突触外NMDA受体介导的癫痫发生机制的电生理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在神经系统中,N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMDA)受体是一类重要的离子通道型谷氨酸受体,其通道的开放可引起大量Ca2+流入胞内并激活下游的一系列信号通路。NMDA受体一方面在突触传递、突触可塑性以及学习与记忆等生理过程中起着举足轻重的作用,另一方面在诸如脑缺血、中风、癫痫、精神分裂症、抑郁症及一些神经退行性疾病的病理过程中亦是发挥着至关重要的作用。近年来的一系列研究表明:1)在生理状态下极少开放的突触外NMDA受体会在癫痫等病理状态下异常开放;2)星形胶质细胞分泌的谷氨酸可能是通过激活突触外NMDA受体来导致癫痫发作中的神经元同步放电的;3)突触外NMDA受体的激活能介导兴奋毒性,且可能导致癫痫发病过程中的神经元死亡。以上这些结果都提示突触外NMDA受体可能在癫痫的病理机制中起着重要的作用。但在癫痫发生阶段,目前很少有关于NMDA受体电生理学性质变化的研究,更无直接测试突触外NMDA受体的报告。
     因此,我们大胆假设突触外NMDA受体在癫痫发生过程中的异常激活介导了其病理机制,并在此研究了突触内、外NMDA受体介导的兴奋性突触后电流(NMDA receptors-mediated excitatory postsynaptic currents, NMDA-EPSCs)在癫痫发生早期过程中的变化。我们选取了6-8周的成年小鼠,通过氯化锂联合匹罗卡品的方法诱导了颞叶癫痫模型。在模型小鼠癫痫持续状态(status epilepticus, SE)发作之后的24小时,我们制备了急性海马切片,并利用膜片钳全细胞记录法研究了CA1区锥体神经元突触内NMDA受体所介导的EPSCs。我们随后利用了我们独自发展的一套实验方案来选择性地记录突触外NMDA受体介导的电流:在灌流NMDA受体拮抗剂MK-801 20分钟之后,给予低频刺激使得突触内NMDA受体先被激活,继而被MK-801不可逆地阻断;其后洗脱MK-801,30分钟后通过高频刺激来选择性地激活尚未被阻断的突触外的NMDA受体。
     我们对突触内、外NMDA受体介导电流的通道动力学指标进行了分析、统计,并与生理盐水对照组比较后发现:1)突触内NMDA-EPSCs的上升时间及衰减时间均无统计学差异;2)突触外NMDA-EPSCs的峰值、面积峰值比、以及上升时间亦无统计学差异;3)但突触外NMDA-EPSCs的衰减时程相对于对照组加快。以上结果表明在癫痫发生早期,突触内NMDA受体的通道动力学无显著改变,但突触外NMDA受体的通道性质却产生了变化,提示突触外NMDA受体的异常可能参与到了癫痫的发病机制之中。我们相信通过进一步地阐明突触外NMDA受体参与癫痫发生的分子机制,可为癫痫的治疗及预防提供合适的靶标作为参考。
The N-methyl-D-aspartate (NMDA) receptor is a major type of ionotropic glutamate receptor, and its activation can induce a large amount of Ca2+ influx which mediates most of NMDA receptor activities through downstream signaling pathways. Many studies have shown that NMDA receptors play pivotal roles in the central nervous system under both physiological and pathological conditions. Recent reports have shown that: 1) extrasynaptic NMDA receptors can abnormally open under epileptic seizure conditions; 2) NMDA receptors can be activated by the elevated astrocytic glutamate, which may lead to the neuronal synchronous discharging during seizures; 3) the downstream cascades of extrasynaptic NMDA receptors can mediate excitotoxicity and promote neuronal death which can occur after status epilepticus (SE). These results suggest a key role for extrasynaptic NMDA receptors in the molecular mechanism of epilepsy. However, so far, there are few studies focusing on electrophysiological properties of NMDA receptors during epileptogenesis, even less is related to extrasynaptic NMDA receptor.
     Here, we hypothesize that the abnormal activation of extrasynaptic NMDA receptors participates in the epileptogenesis. We studied the changes of synaptic and extrasynaptic NMDA receptor-mediated currents at the early stage of epilepsy. Temporal lobe epileptic models are induced in six to eight week-old mice by pilocarpine (PILO) combined with lithium chloride. We prepared acute hippocampal slices at 24 hours after the onset of status epilepticus, and then recorded the synaptic NMDA receptors-mediated excitatory postsynaptic currents (NMDA-EPSCs) of pyramidal neurons in CA1 region by patch clamp whole-cell recording technique. Furthermore, we established a new protocol to record extrasynaptic NMDA receptor-mediated EPSCs. Firstly, synaptic NMDA-EPSCs were blocked by applying a 5 Hz stimulation in the presence of MK-801, an activity-dependent and irreversible NMDA receptor antagonist. Then, the MK-801 was washed out for 30 min, and the remaining extrasynaptic NMDA receptors, which were not blocked by MK-801, were finally activated by a 100 Hz stimulation.
     After analyzing the channel kinetic parameters of synaptic and extrasynaptic NMDA-EPSCs from both PILO- and saline-treated group, we found that: 1) there was no significant difference in both rise time and decay time of synaptic NMDA-EPSCs; 2) the peak amplitude, area to peak ratio, and rise time of extrasynaptic NMDA-EPSCs were not altered; 3) the decay of extrasynaptic NMDA-EPSCs, however, was faster in PILO-treated group than that of saline-treated mice. Taken together, these results suggest that the change in kinetics of extrasynaptic rather than synaptic NMDA receptors participates in epileptogenesis. Elucidating the extrasynaptic NMDA receptors-mediated molecular mechanisms in epileptogenesis will provide a potential cue for the effective treatment of epilepsy.
引文
[1] MacDermott A.B., Mayer M.L., Westbrook G.L., et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones[J]. Nature. 1986, 321(6069): 519-22.
    [2] Witt A., Macdonald N., Kirkpatrick P. Memantine hydrochloride[J]. Nat Rev Drug Discov. 2004, 3(2): 109-10.
    [3] Hollmann M., Heinemann S. Cloned glutamate receptors[J]. Annu Rev Neurosci. 1994, 1731-108.
    [4] Mayer M.L., Westbrook G.L., Guthrie P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones[J]. Nature. 1984, 309(5965): 261-3.
    [5] Monyer H., Burnashev N., Laurie D.J., et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors[J]. Neuron. 1994, 12(3): 529-40.
    [6] Dingledine R., Borges K., Bowie D., et al. The glutamate receptor ion channels[J]. Pharmacol Rev. 1999, 51(1): 7-61.
    [7] Cull-Candy S., Brickley S., Farrant M. NMDA receptor subunits: diversity, development and disease[J]. Curr Opin Neurobiol. 2001, 11(3): 327-35.
    [8] Madden K. NMDA receptor antagonists and glycine site NMDA antagonists[J]. Curr Med Res Opin. 2002, 18 Suppl 2s27-31.
    [9] Klein R.C., Castellino F.J. Activators and inhibitors of the ion channel of the NMDA receptor[J]. Curr Drug Targets. 2001, 2(3): 323-9.
    [10] Watanabe M., Inoue Y., Sakimura K., et al. Developmental changes in distribution of NMDA receptor channel subunit mRNAs[J]. Neuroreport. 1992, 3(12): 1138-40.
    [11] Luo J., Bosy T.Z., Wang Y., et al. Ontogeny of NMDA R1 subunit protein expressionin five regions of rat brain[J]. Brain Res Dev Brain Res. 1996, 92(1): 10-7.
    [12] Stone T.W. Subtypes of NMDA receptors[J]. Gen Pharmacol. 1993, 24(4): 825-32.
    [13] Watanabe M., Mishina M., Inoue Y. Distinct distributions of five NMDA receptor channel subunit mRNAs in the brainstem[J]. J Comp Neurol. 1994, 343(4): 520-31.
    [14] Chatterton J.E., Awobuluyi M., Premkumar L.S., et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits[J]. Nature. 2002, 415(6873): 793-8.
    [15] Sheng M., Cummings J., Roldan L.A., et al. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex[J]. Nature. 1994, 368(6467): 144-7.
    [16] Laube B., Kuhse J., Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors[J]. J Neurosci. 1998, 18(8): 2954-61.
    [17] Hawkins L.M., Chazot P.L., Stephenson F.A. Biochemical evidence for the co-association of three N-methyl-D-aspartate (NMDA) R2 subunits in recombinant NMDA receptors[J]. J Biol Chem. 1999, 274(38): 27211-8.
    [18] Cull-Candy S.G., Leszkiewicz D.N. Role of distinct NMDA receptor subtypes at central synapses[J]. Sci STKE. 2004, 2004(255): re16.
    [19] Tovar K.R., Sprouffske K., Westbrook G.L. Fast NMDA receptor-mediated synaptic currents in neurons from mice lacking the epsilon2 (NR2B) subunit[J]. J Neurophysiol. 2000, 83(1): 616-20.
    [20] Vicini S., Wang J.F., Li J.H., et al. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors[J]. J Neurophysiol. 1998, 79(2): 555-66.
    [21] Stocca G., Vicini S. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons[J]. J Physiol. 1998, 507 ( Pt 1)13-24.
    [22] Laurie D.J., Seeburg P.H. Ligand affinities at recombinant N-methyl-D-aspartatereceptors depend on subunit composition[J]. Eur J Pharmacol. 1994, 268(3): 335-45.
    [23] Krupp J.J., Vissel B., Heinemann S.F., et al. Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific[J]. Mol Pharmacol. 1996, 50(6): 1680-8.
    [24] Groc L., Heine M., Cousins S.L., et al. NMDA receptor surface mobility depends on NR2A-2B subunits[J]. Proc Natl Acad Sci U S A. 2006, 103(49): 18769-74.
    [25] Groc L., Choquet D., Stephenson F.A., et al. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin[J]. J Neurosci. 2007, 27(38): 10165-75.
    [26] Sharma K., Fong D.K., Craig A.M. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation[J]. Mol Cell Neurosci. 2006, 31(4): 702-12.
    [27] Ishii T., Moriyoshi K., Sugihara H., et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits[J]. J Biol Chem. 1993, 268(4): 2836-43.
    [28] Stern P., Cik M., Colquhoun D., et al. Single channel properties of cloned NMDA receptors in a human cell line: comparison with results from Xenopus oocytes[J]. J Physiol. 1994, 476(3): 391-7.
    [29] Cavara N.A., Hollmann M. Shuffling the deck anew: how NR3 tweaks NMDA receptor function[J]. Mol Neurobiol. 2008, 38(1): 16-26.
    [30] Papadia S., Hardingham G.E. The dichotomy of NMDA receptor signaling[J]. Neuroscientist. 2007, 13(6): 572-9.
    [31] Liu L., Wong T.P., Pozza M.F., et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity[J]. Science. 2004, 304(5673): 1021-4.
    [32] Berberich S., Punnakkal P., Jensen V., et al. Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation[J]. J Neurosci. 2005, 25(29): 6907-10.
    [33] Neyton J., Paoletti P. Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach[J]. J Neurosci. 2006, 26(5): 1331-3.
    [34] McBain C.J., Mayer M.L. N-methyl-D-aspartic acid receptor structure and function[J]. Physiol Rev. 1994, 74(3): 723-60.
    [35] Hou X.Y., Zhang G.Y., Yan J.Z., et al. Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia[J]. Brain Res. 2002, 955(1-2): 123-32.
    [36] Hou X.Y., Zhang G.Y., Zong Y.Y. Suppression of postsynaptic density protein 95 expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-D-aspartate receptors and interactions of Src and Fyn with NR2A after transient brain ischemia in rat hippocampus[J]. Neurosci Lett. 2003, 343(2): 125-8.
    [37] MacDonald R.I., Musacchio A., Holmgren R.A., et al. Invariant tryptophan at a shielded site promotes folding of the conformational unit of spectrin[J]. Proc Natl Acad Sci U S A. 1994, 91(4): 1299-303.
    [38] Wang Y.T., Salter M.W. Regulation of NMDA receptors by tyrosine kinases and phosphatases[J]. Nature. 1994, 369(6477): 233-5.
    [39] Leonard A.S., Hell J.W. Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites[J]. J Biol Chem. 1997, 272(18): 12107-15.
    [40] Kharazia V.N., Phend K.D., Rustioni A., et al. EM colocalization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex[J]. Neurosci Lett. 1996, 210(1): 37-40.
    [41] Racca C., Stephenson F.A., Streit P., et al. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area[J]. J Neurosci. 2000, 20(7): 2512-22.
    [42] Nimchinsky E.A., Yasuda R., Oertner T.G., et al. The number of glutamate receptorsopened by synaptic stimulation in single hippocampal spines[J]. J Neurosci. 2004, 24(8): 2054-64.
    [43] Takumi Y., Matsubara A., Rinvik E., et al. The arrangement of glutamate receptors in excitatory synapses[J]. Ann N Y Acad Sci. 1999, 868474-82.
    [44] Newpher T.M., Ehlers M.D. Glutamate receptor dynamics in dendritic microdomains[J]. Neuron. 2008, 58(4): 472-97.
    [45] Perez-Otano I., Lujan R., Tavalin S.J., et al. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1[J]. Nat Neurosci. 2006, 9(5): 611-21.
    [46] Clark B.A., Farrant M., Cull-Candy S.G. A direct comparison of the single-channel properties of synaptic and extrasynaptic NMDA receptors[J]. J Neurosci. 1997, 17(1): 107-16.
    [47] Thomas C.G., Miller A.J., Westbrook G.L. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons[J]. J Neurophysiol. 2006, 95(3): 1727-34.
    [48] Tovar K.R., Westbrook G.L. Mobile NMDA receptors at hippocampal synapses[J]. Neuron. 2002, 34(2): 255-64.
    [49] Bellone C., Nicoll R.A. Rapid bidirectional switching of synaptic NMDA receptors[J]. Neuron. 2007, 55(5): 779-85.
    [50] Barth A.L., Malenka R.C. NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses[J]. Nat Neurosci. 2001, 4(3): 235-6.
    [51] Carmignoto G., Vicini S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex[J]. Science. 1992, 258(5084): 1007-11.
    [52] Chavis P., Westbrook G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse[J]. Nature. 2001, 411(6835): 317-21.
    [53] Tu W., Xu X., Peng L., et al. DAPK1 interaction with NMDA receptor NR2B subunitsmediates brain damage in stroke[J]. Cell. 140(2): 222-34.
    [54] Okamoto S., Pouladi M.A., Talantova M., et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin[J]. Nat Med. 2009, 15(12): 1407-13.
    [55] Lau C.G., Zukin R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders[J]. Nat Rev Neurosci. 2007, 8(6): 413-26.
    [56] Kusumi A., Ike H., Nakada C., et al. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules[J]. Semin Immunol. 2005, 17(1): 3-21.
    [57] Triller A., Choquet D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move![J]. Trends Neurosci. 2005, 28(3): 133-9.
    [58] Michalet X., Pinaud F.F., Bentolila L.A., et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science. 2005, 307(5709): 538-44.
    [59] Dahan M., Levi S., Luccardini C., et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking[J]. Science. 2003, 302(5644): 442-5.
    [60] Groc L., Heine M., Cognet L., et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors[J]. Nat Neurosci. 2004, 7(7): 695-6.
    [61] Borgdorff A.J., Choquet D. Regulation of AMPA receptor lateral movements[J]. Nature. 2002, 417(6889): 649-53.
    [62] Chen Y., Lagerholm B.C., Yang B., et al. Methods to measure the lateral diffusion of membrane lipids and proteins[J]. Methods. 2006, 39(2): 147-53.
    [63] Choquet D., Triller A. The role of receptor diffusion in the organization of the postsynaptic membrane[J]. Nat Rev Neurosci. 2003, 4(4): 251-65.
    [64] Park J.S., Han T.H., Lee K.Y., et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis,exocytosis and drug release[J]. J Control Release. 2006, 115(1): 37-45.
    [65] Bogdanov Y., Michels G., Armstrong-Gold C., et al. Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts[J]. EMBO J. 2006, 25(18): 4381-9.
    [66] Yudowski G.A., Puthenveedu M.A., von Zastrow M. Distinct modes of regulated receptor insertion to the somatodendritic plasma membrane[J]. Nat Neurosci. 2006, 9(5): 622-7.
    [67] Puthenveedu M.A., Yudowski G.A., von Zastrow M. Endocytosis of neurotransmitter receptors: location matters[J]. Cell. 2007, 130(6): 988-9.
    [68] Passafaro M., Piech V., Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons[J]. Nat Neurosci. 2001, 4(9): 917-26.
    [69] Holcman D., Triller A. Modeling synaptic dynamics driven by receptor lateral diffusion[J]. Biophys J. 2006, 91(7): 2405-15.
    [70] Tovar K.R., Westbrook G.L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro[J]. J Neurosci. 1999, 19(10): 4180-8.
    [71] Li S.T., Matsushita M., Moriwaki A., et al. HIV-1 Tat inhibits long-term potentiation and attenuates spatial learning [corrected][J]. Ann Neurol. 2004, 55(3): 362-71.
    [72] Rumbaugh G., Vicini S. Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons[J]. J Neurosci. 1999, 19(24): 10603-10.
    [73] Huettner J.E., Bean B.P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels[J]. Proc Natl Acad Sci U S A. 1988, 85(4): 1307-11.
    [74] Harris A.Z., Pettit D.L. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices[J]. The Journal of physiology. 2007, 584(Pt 2):509-19.
    [75] Zhao J., Peng Y., Xu Z., et al. Synaptic metaplasticity through NMDA receptor lateral diffusion[J]. J Neurosci. 2008, 28(12): 3060-70.
    [76] Pettit D.L., Augustine G.J. Distribution of functional glutamate and GABA receptors on hippocampal pyramidal cells and interneurons[J]. J Neurophysiol. 2000, 84(1): 28-38.
    [77] Fellin T., Pascual O., Gobbo S., et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors[J]. Neuron. 2004, 43(5): 729-43.
    [78] Perea G., Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes[J]. J Neurosci. 2005, 25(9): 2192-203.
    [79] Tsai G., Coyle J.T. Glutamatergic mechanisms in schizophrenia[J]. Annu Rev Pharmacol Toxicol. 2002, 42165-79.
    [80] Lipton S.A., Rosenberg P.A. Excitatory amino acids as a final common pathway for neurologic disorders[J]. N Engl J Med. 1994, 330(9): 613-22.
    [81] David Y., Cacheaux L.P., Ivens S., et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis?[J]. J Neurosci. 2009, 29(34): 10588-99.
    [82] Scimemi A., Tian H., Diamond J.S. Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus[J]. J Neurosci. 2009, 29(46): 14581-95.
    [83] Shigeri Y., Seal R.P., Shimamoto K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs[J]. Brain Res Brain Res Rev. 2004, 45(3): 250-65.
    [84] Kullmann D.M., Asztely F. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications[J]. Trends Neurosci. 1998, 21(1): 8-14.
    [85] Najm I.M., Ying Z., Babb T., et al. Epileptogenicity correlated with increasedN-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia[J]. Epilepsia. 2000, 41(8): 971-6.
    [86] Mathern G.W., Pretorius J.K., Mendoza D., et al. Increased hippocampal AMPA and NMDA receptor subunit immunoreactivity in temporal lobe epilepsy patients[J]. J Neuropathol Exp Neurol. 1998, 57(6): 615-34.
    [87] Yeh G.C., Bonhaus D.W., Nadler J.V., et al. N-methyl-D-aspartate receptor plasticity in kindling: quantitative and qualitative alterations in the N-methyl-D-aspartate receptor-channel complex[J]. Proc Natl Acad Sci U S A. 1989, 86(20): 8157-60.
    [88] Kraus J.E., Yeh G.C., Bonhaus D.W., et al. Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3[J]. J Neurosci. 1994, 14(7): 4196-205.
    [89] Kohr G., De Koninck Y., Mody I. Properties of NMDA receptor channels in neurons acutely isolated from epileptic (kindled) rats[J]. J Neurosci. 1993, 13(8): 3612-27.
    [90] Kohr G., Mody I. Kindling increases N-methyl-D-aspartate potency at single N-methyl-D-aspartate channels in dentate gyrus granule cells[J]. Neuroscience. 1994, 62(4): 975-81.
    [91] Lieberman D.N., Mody I. Properties of single NMDA receptor channels in human dentate gyrus granule cells[J]. J Physiol. 1999, 518 ( Pt 1)55-70.
    [92] McDonald J.W., Garofalo E.A., Hood T., et al. Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy[J]. Ann Neurol. 1991, 29(5): 529-41.
    [93] Faingold C.L., Randall M.E., Naritoku D.K., et al. Noncompetitive and competitive NMDA antagonists exert anticonvulsant effects by actions on different sites within the neuronal network for audiogenic seizures[J]. Exp Neurol. 1993, 119(2): 198-204.
    [94] McDonald J.W., Johnston M.V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development[J]. Brain Res BrainRes Rev. 1990, 15(1): 41-70.
    [95] Friedman L.K., Pellegrini-Giampietro D.E., Sperber E.F., et al. Kainate-induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study[J]. J Neurosci. 1994, 14(5 Pt 1): 2697-707.
    [96] Chapman A.G., Woodburn V.L., Woodruff G.N., et al. Anticonvulsant effect of reduced NMDA receptor expression in audiogenic DBA/2 mice[J]. Epilepsy Res. 1996, 26(1): 25-35.
    [97] Zapata A., Capdevila J.L., Tarrason G., et al. Effects of NMDA-R1 antisense oligodeoxynucleotide administration: behavioral and radioligand binding studies[J]. Brain Res. 1997, 745(1-2): 114-20.
    [98] During M.J., Symes C.W., Lawlor P.A., et al. An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy[J]. Science. 2000, 287(5457): 1453-60.
    [99] Hardingham G.E., Fukunaga Y., Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways[J]. Nat Neurosci. 2002, 5(5): 405-14.
    [100] Perea G., Navarrete M., Araque A. Tripartite synapses: astrocytes process and control synaptic information[J]. Trends Neurosci. 2009, 32(8): 421-31.
    [101] Fellin T. Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity[J]. J Neurochem. 2009, 108(3): 533-44.
    [102] Ding S., Fellin T., Zhu Y., et al. Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus[J]. J Neurosci. 2007, 27(40): 10674-84.
    [103] Ricci G., Volpi L., Pasquali L., et al. Astrocyte-neuron interactions in neurological disorders[J]. J Biol Phys. 2009, 35(4): 317-36.
    [104] Miller G. Neuroscience. The dark side of glia[J]. Science. 2005, 308(5723): 778-81.
    [105] Araque A., Carmignoto G., Haydon P.G. Dynamic signaling between astrocytes andneurons[J]. Annu Rev Physiol. 2001, 63795-813.
    [106] Haydon P.G. GLIA: listening and talking to the synapse[J]. Nat Rev Neurosci. 2001, 2(3): 185-93.
    [107] Newman E.A. New roles for astrocytes: regulation of synaptic transmission[J]. Trends Neurosci. 2003, 26(10): 536-42.
    [108] Fellin T., Carmignoto G. Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit[J]. J Physiol. 2004, 559(Pt 1): 3-15.
    [109] Tian G.F., Azmi H., Takano T., et al. An astrocytic basis of epilepsy[J]. Nat Med. 2005, 11(9): 973-81.
    [110] Korn A., Golan H., Melamed I., et al. Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome[J]. J Clin Neurophysiol. 2005, 22(1): 1-9.
    [111] Haydon P.G., Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling[J]. Physiol Rev. 2006, 86(3): 1009-31.
    [112] Racine R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure[J]. Electroencephalogr Clin Neurophysiol. 1972, 32(3): 281-94.
    [113] Zhang Y., Cai G.E., Yang Q., et al. Time-dependent changes in learning ability and induction of long-term potentiation in the lithium-pilocarpine-induced epileptic mouse model[J]. Epilepsy Behav. 17(4): 448-54.
    [114] Harris A.Z., Pettit D.L. Recruiting extrasynaptic NMDA receptors augments synaptic signaling[J]. J Neurophysiol. 2008, 99(2): 524-33.
    [115] Bialik S., Kimchi A. The death-associated protein kinases: structure, function, and beyond[J]. Annu Rev Biochem. 2006, 75189-210.
    [116] Sonkusare S.K., Kaul C.L., Ramarao P. Dementia of Alzheimer's disease and other neurodegenerative disorders--memantine, a new hope[J]. Pharmacol Res. 2005, 51(1): 1-17.
    [117] Milnerwood A.J., Gladding C.M., Pouladi M.A., et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice[J]. Neuron. 65(2): 178-90.
    [118] Chen Q., He S., Hu X.L., et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis[J]. J Neurosci. 2007, 27(3): 542-52.
    [119] Sutula T., Cascino G., Cavazos J., et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe[J]. Ann Neurol. 1989, 26(3): 321-30.
    [120] Sprengel R., Suchanek B., Amico C., et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo[J]. Cell. 1998, 92(2): 279-89.
    [121] He X.P., Kotloski R., Nef S., et al. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model[J]. Neuron. 2004, 43(1): 31-42.
    [122] Tongiorgi E., Armellin M., Giulianini P.G., et al. Brain-derived neurotrophic factor mRNA and protein are targeted to discrete dendritic laminas by events that trigger epileptogenesis[J]. J Neurosci. 2004, 24(30): 6842-52.
    [123] McNamara J.O., Huang Y.Z., Leonard A.S. Molecular signaling mechanisms underlying epileptogenesis[J]. Sci STKE. 2006, 2006(356): re12.
    [124] Auzmendi J., Gonzalez N., Girardi E. The NMDAR subunit NR2B expression is modified in hippocampus after repetitive seizures[J]. Neurochem Res. 2009, 34(5): 819-26.
    [1] MacDermott A.B., Mayer M.L., Westbrook G.L., et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones[J]. Nature. 1986, 321(6069): 519-22.
    [2] Zukin R.S., Bennett M.V. Alternatively spliced isoforms of the NMDARI receptor subunit[J]. Trends Neurosci. 1995, 18(7): 306-13.
    [3] Garner C.C., Nash J., Huganir R.L. PDZ domains in synapse assembly and signalling[J]. Trends Cell Biol. 2000, 10(7): 274-80.
    [4] Ehlers M.D., Zhang S., Bernhadt J.P., et al. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit[J]. Cell. 1996, 84(5): 745-55.
    [5] Tingley W.G., Roche K.W., Thompson A.K., et al. Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain[J]. Nature. 1993, 364(6432): 70-3.
    [6] Tsai G., Coyle J.T. Glutamatergic mechanisms in schizophrenia[J]. Annu Rev Pharmacol Toxicol. 2002, 42165-79.
    [7] Lipton S.A., Rosenberg P.A. Excitatory amino acids as a final common pathway for neurologic disorders[J]. N Engl J Med. 1994, 330(9): 613-22.
    [8] Bonansco C., Buno W. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons[J]. Hippocampus. 2003, 13(1): 150-63.
    [9] Lee I., Kesner R.P. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory[J]. Nat Neurosci. 2002, 5(2): 162-8.
    [10] Bliss T.V., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus[J]. Nature. 1993, 361(6407): 31-9.
    [11] Hardingham G.E., Bading H. The Yin and Yang of NMDA receptor signalling[J]. Trends Neurosci. 2003, 26(2): 81-9.
    [12] Turrigiano G.G., Nelson S.B. Homeostatic plasticity in the developing nervous system[J]. Nat Rev Neurosci. 2004, 5(2): 97-107.
    [13] White A.M., Matthews D.B., Best P.J. Ethanol, memory, and hippocampal function: a review of recent findings[J]. Hippocampus. 2000, 10(1): 88-93.
    [14] Harris E.W., Ganong A.H., Cotman C.W. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors[J]. Brain Res. 1984, 323(1): 132-7.
    [15] Herron C.E., Lester R.A., Coan E.J., et al. Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism[J]. Nature. 1986, 322(6076): 265-8.
    [16] Durand G.M., Kovalchuk Y., Konnerth A. Long-term potentiation and functional synapse induction in developing hippocampus[J]. Nature. 1996, 381(6577): 71-5.
    [17] Sharma K., Fong D.K., Craig A.M. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation[J]. Mol Cell Neurosci. 2006, 31(4): 702-12.
    [18] Tang Y.P., Shimizu E., Dube G.R., et al. Genetic enhancement of learning and memory in mice[J]. Nature. 1999, 401(6748): 63-9.
    [19] Shimizu E., Tang Y.P., Rampon C., et al. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation[J]. Science. 2000, 290(5494): 1170-4.
    [20] Nosten-Bertrand M., Errington M.L., Murphy K.P., et al. Normal spatial learning despite regional inhibition of LTP in mice lacking Thy-1[J]. Nature. 1996, 379(6568): 826-9.
    [21] Abraham W.C., Bear M.F. Metaplasticity: the plasticity of synaptic plasticity[J].Trends Neurosci. 1996, 19(4): 126-30.
    [22] Philpot B.D., Cho K.K., Bear M.F. Obligatory role of NR2A for metaplasticity in visual cortex[J]. Neuron. 2007, 53(4): 495-502.
    [23] Bellinger F.P., Wilce P.A., Bedi K.S., et al. Long-lasting synaptic modification in the rat hippocampus resulting from NMDA receptor blockade during development[J]. Synapse. 2002, 43(2): 95-101.
    [24] Perez-Otano I., Ehlers M.D. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses[J]. Neurosignals. 2004, 13(4): 175-89.
    [25] Ikonomidou C., Bosch F., Miksa M., et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain[J]. Science. 1999, 283(5398): 70-4.
    [26] Contestabile A. Roles of NMDA receptor activity and nitric oxide production in brain development[J]. Brain Res Brain Res Rev. 2000, 32(2-3): 476-509.
    [27] Tovar K.R., Westbrook G.L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro[J]. J Neurosci. 1999, 19(10): 4180-8.
    [28] Rumbaugh G., Vicini S. Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons[J]. J Neurosci. 1999, 19(24): 10603-10.
    [29] Stocca G., Vicini S. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons[J]. J Physiol. 1998, 507 ( Pt 1)13-24.
    [30] Monyer H., Burnashev N., Laurie D.J., et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors[J]. Neuron. 1994, 12(3): 529-40.
    [31] Chen L., Cooper N.G., Mower G.D. Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effectsof dark rearing[J]. Brain Res Mol Brain Res. 2000, 78(1-2): 196-200.
    [32] Portera-Cailliau C., Price D.L., Martin L.J. N-methyl-D-aspartate receptor proteins NR2A and NR2B are differentially distributed in the developing rat central nervous system as revealed by subunit-specific antibodies[J]. J Neurochem. 1996, 66(2): 692-700.
    [33] Maskos U., McKay R.D. Neural cells without functional N-Methyl-D-Aspartate (NMDA) receptors contribute extensively to normal postnatal brain development in efficiently generated chimaeric NMDA R1 -/- <--> +/+ mice[J]. Dev Biol. 2003, 262(1): 119-36.
    [34] Forrest D., Yuzaki M., Soares H.D., et al. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death[J]. Neuron. 1994, 13(2): 325-38.
    [35] Mohn A.R., Gainetdinov R.R., Caron M.G., et al. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia[J]. Cell. 1999, 98(4): 427-36.
    [36] Sakimura K., Kutsuwada T., Ito I., et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit[J]. Nature. 1995, 373(6510): 151-5.
    [37] Dingledine R., Borges K., Bowie D., et al. The glutamate receptor ion channels[J]. Pharmacol Rev. 1999, 51(1): 7-61.
    [38] Kutsuwada T., Sakimura K., Manabe T., et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice[J]. Neuron. 1996, 16(2): 333-44.
    [39] Komuro H., Rakic P. Modulation of neuronal migration by NMDA receptors[J]. Science. 1993, 260(5104): 95-7.
    [40] Harris L.W., Sharp T., Gartlon J., et al. Long-term behavioural, molecular and morphological effects of neonatal NMDA receptor antagonism[J]. Eur J Neurosci.2003, 18(6): 1706-10.
    [41] Mikulecka A., Mares P. NMDA receptor antagonists impair motor performance in immature rats[J]. Psychopharmacology (Berl). 2002, 162(4): 364-72.
    [42] Hansen H.H., Briem T., Dzietko M., et al. Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain[J]. Neurobiol Dis. 2004, 16(2): 440-53.
    [43] Fredriksson A., Archer T., Alm H., et al. Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration[J]. Behav Brain Res. 2004, 153(2): 367-76.
    [44] Brooks W.J., Weeks A.C., Leboutillier J.C., et al. Altered NMDA sensitivity and learning following chronic developmental NMDA antagonism[J]. Physiol Behav. 1997, 62(5): 955-62.
    [45] Takahashi H., Mizui T., Shirao T. Down-regulation of drebrin A expression suppresses synaptic targeting of NMDA receptors in developing hippocampal neurones[J]. J Neurochem. 2006, 97 Suppl 1110-5.
    [46] Sutula T., Cascino G., Cavazos J., et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe[J]. Ann Neurol. 1989, 26(3): 321-30.
    [47] McDonald J.W., Johnston M.V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development[J]. Brain Res Brain Res Rev. 1990, 15(1): 41-70.
    [48] Lau C.G., Zukin R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders[J]. Nat Rev Neurosci. 2007, 8(6): 413-26.
    [49] Chang B.S., Lowenstein D.H. Epilepsy[J]. N Engl J Med. 2003, 349(13): 1257-66.
    [50] Faingold C.L. The genetically epilepsy-prone rat[J]. Gen Pharmacol. 1988, 19(3): 331-8.
    [51] Wieraszko A., Seyfried T.N. Influence of audiogenic seizures on synaptic facilitationin mouse hippocampal slices is mediated by N-methyl-D-aspartate receptor[J]. Epilepsia. 1993, 34(6): 979-84.
    [52] Mangiarini L., Sathasivam K., Seller M., et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice[J]. Cell. 1996, 87(3): 493-506.
    [53] Del Vecchio R.A., Gold L.H., Novick S.J., et al. Increased seizure threshold and severity in young transgenic CRND8 mice[J]. Neurosci Lett. 2004, 367(2): 164-7.
    [54] Scheffer I.E., Berkovic S.F. The genetics of human epilepsy[J]. Trends Pharmacol Sci. 2003, 24(8): 428-33.
    [55] Noebels J.L. The biology of epilepsy genes[J]. Annu Rev Neurosci. 2003, 26599-625.
    [56] Meisler M.H., Kearney J.A. Sodium channel mutations in epilepsy and other neurological disorders[J]. J Clin Invest. 2005, 115(8): 2010-7.
    [57] Arroyo H.A., De Rosa S., Ruggieri V., et al. Epilepsy, occipital calcifications, and oligosymptomatic celiac disease in childhood[J]. J Child Neurol. 2002, 17(11): 800-6.
    [58] Lemos T., Cavalheiro E.A. Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats[J]. Exp Brain Res. 1995, 102(3): 423-8.
    [59] Klitgaard H., Matagne A., Vanneste-Goemaere J., et al. Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations[J]. Epilepsy Res. 2002, 51(1-2): 93-107.
    [60] DeLorenzo R.J., Pal S., Sombati S. Prolonged activation of the N-methyl-D-aspartate receptor-Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture[J]. Proc Natl Acad Sci U S A. 1998, 95(24): 14482-7.
    [61] Tian G.F., Azmi H., Takano T., et al. An astrocytic basis of epilepsy[J]. Nat Med. 2005, 11(9): 973-81.
    [62] Fellin T., Gomez-Gonzalo M., Gobbo S., et al. Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices[J]. J Neurosci. 2006, 26(36): 9312-22.
    [63] Rice A.C., DeLorenzo R.J. N-methyl-D-aspartate receptor activation regulates refractoriness of status epilepticus to diazepam[J]. Neuroscience. 1999, 93(1): 117-23.
    [64] Prasad A., Williamson J.M., Bertram E.H. Phenobarbital and MK-801, but not phenytoin, improve the long-term outcome of status epilepticus[J]. Ann Neurol. 2002, 51(2): 175-81.
    [65] Hellier J.L., White A., Williams P.A., et al. NMDA receptor-mediated long-term alterations in epileptiform activity in experimental chronic epilepsy[J]. Neuropharmacology. 2009, 56(2): 414-21.
    [66] Pinel J.P., Rovner L.I. Experimental epileptogenesis: kindling-induced epilepsy in rats[J]. Exp Neurol. 1978, 58(2): 190-202.
    [67] Morimoto K., Fahnestock M., Racine R.J. Kindling and status epilepticus models of epilepsy: rewiring the brain[J]. Prog Neurobiol. 2004, 73(1): 1-60.
    [68] Sayin U., Osting S., Hagen J., et al. Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats[J]. J Neurosci. 2003, 23(7): 2759-68.
    [69] Racine R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure[J]. Electroencephalogr Clin Neurophysiol. 1972, 32(3): 281-94.
    [70] Croucher M.J., Bradford H.F. NMDA receptor blockade inhibits glutamate-induced kindling of the rat amygdala[J]. Brain Res. 1990, 506(2): 349-52.
    [71] Holmes K.H., Bilkey D.K., Laverty R., et al. The N-methyl-D-aspartate antagonists aminophosphonovalerate and carboxypiperazinephosphonate retard the development and expression of kindled seizures[J]. Brain Res. 1990, 506(2): 227-35.
    [72] McNamara J.O., Russell R.D., Rigsbee L., et al. Anticonvulsant and antiepileptogenicactions of MK-801 in the kindling and electroshock models[J]. Neuropharmacology. 1988, 27(6): 563-8.
    [73] Chen Q., He S., Hu X.L., et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis[J]. J Neurosci. 2007, 27(3): 542-52.
    [74] D'Ambrosio R., Perucca E. Epilepsy after head injury[J]. Curr Opin Neurol. 2004, 17(6): 731-5.
    [75] Kharlamov E.A., Jukkola P.I., Schmitt K.L., et al. Electrobehavioral characteristics of epileptic rats following photothrombotic brain infarction[J]. Epilepsy Res. 2003, 56(2-3): 185-203.
    [76] Jacobs K.M., Prince D.A. Excitatory and inhibitory postsynaptic currents in a rat model of epileptogenic microgyria[J]. J Neurophysiol. 2005, 93(2): 687-96.
    [77] Smart S.L., Lopantsev V., Zhang C.L., et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice[J]. Neuron. 1998, 20(4): 809-19.
    [78] Wenzel H.J., Robbins C.A., Tsai L.H., et al. Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures[J]. J Neurosci. 2001, 21(3): 983-98.
    [79] Perea G., Navarrete M., Araque A. Tripartite synapses: astrocytes process and control synaptic information[J]. Trends Neurosci. 2009, 32(8): 421-31.
    [80] Fellin T. Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity[J]. J Neurochem. 2009, 108(3): 533-44.
    [81] Miller G. Neuroscience. The dark side of glia[J]. Science. 2005, 308(5723): 778-81.
    [82] Ricci G., Volpi L., Pasquali L., et al. Astrocyte-neuron interactions in neurological disorders[J]. J Biol Phys. 2009, 35(4): 317-36.
    [83] Araque A., Carmignoto G., Haydon P.G. Dynamic signaling between astrocytes and neurons[J]. Annu Rev Physiol. 2001, 63795-813.
    [84] Haydon P.G. GLIA: listening and talking to the synapse[J]. Nat Rev Neurosci. 2001, 2(3): 185-93.
    [85] Newman E.A. New roles for astrocytes: regulation of synaptic transmission[J]. Trends Neurosci. 2003, 26(10): 536-42.
    [86] Fellin T., Carmignoto G. Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit[J]. J Physiol. 2004, 559(Pt 1): 3-15.
    [87] Fellin T., Pascual O., Gobbo S., et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors[J]. Neuron. 2004, 43(5): 729-43.
    [88] Hardingham G.E., Fukunaga Y., Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways[J]. Nat Neurosci. 2002, 5(5): 405-14.
    [89] Ding S., Fellin T., Zhu Y., et al. Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus[J]. J Neurosci. 2007, 27(40): 10674-84.
    [90] David Y., Cacheaux L.P., Ivens S., et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis?[J]. J Neurosci. 2009, 29(34): 10588-99.
    [91] Korn A., Golan H., Melamed I., et al. Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome[J]. J Clin Neurophysiol. 2005, 22(1): 1-9.
    [92] Scimemi A., Tian H., Diamond J.S. Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus[J]. J Neurosci. 2009, 29(46): 14581-95.
    [93] Stelzer A., Slater N.T., ten Bruggencate G. Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy[J]. Nature. 1987, 326(6114): 698-701.
    [94] McNamara J.O., Huang Y.Z., Leonard A.S. Molecular signaling mechanisms underlying epileptogenesis[J]. Sci STKE. 2006, 2006(356): re12.
    [95] Ayala G.F., Dichter M., Gumnit R.J., et al. Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms[J]. Brain Res. 1973, 521-17.
    [96] Johnston D., Brown T.H. The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons[J]. Ann Neurol. 1984, 16 SupplS65-71.
    [97] Stasheff S.F., Anderson W.W., Clark S., et al. NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model[J]. Science. 1989, 245(4918): 648-51.
    [98] Yu S.P., Yeh C., Strasser U., et al. NMDA receptor-mediated K+ efflux and neuronal apoptosis[J]. Science. 1999, 284(5412): 336-9.
    [99] Kumar A., Zou L., Yuan X., et al. N-methyl-D-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model[J]. J Neurosci Res. 2002, 67(6): 781-6.
    [100] Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease[J]. Trends Pharmacol Sci. 1990, 11(9): 379-87.
    [101] Arundine M., Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury[J]. Cell Mol Life Sci. 2004, 61(6): 657-68.
    [102] Morikawa E., Mori H., Kiyama Y., et al. Attenuation of focal ischemic brain injury in mice deficient in the epsilon1 (NR2A) subunit of NMDA receptor[J]. J Neurosci. 1998, 18(23): 9727-32.
    [103] Kiyama Y., Manabe T., Sakimura K., et al. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon1 subunit[J]. J Neurosci. 1998, 18(17): 6704-12.
    [104] Chen M., Lu T.J., Chen X.J., et al. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance[J]. Stroke. 2008, 39(11): 3042-8.
    [105] Karadottir R., Cavelier P., Bergersen L.H., et al. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia[J]. Nature. 2005, 438(7071): 1162-6.
    [106] Edwards F.A. Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation[J]. Physiol Rev. 1995, 75(4): 759-87.
    [107] Gardoni F., Mauceri D., Malinverno M., et al. Decreased NR2B subunit synaptic levels cause impaired long-term potentiation but not long-term depression[J]. J Neurosci. 2009, 29(3): 669-77.
    [108] Wahl A.S., Buchthal B., Rode F., et al. Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors[J]. Neuroscience. 2009, 158(1): 344-52.
    [109] Zhang S.J., Steijaert M.N., Lau D., et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death[J]. Neuron. 2007, 53(4): 549-62.
    [110] Rossi D.J., Brady J.D., Mohr C. Astrocyte metabolism and signaling during brain ischemia[J]. Nat Neurosci. 2007, 10(11): 1377-86.
    [111] Ma J., Zhang G.Y. Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia[J]. Neurosci Lett. 2003, 348(3): 185-9.
    [112] Yurkewicz L., Weaver J., Bullock M.R., et al. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury[J]. J Neurotrauma. 2005, 22(12): 1428-43.
    [113] Tu W., Xu X., Peng L., et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke[J]. Cell. 140(2): 222-34.
    [114] Bialik S., Kimchi A. The death-associated protein kinases: structure, function, andbeyond[J]. Annu Rev Biochem. 2006, 75189-210.
    [115] Aarts M., Liu Y., Liu L., et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions[J]. Science. 2002, 298(5594): 846-50.
    [116] Taghibiglou C., Martin H.G., Lai T.W., et al. Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries[J]. Nat Med. 2009, 15(12): 1399-406.
    [117] Bullock R. Future directions in the treatment of Alzheimer's disease[J]. Expert Opin Investig Drugs. 2004, 13(4): 303-14.
    [118] Morrison J.H., Hof P.R. Life and death of neurons in the aging brain[J]. Science. 1997, 278(5337): 412-9.
    [119] Bleich S., Romer K., Wiltfang J., et al. Glutamate and the glutamate receptor system: a target for drug action[J]. Int J Geriatr Psychiatry. 2003, 18(Suppl 1): S33-40.
    [120] Hynd M.R., Scott H.L., Dodd P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease[J]. Neurochem Int. 2004, 45(5): 583-95.
    [121] Kornhuber J., Weller M. Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy[J]. Biol Psychiatry. 1997, 41(2): 135-44.
    [122] Kornhuber J., Bormann J., Retz W., et al. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex[J]. Eur J Pharmacol. 1989, 166(3): 589-90.
    [123] Sonkusare S.K., Kaul C.L., Ramarao P. Dementia of Alzheimer's disease and other neurodegenerative disorders--memantine, a new hope[J]. Pharmacol Res. 2005, 51(1): 1-17.
    [124] Leveille F., El Gaamouch F., Gouix E., et al. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors[J]. FASEB J. 2008, 22(12): 4258-71.
    [125] Okamoto S., Pouladi M.A., Talantova M., et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin[J]. Nat Med. 2009, 15(12): 1407-13.
    [126] Papadia S., Soriano F.X., Leveille F., et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses[J]. Nat Neurosci. 2008, 11(4): 476-87.
    [127] Kornhuber J., Quack G. Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man[J]. Neurosci Lett. 1995, 195(2): 137-9.
    [128] Cepeda C., Wu N., Andre V.M., et al. The corticostriatal pathway in Huntington's disease[J]. Prog Neurobiol. 2007, 81(5-6): 253-71.
    [129] Fan M.M., Raymond L.A. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease[J]. Prog Neurobiol. 2007, 81(5-6): 272-93.
    [130] Andre V.M., Cepeda C., Venegas A., et al. Altered cortical glutamate receptor function in the R6/2 model of Huntington's disease[J]. J Neurophysiol. 2006, 95(4): 2108-19.
    [131] Cepeda C., Ariano M.A., Calvert C.R., et al. NMDA receptor function in mouse models of Huntington disease[J]. J Neurosci Res. 2001, 66(4): 525-39.
    [132] Milnerwood A.J., Cummings D.M., Dallerac G.M., et al. Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease[J]. Hum Mol Genet. 2006, 15(10): 1690-703.
    [133] Milnerwood A.J., Raymond L.A. Corticostriatal synaptic function in mouse models of Huntington's disease: early effects of huntingtin repeat length and protein load[J]. J Physiol. 2007, 585(Pt 3): 817-31.
    [134] Van Raamsdonk J.M., Pearson J., Slow E.J., et al. Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease[J]. J Neurosci. 2005, 25(16): 4169-80.
    [135] Fan M.M., Fernandes H.B., Zhang L.Y., et al. Altered NMDA receptor trafficking in ayeast artificial chromosome transgenic mouse model of Huntington's disease[J]. J Neurosci. 2007, 27(14): 3768-79.
    [136] Shehadeh J., Fernandes H.B., Zeron Mullins M.M., et al. Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease[J]. Neurobiol Dis. 2006, 21(2): 392-403.
    [137] Heng M.Y., Detloff P.J., Wang P.L., et al. In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease[J]. J Neurosci. 2009, 29(10): 3200-5.
    [138] Cowan C.M., Raymond L.A. Selective neuronal degeneration in Huntington's disease[J]. Curr Top Dev Biol. 2006, 7525-71.
    [139] Steece-Collier K., Chambers L.K., Jaw-Tsai S.S., et al. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors[J]. Exp Neurol. 2000, 163(1): 239-43.
    [140] Wessell R.H., Ahmed S.M., Menniti F.S., et al. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats[J]. Neuropharmacology. 2004, 47(2): 184-94.
    [141] Loschmann P.A., De Groote C., Smith L., et al. Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson's disease[J]. Exp Neurol. 2004, 187(1): 86-93.
    [142] Andreasen N.C. Schizophrenia: the fundamental questions[J]. Brain Res Brain Res Rev. 2000, 31(2-3): 106-12.
    [143] Potkin S.G., Jin Y., Bunney B.G., et al. Effect of clozapine and adjunctive high-dose glycine in treatment-resistant schizophrenia[J]. Am J Psychiatry. 1999, 156(1): 145-7.
    [144] Harrison P.J., Owen M.J. Genes for schizophrenia? Recent findings and their pathophysiological implications[J]. Lancet. 2003, 361(9355): 417-9.
    [145] Moghaddam B. Bringing order to the glutamate chaos in schizophrenia[J]. Neuron.2003, 40(5): 881-4.
    [146] Krystal J.H., Karper L.P., Seibyl J.P., et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses[J]. Arch Gen Psychiatry. 1994, 51(3): 199-214.
    [147] Hashimoto K., Fukushima T., Shimizu E., et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia[J]. Arch Gen Psychiatry. 2003, 60(6): 572-6.
    [148] Hashimoto K., Engberg G., Shimizu E., et al. Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients[J]. Prog Neuropsychopharmacol Biol Psychiatry. 2005, 29(5): 767-9.
    [149] Javitt D.C., Zukin S.R. Recent advances in the phencyclidine model of schizophrenia[J]. Am J Psychiatry. 1991, 148(10): 1301-8.
    [150] Javitt D.C., Zylberman I., Zukin S.R., et al. Amelioration of negative symptoms in schizophrenia by glycine[J]. Am J Psychiatry. 1994, 151(8): 1234-6.
    [151] Heresco-Levy U., Javitt D.C., Ermilov M., et al. Double-blind, placebo-controlled, crossover trial of D-cycloserine adjuvant therapy for treatment-resistant schizophrenia[J]. Int J Neuropsychopharmacol. 1998, 1(2): 131-135.
    [152] Heresco-Levy U., Javitt D.C., Ermilov M., et al. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia[J]. Arch Gen Psychiatry. 1999, 56(1): 29-36.
    [153] Heresco-Levy U., Ermilov M., Lichtenberg P., et al. High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia[J]. Biol Psychiatry. 2004, 55(2): 165-71.
    [154] Goff D.C., Tsai G., Manoach D.S., et al. Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia[J]. Am J Psychiatry. 1995,152(8): 1213-5.
    [155] Goff D.C., Tsai G., Manoach D.S., et al. D-cycloserine added to clozapine for patients with schizophrenia[J]. Am J Psychiatry. 1996, 153(12): 1628-30.
    [156] Goff D.C., Tsai G., Levitt J., et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia[J]. Arch Gen Psychiatry. 1999, 56(1): 21-7.
    [157] Evins A.E., Amico E., Posever T.A., et al. D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia[J]. Schizophr Res. 2002, 56(1-2): 19-23.
    [158] Evins A.E., Fitzgerald S.M., Wine L., et al. Placebo-controlled trial of glycine added to clozapine in schizophrenia[J]. Am J Psychiatry. 2000, 157(5): 826-8.
    [159] Kessler R.C., Berglund P., Demler O., et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication[J]. Arch Gen Psychiatry. 2005, 62(6): 593-602.
    [160] Baune B.T., Adrian I., Jacobi F. Medical disorders affect health outcome and general functioning depending on comorbid major depression in the general population[J]. J Psychosom Res. 2007, 62(2): 109-18.
    [161] Kessler R.C., Coccaro E.F., Fava M., et al. The prevalence and correlates of DSM-IV intermittent explosive disorder in the National Comorbidity Survey Replication[J]. Arch Gen Psychiatry. 2006, 63(6): 669-78.
    [162] Boyce-Rustay J.M., Holmes A. Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice[J]. Neuropsychopharmacology. 2006, 31(11): 2405-14.
    [163] Sanacora G., Zarate C.A., Krystal J.H., et al. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders[J]. Nat Rev Drug Discov. 2008, 7(5): 426-37.
    [164] Meloni D., Gambarana C., De Montis M.G., et al. Dizocilpine antagonizes the effect of chronic imipramine on learned helplessness in rats[J]. Pharmacol Biochem Behav. 1993, 46(2): 423-6.
    [165] Padovan C.M., Guimaraes F.S. Antidepressant-like effects of NMDA-receptor antagonist injected into the dorsal hippocampus of rats[J]. Pharmacol Biochem Behav. 2004, 77(1): 15-9.
    [166] Skolnick P., Miller R., Young A., et al. Chronic treatment with 1-aminocyclopropanecarboxylic acid desensitizes behavioral responses to compounds acting at the N-methyl-D-aspartate receptor complex[J]. Psychopharmacology (Berl). 1992, 107(4): 489-96.
    [167] Aguado L., San Antonio A., Perez L., et al. Effects of the NMDA receptor antagonist ketamine on flavor memory: conditioned aversion, latent inhibition, and habituation of neophobia[J]. Behav Neural Biol. 1994, 61(3): 271-81.
    [168] Garcia L.S., Comim C.M., Valvassori S.S., et al. Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels[J]. Basic Clin Pharmacol Toxicol. 2008, 103(6): 502-6.
    [169] Maeng S., Zarate C.A., Jr., Du J., et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors[J]. Biol Psychiatry. 2008, 63(4): 349-52.
    [170] Silvestre J.S., Nadal R., Pallares M., et al. Acute effects of ketamine in the holeboard, the elevated-plus maze, and the social interaction test in Wistar rats[J]. Depress Anxiety. 1997, 5(1): 29-33.
    [171] Zarate C.A., Quiroz J., Payne J., et al. Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders[J].Psychopharmacol Bull. 2002, 36(4): 35-83.
    [172] Liebrenz M., Borgeat A., Leisinger R., et al. Intravenous ketamine therapy in a patient with a treatment-resistant major depression[J]. Swiss Med Wkly. 2007, 137(15-16): 234-6.
    [173] Carpenter W.T., Jr. The schizophrenia ketamine challenge study debate[J]. Biol Psychiatry. 1999, 46(8): 1081-91.
    [174] Perry E.B., Jr., Cramer J.A., Cho H.S., et al. Psychiatric safety of ketamine in psychopharmacology research[J]. Psychopharmacology (Berl). 2007, 192(2): 253-60.
    [175] Entsuah A.R., Huang H., Thase M.E. Response and remission rates in different subpopulations with major depressive disorder administered venlafaxine, selective serotonin reuptake inhibitors, or placebo[J]. J Clin Psychiatry. 2001, 62(11): 869-77.
    [176] Thase M.E. Bipolar depression: issues in diagnosis and treatment[J]. Harv Rev Psychiatry. 2005, 13(5): 257-71.
    [177] Zarate C.A., Jr., Quiroz J.A. Combination treatment in bipolar disorder: a review of controlled trials[J]. Bipolar Disord. 2003, 5(3): 217-25.
    [178] Chen H.S., Lipton S.A. The chemical biology of clinically tolerated NMDA receptor antagonists[J]. J Neurochem. 2006, 97(6): 1611-26.
    [179] Milnerwood A.J., Gladding C.M., Pouladi M.A., et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice[J]. Neuron. 65(2): 178-90.
    [180] Liniger R., Popovic R., Sullivan B., et al. Effects of neuroprotective cocktails on hippocampal neuron death in an in vitro model of cerebral ischemia[J]. J Neurosurg Anesthesiol. 2001, 13(1): 19-25.
    [181] Dawson D.A., Graham D.I., McCulloch J., et al. Anti-ischaemic efficacy of a nitric oxide synthase inhibitor and a N-methyl-D-aspartate receptor antagonist in models of transient and permanent focal cerebral ischaemia[J]. Br J Pharmacol. 1994, 113(1):247-53.
    [182] Nunez J.L., Alt J.J., McCarthy M.M. A novel model for prenatal brain damage. II. Long-term deficits in hippocampal cell number and hippocampal-dependent behavior following neonatal GABAA receptor activation[J]. Exp Neurol. 2003, 181(2): 270-80.
    [183] Gill R., Hargreaves R.J., Kemp J.A. The neuroprotective effect of the glycine site antagonist 3R-(+)-cis-4-methyl-HA966 (L-687,414) in a rat model of focal ischaemia[J]. J Cereb Blood Flow Metab. 1995, 15(2): 197-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700