. P., Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007,4 (3), 207-14.
    [9]Malmstrom, J.; Beck, M.; Schmidt, A.; Lange, V.; Deutsch, E. W.; Aebersold, R., Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 2009,460 (7256),762-U112.
    [10]Nairn, A. V.; York, W. S.; Harris, K.; Hall, E. M.; Pierce, J. M.; Moremen, K. W., Regulation of glycan structures in animal tissues-Transcript profiling of glycan-related genes. JBiol Chem 2008,283 (25),17298-17313.
    [11]Abd Hamid, U. M.; Royle, L.; Saldova, R.; Radcliffe, C. M.; Harvey, D. J.; Storr, S. J.; Pardo, M.; Antrobus, R.; Chapman, C. J.; Zitzmann, N.; Robertson, J. F.; Dwek, R. A.; Rudd, P. M., A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 2008,18 (12), 1105-1118.
    [12]Carre, Y.; Klein, A.; Mathurin, P.; Michalski, J. C.; Morelle, W., Changes of serum-associated fucosylated glycoproteins and changes in glycosylation of IgA in human cirrhosis. Proteom Clin Appl 2009,3 (5),609-622.
    [13]Kita, Y.; Miura, Y.; Furukawa, J.; Nakano, M.; Shinohara, Y.; Ohno, M.; Takimoto, A.; Nishimura, S., Quantitative glycomics of human whole serum glycoproteins based on the standardized protocol for liberating N-glycans. Mol Cell Proteomics 2007, 6(8),1437-1445.
    [14]Miura, Y.; Hato, M.; Shinohara, Y.; Kuramoto, H.; Furukawa, J. I.; Kurogochi, M.; Shimaoka, H.; Tada, M.; Nakanishi, K.; Ozaki, M.; Todo, S.; Nishimura, S. I., BlotGIycoABC (TM), an integrated glycoblotting technique for rapid and large scale clinical glycomics. Mol Cell Proteomics 2008,7 (2),370-377.
    [15]Stanta, J. L.; Saldova, R.; Struwe, W. B.; Byrne, J. C.; Leweke, F. M.; Rothermund, M.; Rahmoune, H.; Levin, Y.; Guest, P. C.; Bahn, S.; Rudd, P. M., Identification of N-Glycosylation Changes in the CSF and Serum in Patients with Schizophrenia. JProteome Res 2010,9 (9),4476-4489.
    [16]Stumpo, K. A.; Reinhold, V. N., The N-Glycome of Human Plasma. J Proteome Res 2010,9 (9),4823-4830.
    [17]Leiserowitz, G.S.; Lebrilla, C.; Miyamoto, S.; An, H. J.; Duong, H.; Kirmiz, C. L1, B.; Liu, H.; Lam, K. S., Glycomics analysis of serum:a potential new biomarker for ovarian cancer? Int J Gynecol Cancer 2008,18 (3),470-475.
    [18]Huhn, C.; Selman, M. H. J.; Ruhaak, L. R.; Deelder, A. M.; Wuhrer, M., IgG glycosylation analysis. Proteomics 2009,9 (4),882-913.
    [19]Ahn, Y. H.; Lee, J. Y.; Lee, J. Y.; Kim, Y. S.; Ko, J. H.; Yoo, J. S., Quantitative Analysis of an Aberrant Glycoform of TIMP1 from Colon Cancer Serum by L-PHA-Enrichment and SISCAPA with MRM Mass Spectrometry. J Proteome Res 2009,8(9),4216-4224.
    [20]Lee, Y.; Kockx, M.; Raftery, M. J.; Jessup, W.; Griffith, R.; Kritharides, L., Glycosylation and Sialylation of Macrophage-derived Human Apolipoprotein E Analyzed by SDS-PAGE and Mass Spectrometry. Mol Cell Proteomics 2010,9 (9), 1968-1981.
    [21]Zeng, X. M.; Hood, B. L.; Sun, M.; Conrads, T. P.; Day, R. S.; Weissfeld, J. L.; Siegfried, J. M.; Bigbee, W. L., Lung Cancer Serum Biomarker Discovery Using Glycoprotein Capture and Liquid Chromatography Mass Spectrometry. J Proteome Res 2010,9(12),6440-6449.
    [22]Ueda, K.; Takami, S.; Saichi, N.; Daigo, Y.; Ishikawa, N.; Kohno, N.; Katsumata, M.; Yamane, A.; Ota, M.; Sato, T. A.; Nakamura, Y.; Nakagawa, H., Development of Serum Glycoproteomic Profiling Technique; Simultaneous Identification of Glycosylation Sites and Site-Specific Quantification of Glycan Structure Changes. Mol Cell Proteomics 2010,9 (9),1819-1828.
    [23]Lattova, E.; Varma, S.; Bezabeh, T.; Petrus, L.; Perreault, H., Mass spectrometric profiling of N-linked oligosaccharides and uncommon glycoform in mouse serum with head and neck tumor. J Am Soc Mass Spectr 2008,19 (5),671-685.
    [24]Bones, J.; Mittermayr, S.; O'Donoghue, N.; Guttman, A.; Rudd, P. M., Ultra Performance Liquid Chromatographic Profiling of Serum N-Glycans for Fast and Efficient Identification of Cancer Associated Alterations in Glycosylation. Anal Chem 2010,82(24),10208-10215.
    [25]Pierce, A.; Saldova, R.; Abd Hamid, U. M.; Abrahams, J. L.; McDermott, E. W.; Evoy, D.; Duffy, M. J.; Rudd, P. M., Levels of specific glycans significantly distinguish lymph node-positive from lymph node-negative breast cancer patients. Glycobiology 2010,20 (10),1283-1288.
    [26]Chu, C. S.; Ninonuevo, M. R.; Clowers, B. H.; Perkins, P. D.; An, H. J.; Yin, H. F.; Killeen, K.; Miyamoto, S.; Grimm, R.; Lebrilla, C. B., Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 2009,9 (7), 1939-1951.
    [27]Kronewitter, S. R.; An, H. J.; de Leoz, M. L.; Lebrilla, C. B.; Miyamoto, S.; Leiserowitz, G. S., The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome. Proteomics 2009, 9 (11),2986-2994.
    [28]Steen, H.; Mann, M., The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Bio 2004,5 (9),699-711.
    [29]Klammer, A. A.; MacCoss, M. J., Effects of modified digestion schemes on the identification of proteins from complex mixtures. J Proteome Res 2006,5 (3), 695-700.
    [30]Wada, Y.; Azadi, P.; Costello, C. E.; Dell, A.; Dwek, R. A.; Geyer, H.; Geyer, R.; Kakehi, K.; Karlsson, N. G.; Kato, K.; Kawasaki, N.; Khoo, K. H.; Kim, S.; Kondo, A.; Lattova, E.; Mechref, Y.; Miyoshi, E.; Nakamura, K.; Narimatsu, H.; Novotny, M. V.; Packer, N. H.; Perreault, H.; Peter-Katalinic, J.; Pohlentz, G.; Reinhold, V. N.; Rudd, P. M.; Suzuki, A.; Taniguchi, N., Comparison of the methods for profiling glycoprotein glycans-HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 2007,17 (4),411-422.
    [31]Gambino, R.; Ruiu, G.; Pagano, G.; Cassader, M., Qualitative analysis of the carbohydrate composition of apolipoprotein H. J Protein Chem 1997,16 (3),205-212.
    [32]Nilsson, J.; Ruetschi, U.; Halim, A.; Hesse, C.; Carlsohn, E.; Brinkmalm, G.; Larson, G., Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods 2009,6 (11),809-U26.
    [33]Gambino, R.; Ruiu, G.; Pagano, G.; Cassader, M., Study of the glycosylation of apolipoprotein H. Chem Phys Lipids 1999,103 (1-2),161-174.
    [1]Chai, W. G.; Yuen, C. T.; Kogelberg, H.; Carruthers, R. A.; Margolis, R. U.; Feizi, T.; Lawson, A. M., High prevalence of 2-mono- and 2,6-di-substituted Manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur J Biochem 1999,263 (3),879-888.
    [2]Smalheiser, N. R.; Haslam, S. M.; Sutton-Smith, M.; Morris, H. R.; Dell, A., Structural analysis of sequences O-linked to mannose reveals a novel Lewis X structure in cranin (Dystroglycan) purified from sheep brain. J Biol Chem 1998,273 (37),23698-23703.
    [3]Lommel, M.; Strahl, S., Protein O-mannosylation:conserved from bacteria to humans. Glycobiology 2009,19 (8),816-28.
    [4]Hart, G. W.; Housley, M. P.; Slawson, C., Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 2007,446 (7139), 1017-22.
    [5]Hang, H. C.; Bertozzi, C. R., The chemistry and biology of mucin-type O-linked glycosylation. Bioorganic & medicinal chemistry 2005,13 (17),5021-34.
    [6]Jensen, P. H.; Kolarich, D.; Packer, N. H., Mucin-type O-glycosylation-putting the pieces together. Febs J2010,277 (1),81-94.
    [7]Bigge, J. C.; Patel, T. P.; Bruce, J. A.; Goulding, P. N.; Charles, S. M.; Parekh, R. B., Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Analytical biochemistry 1995,230 (2),229-38.
    [8]Wells, L.; Vosseller, K.; Cole, R. N.; Cronshaw, J. M.; Matunis, M. J.; Hart, G. W., Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 2002,1(10),791-804.
    [9]Greis, K. D.; Hayes, B. K.; Comer, F. I.; Kirk, M.; Barnes, S.; Lowary, T. L.; Hart, G. W., Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Analytical biochemistry 1996,234 (1),38-49.
    [10]Hong, J. C.; Kim, Y. S., Alkali-catalyzed beta-elimination of periodate-oxidized glycans:a novel method of chemical deglycosylation of mucin gene products in paraffin embedded sections. Glycoconjugate journal 2000,17 (10),691-703.
    [11]Hanisch, F. G.; Teitz, S.; Schwientek, T.; Muller, S., Chemical de-O-glycosylation of glycoproteins for application in LC-based proteomics. Proteomics 2009,9 (3), 710-9.
    [12]Durham, M.; Regnier, F. E., Targeted glycoproteomics:serial lectin affinity chromatography in the selection of O-glycosylation sites on proteins from the human blood proteome. Journal of chromatography 2006,1132 (1-2),165-73.
    [13]Rademaker, G. J.; Pergantis, S. A.; Blok-Tip, L.; Langridge, J. I.; Kleen, A. Thomas-Oates, J. E., Mass spectrometric determination of the sites of O-glycan attachment with low picomolar sensitivity. Analytical biochemistry 1998,257 (2), 149-160.
    [14]Hanisch, F. G.; Jovanovic, M.; Peter-Katalinic, J., Glycoprotein identification and localization of O-glycosylation sites by mass spectrometric analysis of deglycosylated/alkylaminylated peptide fragments. Analytical biochemistry 2001,290 (1),47-59.
    [15]Mirgorodskaya, E.; Hassan, H.; Clausen, H.; Roepstorff, P., Mass spectrometric determination of O-glycosylation sites using beta-elimination and partial acid hydrolysis. Analytical chemistry 2001,73 (6),1263-1269.
    [16]Zheng, Y. F.; Guo, Z. H.; Cai, Z. W., Combination of beta-elimination and liquid chromatography/quadrupole time-of-flight mass spectrometry for the determination of O-glycosylation sites. Talanta 2009,78 (2),358-363.
    [17]Zheng, Y.; Guo, Z.; Cai, Z., Combination of beta-elimination and liquid chromatography/quadrupole time-of-flight mass spectrometry for the determination of O-glycosylation sites. Talanta 2009,78 (2),358-63.
    [18]Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003,75 (17), 4646-4658.
    [19]Elias, J. E.; Gygi, S. P., Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007,4 (3), 207-214.
    [20]Malmstrom, J.; Beck, M.; Schmidt, A.; Lange, V.; Deutsch, E. W.; Aebersold, R., Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 2009,460 (7256),762-U112.
    [21]Kirmiz, C.; Li, B.; An, H. J.; Clowers, B. H.; Chew, H. K.; Lam, K. S.; Ferrige, A.; Alecio, R.; Borowsky, A. D.; Sulaimon, S.; Lebrilla, C. B.; Miyamoto, S., A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics 2007,6 (1), 43-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700