碲掺杂方钴矿基材料热电性能及力学性能优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种环境友好的新能源材料,在工业余热发电和热电制冷领域有广阔的应用前景,是我国和国际上自上个世纪九十年代后期以来高度重视发展的新型功能材料。方钴矿材料在中温领域具有优异的热电性能和结构稳定性,被认为是最具前景的热电材料之一。进一步提高方钴矿材料的热电性能、改善其力学性能,对发展热电材料科学并推动方钴矿热电材料的应用具有重要意义。
     本论文围绕改善Te掺杂方钴矿基材料的热电性能和力学性能展开研究,采用固相反应结合放电等离子烧结技术,制备Te-Se共掺杂和Te-S共掺杂方钴矿材料,系统研究Te-Se及Te-S共掺杂对CoSb3基方钴矿材料的微结构和热电性能的影响规律,以期达到降低材料热导率和提高热电优值的目的。通过引入同质方钴矿纳米颗粒和异质TiN纳米颗粒,制备方钴矿基微纳复合材料,探索纳米颗粒的引入对材料热电性能和力学性能的影响及规律,以期达到在保证热电性能的前提下提高材料力学性能的目的。论文的主要研究内容和成果如下:
     结合Te和Se两元素在改善CoSb3基方钴矿材料电传输性能和热传输性能方面各自的优点,采用固相反应法制备了Te-Se共同掺杂的Co4Sb11.9-xTexSe0.1(x=0.4-0.6)方钴矿材料。与Tex单掺杂材料相比,TexSe0.1共掺杂材料的晶格常数降低,晶粒尺寸减小且相对均匀。TexSe0.1共掺杂显著降低了材料的热导率和晶格热导率。300K时,Tex单掺杂样品的热导率为5.4~4.9Wm-1K-1(x=0.4-0.6), TexSe0.1共掺杂样品的热导率降为4.0~3.6Wm-1K-1(x=0.4-0.6).样品Co4Sb11.3Te0.6Se0.1在测试温度范围内表现出最小晶格热导率,300K时相比样品Co4Sb11.4Te0.6下降了33%,800K时下降了25%。TexSe0.1共掺杂样品的ZT值明显提高,Co4Sb11.3Te0.6Se0.1在800K时的ZT值达到1.09。为进一步优化Te-Se共掺杂材料的热电性能,将掺杂总量固定为0.7,制备了Co4Sb11.3Te0.7-xSex (x=0-0.30)化合物,结果表明:晶格常数、载流子浓度、电导率和热导率均随Se掺杂比例的增加而降低。晶格热导率随Se掺杂比例的增加先减小后增加,样品Co4Sb11.3Te0.58Se0.12在775K取得最小值为1.42Wm-1K-1。Te-Se共掺杂样品Co4Sb11.3Te0.7-xSex(x=007-0.30)的ZT值明显高于样品Co4Sb11.3Te0.7,且x=0.07-0.15四个样品的ZT值在750~800K范围内均超过了1.0,其中,样品Co4Sb11.3Te0.58Se0.12在800K时取得最大ZT值为1.11。
     探索制备了Te-S共同掺杂的Co4Sb11.9-x(x=0.4-0.6)方钴矿材料。结合XRD和电热传输性能可以发现S0.1单独掺杂时不会取代Sb进入方钻矿晶格中。将TexS0.1共掺杂样品与Tex单掺杂样品相比发现,TexSo.1共掺杂样品的衍射峰峰位明显向高角度偏移,即晶胞收缩。TexSo.1共掺杂显著降低了材料的热导率和晶格热导率。晶格热导率随Te掺杂量的增加而降低,样品Co4Sb11.3Te0.6S0.1在775K取得最小值为1.51Wm-1K-1。样品Co4Sb11.4Te0.5S0.1和样品Co4Sb11.3Te0.6S0.1的ZT值在800K时分别达到1.05和1.08。为进一步探索和优化Te-S共掺杂材料的热电性能,制备了Te-S掺杂总量为0.7的Co4Sb11.3Te0.7-xSx (x=0.07-0.20)化合物。研究发现,晶格常数、载流子浓度、电导率、功率因子和热导率均随S掺杂比例的增加而降低。晶格热导率的变化相对较小,x=0.07的样品取得最小值,300K和800K时分别为2.83Wm-1K-1和1.46Wm-1K-1。Te-S共掺杂样品的ZT值在800K时均超过了1.0,其中x=0.07的样品在800K时取得最大热电优值ZT=1.1,说明Te-S共掺杂时,S可以取代Sb进入方钴矿晶格,并且微量S掺杂可以显著降低Te基方钴矿材料的热导率从而提高热电性能。
     以Te掺杂方钴矿材料为基体,引入不同晶粒尺寸的同质纳米材料,结合超声分散和球磨技术,制备了纳米颗粒分布相对均匀的方钴矿复合材料。研究发现SPS后纳米颗粒长大较明显,5%50h和10%50h样品中纳米颗粒的尺寸大部分在200nm以上,而3%100h和5%100h样品中还存在较多尺寸在100~200nm的颗粒。由于纳米颗粒掺入量较少及纳米颗粒的长大,Co4Sb11.5Te0.5同质纳米复合材料的电热传输性能变化较小,热电性能略有提高。材料的抗弯强度和断裂韧性均随纳米方钴矿颗粒体积分数的增加而增加,但增加幅度不同。样品10%50h取得最大抗弯强度为141.9MPa,相比未掺入纳米颗粒样品提高了约22%。样品5%100h取得最大断裂韧性为1.18MPam1/2,相比未掺入纳米颗粒样品提高了约11%。样品5%100h的抗弯强度和断裂韧性均明显大于样品5%50h,并且样品5%100h的断裂韧性还略大于样品10%50h,说明不同尺寸的纳米颗粒对复合材料的力学性能影响显著,颗粒越小增强增韧效果越好。
     以Te掺杂方钴矿材料为基体,引入TiN纳米材料,结合超声分散和球磨技术,制备了纳米TiN颗粒弥散分布的Co4Sb11.5Te0.5+x vol%TiN (x=0.0,0.3,0.6,1.0)复合材料。纳米TiN颗粒大多镶嵌在基体晶粒表面,且分散相对均匀,随体积分数的增加,部分纳米颗粒团聚,形成几十到上百纳米的团簇。随TiN含量的增加,热导率和晶格热导率均逐渐降低,300K时x=1.0的样品的热导率和晶格热导率分别为3.99Wm-1K-1和3.40Wm-1K-1,相对x=0.0的样品分别下降了15%和17%。随纳米TiN体积分数的增加ZT值增加,x=1.0的样品在800K时取得最大值为1.0,相对x=0.0的样品提高了约10%。微量纳米TiN的引入显著提高了材料抗弯强度和断裂韧性。相比x=0.0的样品,x=1.0的样品的抗弯强度增加了近30%,断裂韧性增加了约40%,这对提高方钴矿热电器件的机械稳定性和可靠性有重要意义。
As a kind of environment friendly materials, thermoelectric materials have great potential application in the fields of waste heat power generation and thermoelectric cooling, and lots of national attention has been focus on them as new functional materials since the late1990s. Skutterudite materials exhibit superior thermoelectric properties and robust structural stability, have been considered as one of most promising thermoelectric materials for application. Further improving the thermoelectric properties and mechanical properties of skutterudite material, is of great significance for the development of thermoelectric materials science and the application of the skutterudite thermoelectric materials.
     In this dissertation, optimizing the thermoelectric and mechanical properties of Te-substituted skutterudites are focused as research objects. Te-Se and Te-S codoped skutterudite compounds are fabricated by solid-state reaction and SPS technology, and the influences of codoping on microstructure and thermoelectric properties are investigated. Nano homogeneous particles and nano-TiN dispersed Te-doped skutterudite composites are prepared and the influences nano-particles on thermoelectric properties and mechnical properties are investigated. The main contents and results are listed as follows:
     Co-doping with Te and Se is the synergic combination of the beneficial effect of the two dopant atoms on skutterudite systems. Te-Se codoped skutterudite compounds, Co4Sb11.9-xTexSe0.1(x=0.4-0.6), are synthesized by the solid state reaction in view of their advantages in improving thermoelectric performance. It is found that Se doping results in decrease of the lattice parameter and refinement of the particle size compared with those of Se-free samples. The Te-Se codoped samples show a significant depression in the thermal conductivity and lattice thermal conductivity. The Se-free skutterudites have a total thermal conductivity ranging from5.4~4.9Wm-1K-1at300K, which decreases down to4.0~3.6Wm-1K-1when doped with Se. The Co4Sb11.3Te0.6Se0.1sample shows the lowest lattice thermal conductivity, which is lower by33%at300K and25%at800K than that of Co4Sb11.4Te0.6sample. The highest dimensionless figure of merit of1.09is achievable at800K for Co04Sb11.3Te0.6Se0.1compound. Double-substituted skutterudites Co4Sb11.3Te0.7-xSex (x=0.07,0.10,0.12,0.15,0.20,0.30) are synthesized for the sake of optimizing the thermoelectric performance of Te-Se codoped skutterudites. The results indicate that the lattice parameter, carrier concentration, electrical conductivity and thermal conductivity decrease with the increase of Se content. The lattice thermal conductivity of Co4Sb11.3Te0.7-xSex does not decrease monotonously with the Se content. Co4Sb11.3Te0.58Se0.12achieves the lowest lattice thermal conductivity of1.42Wm-1K-1at775K, which is very close to that of Co4Sb11.3Te0.6Se0.10sample. Then, the lattice thermal conductivity increases to a certain extent with the Se doping fraction. The ZT values of co-doped Co4Sb11.3Te0.7-xSex (x=0.07,0.10,0.12,0.15,0.20,0.30) compounds are higher than that of Se-free Co4Sb11.3Te0.7compound over the whole temperature range. Among the samples, ZT values of four samples Co4Sb11.3Te0.7-xSex (x=0.07,0.10,0.12,0.15) are over1.0in the temperature range of750-800K. Moreover, the largest ZT value reaches1.11at800K for Co4Sb11.3Te0.58Se0.12compound.
     We discussed the possibility and feasibility of improvement on the thermoelectric properties by codoping with Te and S. The XRD results together with the thermoelectric properties investigated indicate that S could not enter into the skutterudite lattice when when in the case of S single doping. The addition of S effectively decreases the thermal conductivity and lattice thermal conductivity of Co4Sb11.9-xTexS0.1. The lattice thermal conductivity decreases as Te fraction increases, and a minimum value of1.51Wm-1K-1(Co4Sb11.3Te0.6S0.1) is obtained at775K, which is relatively lower than the value of1.95Wm-1K-1(Co4Sb11.4Te0.6) at the same temperature. The highest ZT~1.05for Co4Sb11.4Te0.5S0.1and~1.08for Co4Sb11.3Te0.6S0.1are obtained at800K. Te-S codoped Co4Sb11.3Te0.7-xSx (x=0.07-0.20) compounds are fabricated for the sake of optimizing the thermoelectric performance of Te-S codoped skutterudites. The lattice parameter, carrier concentration, electrical conductivity, power factor and thermal conductivity decrease with the increasing S content. The lattice thermal conductivity changes unobviously, and Co4Sb11.3Te0.63Se0.07achieved the minimum value of2.83Wm-1K-1at300K and1.46Wm-1K-1at800K, respectively. Furthermore, all the ZT values of Te-S codoped samples exceed1.0at800K, thereinto, the Co4Sb11.3Te0.63Se0.07achieved the maximum value of1.1at800K. All the results indicate that S could enter into the skutterudite lattice codoping with Te, and small amount of S doping is effective in improving the thermoelectric performance of Te-based skutterudites.
     Homogeneous particles with different grain size dispersed Co4Sb11.5Te0.5nanocomposites are obtained by ultrasonic dispersion and ball mill processes before SPS. It is found that the nano particles grow apparently, most of the nanoparticle size are≥200nm in5%50h and10%50h, while100~200nm in3%100h and5%100h after SPS. A slight increase in the thermoelectric properties is achieved due to the few dispersion and grow up of nanoparticles. The flexural strength and fracture toughness of the material increases with the increase of nano skutterudite particles. Sample10%50h obtained the maximum flexural strength of141.9MPa, representing a22%increase compared with that of nano-free sample. Homogeneous nanoparticle dispersion has a relatively small impact on the fracture toughness of the material. The sample5%100h achieved the maximum of1.18MPam1/2, an11%increase compared with that of nano-free sample. The flexural strength and fracture toughness of sample5%100h are obviously greater than that of sample5%50h, and fracture toughness of sample5%100h is even larger than that of10%50h, which shows that differenet nanoparticle size have a certain effect on the mechanical properties of the nanocomposites, and the smaller the particle, the better the reinforcing and toughning effects may be.
     Nano-TiN dispersed skutterudite composites Co4Sb11.5Te0.5+x vol%TiN (x=0.0,0.3,0.6,1.0) are obtained by ultrasonic dispersion and ball mill processes before SPS. It is found that the TiN particles dispersed almost evenly and most were embedded in the matrix, and part of the nano-TiN embedded in the matrix is in the form of aggregation whose size is in the range of tens to a few hundreds of nanometers. The thermal conductivity and lattice thermal conductivity decrease gradually with the increasing TiN addition mainly due to the phonon scattering by nano-particles, resulting in an improvement in the thermoelectric performance especially at high temperature. The composite with1.0vol%TiN addition achieved the minimum thermal conductivity of3.99Wm-1K-1and lattice thermal conductivity of3.40Wm-1K-1at300K, representing15%and17%reduction compared with0.0vol%TiN samples. The composite with1.0vol%TiN addition achieved the maximum ZT value of1.0±0.1at800K, a10%improvement compared with the TiN-free sample. Compared with the TiN-free samples, flexural strength and fracture toughness of the composites are improved by30%and40%, respectively, upon an addition of just1.0vol%TiN. These nano-TiN particles embedded in the matrix can work as the barriers for crack propagation, and it is believed that the service reliability of the thermoelectric modules can be enhanced considerably even with a small volume addition.
引文
[1]Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457-61.
    [2]Yang JH, Stabler FR. Automotive Applications of Thermoelectric Materials. J Electron Mater 2009;38:1245-51.
    [3]Guler NF, Ahiska R. Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit. Appl Therm Eng 2002;22:1271-6.
    [4]Kaila MM. High temperature Superconductor THz thermal sensors and coolers. J Supercond 2005; 18:427-31.
    [5]Rowe DM, Bhandari CM. Modern Thermoelectricity. Holt Rinchalt and Wiston London 1983:28-33.
    [6]刘恩科,朱秉升,罗晋生.半导体物理学.国防工业出版社1994:286-90.
    [7]Loffe AF. Semiconductors thermoelements and thermoelectric cooling. London:Infosearch 1957:36-41.
    [8]高敏,张景韶,M.RD.温差电转换及其应用.北京:兵器工业出版社1996
    [9]Skrabeck EA, Trimmer DS. Thermoelectric Handbook, Edited by D. M. Rowe.1995;274
    [10]Mahan GD, Bartkowiak M. Wiedemann-Franz law at boundaries. Appl Phys Lett 1999;74:953-4.
    [11]Kittel C. Introduction to solid state physics. Wiley:New York 2005;8
    [12]Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7:105-14.
    [13]Kauzlarich SM, Brown SR, Snyder GJ. Zintl phases for thermoelectric devices. Dalton Trans 2007:2099-107.
    [14]Prytz O, Flage-Larsen E, Toberer ES, Snyder GJ, Tafto J. Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb2. J Appl Phys 2011;109:043509
    [15]Zhao WY, Liang Z, Wei P, Yu J, Zhang QJ, Shao GS. Enhanced thermoelectric performance via randomly arranged nanopores:Excellent transport properties of YbZn2Sb2 nanoporous materials. Acta Mater 2012;60:1741-6.
    [16]Toberer ES, Cox CA, Brown SR, Ikeda T, May AF, Kauzlarich SM, Snyder GJ. Traversing the Metal-Insulator Transition in a Zintl Phase:Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1-xAlxSb11. Adv Funct Mater 2008;18:2795-800.
    [17]Wang XJ, Tang MB, Chen HH, Yang XX, Zhao JT, Burkhardt U, Grin Y. Synthesis and high thermoelectric efficiency of Zintl phase YbCd2-xZnxSb2. Appl Phys Lett 2009;94:092106.
    [18]Cox CA, Toberer ES, Levchenko AA, Brown SR, Snyder GJ, Navrotsky A, Kauzlarich SM. Structure, Heat Capacity, and High-Temperature Thermal Properties of Yb14Mn1-xAlxSb11. Chem Mater 2009;21:1354-60.
    [19]Brown SR, Kauzlarich SM, Gascoin F, Snyder GJ. Yb14MnSb11:New high efficiency thermoelectric material for power generation. Chem Mater 2006;18:1873-7.
    [20]Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan XA, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008;320:634-8.
    [21]Xie WJ, Tang XF, Yan YG, Zhang QJ, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett 2009;94:102111-4.
    [22]Harman TC, Taylor PJ, Walsh MP, LaForge BE. Quantum dot superlattice thermoelectric materials and devices. Science 2002;297:2229-32.
    [23]Harman TC, Walsh MP, Laforge BE, Turner GW. Nanostructured thermoelectric materials. J Electron Mater 2005;34:19-22.
    [24]Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG. Cubic AgPbmSbTe2+m:Bulk thermoelectric materials with high figure of merit. Science 2004;303:818-21.
    [25]Ito M, Nagai H, Katsuyama S, Majima K. Effects of Ti, Nb and Zr doping on thermoelectric performance of beta-FeSi2. J Alloys Compd 2001;315:251-8.
    [26]Ito M, Takiguchi Y. Thermoelectric properties of p-type Fe0.9Mn0.1Si2 with rare-earth oxide addition. Materials Transactions 2005;46:1497-501.
    [27]Brehme S, Behr G, Heinrich A. Electrical properties of Co-doped beta-FeSi2 crystals. J Appl Phys2001;89:3798-803.
    [28]Tani J, Kido H. Thermoelectric properties of Pt-doped beta-FeSi2. J Appl Phys 2000;88:5810-3.
    [29]Luo WH, Li H, Yan YG, Lin ZB, Tang XF, Zhang QJ, Uher C. Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi. Intermetallics 2011;19:404-8.
    [30]Luo WH, Li H, Fu F, Hao W, Tang XF. Improved Thermoelectric Properties of Al-Doped Higher Manganese Silicide Prepared by a Rapid Solidification Method. J Electron Mater 2011;40:1233-7.
    [31]Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AY, Vedernikov MV. Highly effective Mg2Si1-xSnx thermoelectrics. Physical Review B 2006;74:045207.
    [32]Isoda Y, Nagai T, Fujiu H, Imai Y, Shinohara Y. Thermoelectric properties of Sb-doped Mg2Sio.5Sno.5. International Conference on Thermoelectrics, Proceedings ICT 2006:406-10.
    [33]Zhang Q, He J, Zhu TJ, Zhang SN, Zhao XB, Tritt TM. High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl Phys Lett 2008;93:102109.
    [34]Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys Rev Lett 2012; 108:166601.
    [35]Liu W, Tang X, Li H, Yin K, Sharp J, Zhou X, Uher C. Enhanced thermoelectric properties of n-type Mg2.16(S10.4Sn0.6)1-ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration. J Mater Chem 2012;22:13653-61.
    [36]Isoda Y, Tada S, Nagai T, Fujiu H, Shinohara Y. Thermoelectric Properties of p-Type Mg2.00Si0.25Sn0.75 with Li and Ag Double Doping. J Electron Mater 2010;39:1531-5.
    [37]Nolas GS, Cohn JL, Dyck JS, Uher C, Yang J. Transport properties of polycrystalline type-I Sn clathrates. Physical Review B 2002;65:165201.
    [38]Sales BC, Chakoumakos BC, Jin R, Thompson JR, Mandrus D. Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X=Eu, Sr, Ba) single crystals. Physical Review B 2001;6324:245113.
    [39]Saramat A, Svensson G, Palmqvist AEC, Stiewe C, Mueller E, Platzek D, Williams SGK, Rowe DM, Bryan JD, Stucky GD. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. J Appl Phys 2006;99:023708.
    [40]Zhang H, Borrmann H, Oeschler N, Candolfi C, Schnelle W, Schmidt M, Burkhardt U, Baitinger M, Zhao JT, Grin Y. Atomic Interactions in the p-Type Clathrate I Ba8Au5.3Ge40.7. Inorg Chem 2011;50:1250-7.
    [41]Roudebush JH, Toberer ES, Hope H, Snyder GJ, Kauzlarich SM. Crystal structure, characterization and thermoelectric properties of the type-I clathrate Ba8-ySryAl14Si32 (0.6<= y<=1.3) prepared by aluminum flux. J Solid State Chem 2011;184:1176-85.
    [42]Qin XY, Liu M, Pan L, Xin HX, Sun JH, Wang QQ. Effects of Bi doping on the thermoelectric properties of beta-Zn4Sb3. J Appl Phys 2011; 109:033714.
    [43]Pedersen BL, Yin H, Birkedal H, Nygren M, Iversen BB. Substitution in MxZn4-xSb3:Effect on Thermal Stability, Crystal Structure, Phase Transitions, and Thermoelectric Performance. Chem Mater 2010;22:2375-83.
    [44]Gault B, Marquis EA, Saxey DW, Hughes GM, Mangelinck D, Toberer ES, Snyder GJ. High-resolution nanostructural investigation of Zn4Sb3 alloys. Scr Mater 2010;63:784-7.
    [45]Zhou M, Feng CD, Chen LD, Huang XY. Effects of partial substitution of Co by Ni on the high-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds. J Alloys Compd 2005;391:194-7.
    [46]Sakurada S, Shutoh N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl Phys Lett 2005;86:082105.
    [47]Yan XA, Joshi G, Liu WS, Lan YC, Wang H, Lee S, Simonson JW, Poon SJ, Tritt TM, Chen G, Ren ZF. Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers. Nano Lett 2011;11:556-60.
    [48]Zhao WY, Wei P, Zhang QJ, Dong CL, Liu LS, Tang XF. Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler. J Am Chem Soc 2009; 131:3713-20.
    [49]Li H, Tang XF, Su XL, Zhang QJ, Uher C. Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. Journal of Physics D-Applied Physics 2009;42:145409.
    [50]Pei YZ, Chen LD, Zhang W, Shi X, Bai SQ, Zhao XY, Mei ZG, Li XY. Synthesis and thermoelectric properties of KyCo4Sb12. Appl Phys Lett 2006;89:221107.
    [51]Shi X, Yang J, Bai SQ, Yang JH, Wang H, Chi MF, Salvador JR, Zhang WQ, Chen LD, Wong-Ng W. On the Design of High-Efficiency Thermoelectric Clathrates through a Systematic Cross-Substitution of Framework Elements. Adv Funct Mater 2010;20:755-63.
    [52]Bhattacharya S, Pope AL, Littleton RT, Tritt TM, Ponnambalam V, Xia Y, Poon SJ. Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1-xSbx. Appl Phys Lett 2000;77:2476-8.
    [53]Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner GP, Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl Phys Lett 2001;79:4165-7.
    [54]Fleurial JP, Caillat T, Borshchevsky A International Conference on Thermoelectrics, Proceedings ICT 1997, pp.1-11
    [55]Jeitschko W, Braun D. LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid-transition metal polyphosphides. Acta Crystallogr 1977;33:3401-6.
    [56]G. P. Meisner MST, K. N. Yang, M. B. Maple and R. P. Guertin,. Fe4P12 and CeFe4P12: Nonmetallic isotopes of superconducting LaFe4P12. J Appl Phys 1985;57:3073.
    [57]Tang XF, Li H, Zhang QJ, Niino M, Goto T. Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFexCo4-xSb12. J Appl Phys 2006;100:123702.
    [58]Shi X, Kong H, Li CP, Uher C, Yang J, Salvador JR, Wang H, Chen L, Zhang W. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl Phys Lett 2008;92:182101.
    [59]Lu QM, Zhang JX, Zhang X, Liu YQ, Liu DM, Zhou ML. Effects of double filling of La and Ce on thermoelectric properties of CemLanFe1.0Co3.0Sb12 compounds by spark plasma sintering. J Appl Phys 2005;98:106107.
    [60]Zhao WY, Dong CL, Wei P, Guan W, Liu LS, Zhai PC, Tang XF, Zhang QJ. Synthesis and high temperature transport properties of barium and indium double-filled skutterudites BaxInyCo4Sb12-z. J Appl Phys 2007;102:113708.
    [61]Dyck JS, Chen WD, Uher C, Chen L, Tang XF, Hirai T. Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J Appl Phys 2002;91:3698-705.
    [62]Chen LD, Kawahara T, Tang XF, Goto T, Hirai T, Dyck JS, Chen W, Uher C. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J Appl Phys 2001;90:1864-8.
    [63]Uher C. in Recent Trends in Thermoelectric Materials Research I, Semi-conductors and Semimetals, edited by T. M. Tritt (Academic, San Diego,2001),.96:139-253, and references therein.
    [64]Yang J, Zhang W, Bai SQ, Mei Z, Chen LD. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr). Appl Phys Lett 2007;90:192111.
    [65]Shi X, Yang J, Salvador JR, Chi MF, Cho JY, Wang H, Bai SQ, Yang JH, Zhang WQ, Chen LD. Multiple-Filled Skutterudites:High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. J Am Chem Soc 2011;133:7837-46.
    [66]Shi X, Zhou Z, Zhang W, Chen LD, Yang J, Uher C. Solid solubility of Ir and Rh at the Co sites of skutterudites. J Appl Phys 2007; 101:123525.
    [67]Zhou ZH, Uher C, Jewell A, Caillat T. Influence of point-defect scattering on the lattice thermal conductivity of solid solution Co(Sb1-xAsx)3. Physical Review B 2005;71:235209.
    [68]Kim IH, Ur SC. Electronic transport properties of Fe-doped CoSb3 prepared by encapsulated induction melting. Mater Lett 2007;61:2446-50.
    [69]Li XY, Chen LD, Fan JF, Zhang WB, Kawahara T, Hirai T. Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering. J Appl Phys 2005;98:083702.
    [70]Deng L, Ma HA, Su TC, Yu FR, Tian YJ, Jiang YP, Dong N, Zheng SZ, Jia X. Enhanced thermoelectric properties in Co4Sb12-xTex alloys prepared by HPHT. Mater Lett 2009;63:2139-41.
    [71]Liu WS, Zhang BP, Li JF, Zhang HL, Zhao LD. Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering. J Appl Phys 2007;102:103717.
    [72]Caillat T, Borshchevsky A, Fleurial J-P. Properties of single crystalline semiconducting CoSb3. J Appl Phys 1996;80:4442-9.
    [73]Yang J, Morelli DT, Meisner GP, Chen W, Dyck JS, Uher C. Influence of electron-phonon interaction on the lattice thermal conductivity of Co1-xNixSb3. Physical Review B 2002;65:094115.
    [74]Wojciechowski KT, Tobola J, Leszczynski J. Thermoelectric properties and electronic structure of CoSb3 doped with Se and Te. J Alloys Compd 2003;361:19-27.
    [75]Koyanagi T, Tsubouchi T, Ohtani M, Kishimoto K, Anno H, Matsubara K (1996), Pasadena, CA,USA,pp.107-11
    [76]Wojciechowski KT. Effect of tellurium doping on the thermoelectric properties of CoSb3. Mater Res Bull 2002;37:2023-33.
    [77]Su XL, Li H, Wang GY, Chi H, Zhou XY, Tang XF, Zhang QJ, Uher C. Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25-xTex (x=0.125-0.20) with in Situ Nanostructure. Chem Mater 2011;23:2948-55.
    [78]Su X, Li H, Yan Y, Wang G, Chi H, Zhou X, Tang X, Zhang Q, Uher C. Microstructure and thermoelectric properties of CoSb2.75Ge0.25-xTex prepared by rapid solidification. Acta Mater 2012;60:3536-44.
    [79]Liu WS, Zhang BP, Zhao LD, Li JF. Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chem Mater 2008;20:7526-31.
    [80]Duan B, Zhai PC, Liu LS, Zhang QJ. Effects of Double Substitution with Ge and Te on Thermoelectric Properties of a Skutterudite Compound. J Electron Mater 2011;40:932-6.
    [81]Duan B, Zhai PC, Liu LS, Zhang QJ. Thermoelectric Properties of Trisubstituted Skutterudite Co4Sb11Ge1-x-yTexSey Compounds J Electron Mater 2012;41:1120-4.
    [82]Stiewe C, Bertini L, Toprak M, Christensen M, Platzek D, Williams S, Gatti C, Muller E, Iversen BB, Muhammed M, Rowe M. Nanostructured Co1-xNix(Sb1-yTey)3 skutterudites: Theoretical modeling, synthesis and thermoelectric properties. J Appl Phys 2005;97:044317.
    [83]Toprak MS, Stiewe C, Platzek D, Williams S, Bertini L, Muller EC, Gatti C, Zhang Y, Rowe M, Muhammed M. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv Funct Mater 2004; 14:1189-96.
    [84]Li H, Tang XF, Su XL, Zhang QJ. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl Phys Lett 2008;92:202114.
    [85]陈立东,熊震,柏胜强.纳米复合热电材料研究进展无机材料学报2010;25:561-8.
    [86]Zhao XY, Shi X, Chen LD, Zhang WQ, Bai SQ, Pei YZ, Li XY, Goto T. Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl Phys Lett 2006;89:092121.
    [87]He ZM, Stiewe C, Platzek D, Karpinski G, Muller E, Li SH, Toprak M, Muhammed M. Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J Appl Phys 2007; 101:043707.
    [88]Wei P, Zhao WY, Dong CL, Yang X, Yu J, Zhang QJ. Excellent performance stability of Ba and In double-filled skutterudite thermoelectric materials. Acta Mater 2011;59:3244-54.
    [89]Wen PF, Li P, Zhang QJ, Yi FJ, Liu LS, Zhai PC. Effect of Cyclic Thermal Loading on the Microstructure and Thermoelectric Properties of CoSb3. J Electron Mater 2009;38:1200-5.
    [90]El-Genk MS, Saber FH, Sakamoto J, Caillat T. Life tests of a skutterudites thermoelectric unicouple International Conference on Thermoelectrics, Proceedings ICT 2003:417-20.
    [91]El-Genk MS, Saber HH, Caillat T, Sakamoto J. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers Manage 2006;47:174-200.
    [92]El-Genk MS, Saber HH, Caillat T. A performance comparison of SiGe and skutterudite based segmented thermoelectric devices. Space Technology and Applications International Forum-Staif 2002 2002;608:1007-15.
    [93]El-Genk MS, Saber HH, Caillat T. Performance tests of Skutterudites and Segmented Thermoelectric converters. Space Technology and Applications International Forum-Staif 2004 2004;699:541-52.
    [94]El-Genk MS, Saber HH. Radioisotope power systems with skutterudite-based thermoelectric converters. Space Technology and Applications International Forum-Staif 2005 2005;746:485-94.
    [95]Zhao DG, Li XY, He L, Jiang W, Chen LD. Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging. J Alloys Compd 2009;477:425-31.
    [96]Zhao DG, Geng HR, Teng XY. Fabrication and reliability evaluation of CoSb3/W-Cu thermoelectric element. J Alloys Compd 2012;517:198-203.
    [97]Ruan ZW, Liu LS, Zhai PC, Wen PF, Zhang QJ. Low-Cycle Fatigue Properties of CoSb3-Based Skutterudite Compounds. J Electron Mater 2010;39:2029-33.
    [98]Simpson LA. Use of the Notched-Beam Test for Evaluation of Fracture Energies of Ceramics. J Am Ceram Soc 1974;57:151-4.
    [99]林铁松.Csf(Al2O3p)强韧铝硅酸盐聚合物基复合材料的力学性能及断裂行为.哈尔滨工业大学,博士学位论文2009
    [100]罗沛兰.方钴矿基热电材料的热电性能.南昌大学,硕士学位论文2009
    [101]Ur SC, Kwon JC, Kim IH. Thermoelectric properties of Fe-doped CoSb3 prepared by mechanical alloying and vacuum hot pressing. J Alloys Compd 2007;442:358-61.
    [102]Zhang X, Lu QM, Zhang JX, Wei Q, Liu DM, Liu YQ. In situ synthesis and thermoelectric properties of (Fe/Ni)xCO4-xSb12 compounds by SPS. J Alloys Compd 2008;457:368-71.
    [103]Bertini L, Stiewe C, Toprak M, Williams S, Platzek D, Mrotzek A, Zhang Y, Gatti C, Muller E, Muhammed M, Rowe M. Nanostructured Co1-xNixSb3 skutterudites:Synthesis, thermoelectric properties, and theoretical modeling. J Appl Phys 2003;93:438-47.
    [104]He QY, Hao Q, Wang XW, Yang J, Lan YC, Yan X, Yu B, Ma Y, Poudel B, Joshi G, Wang DZ, Chen G, Ren ZF. Nanostructured Thermoelectric Skutterudite Co1-xNixSb3 Alloys. J Nanosci Nanotechnol 2008;8:4003-6.
    [105]Nagamoto Y, Tanaka K, Koyanagi T International Conference on Thermoelectrics, Proceedings ICT1998, pp.302-5
    [106]Liu WS, Zhang BP, Li JF, Zhang HL, Zhao LD. Coupling scattering effect between grain boundary and point defect on the thermoelectric transport process in Co1-xNixSb3-ySey. Acta Physica Sinica 2008;57:3791-7.
    [107]褚颖.纳米方钴矿化合物的化学合成及其热电性能研究.武汉理工大学,博士学位论文2007
    [108]魏平.钡铟双原子填充方钴矿热电材料的电子结构与电热输运性能.武汉理工大学,博士学位论文2012
    [109]Sales BC, Mandrus D, Chakoumakos BC, Keppens V. Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys Rev B:Condens Matter 1997;56:15081-9.
    [110]Meisner GP, Morelli DT, Hu S, Yang J, Uher C. Structure and lattice thermal conductivity of fractionally filled skutterudites:solid solutions of fully filled and unfilled end members. Phys Rev Lett 1998;80:3551.
    [111]Yang J, Meisner GP, Morelli DT, Uher C. Iron valence in skutterudites:Transport and magnetic properties of Co1-xFexSb3. Physical Review B 2000;63:014410.
    [112]Kawaharada Y, Kuroaski K, Uno M, Yamanaka S. Thermoelectric properties of CoSb3. J Alloys Compd 2001;315:193-7.
    [113]糜建立.方钴矿基热电材料的纳米化及热电性能.浙江大学,博士学位论文2008
    [114]Duan B, Zhai PC, Liu LS, Zhang QJ, Ruan XF. Synthesis and high temperature transport properties of Te-doped skutterudite compounds Journal of Materials Science:Materials in Electronics 2012;23:1817-22.
    [115]Nolas GS, Kaeser M, Littleton RT, Tritt TM. High figure of merit in partially filled ytterbium skutterudite materials. Appl Phys Lett 2000;77:1855-7.
    [116]Puyet M, Lenoir B, Dauscher A, Dehmas M, Stiewe C, Muller E. High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J Appl Phys 2004;95:4852-5.
    [117]Shen JJ, Zhu TJ, Zhao XB, Zhang SN, Yang SH, Yin ZZ. Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides:a simple top down route and improved thermoelectric properties. Energy Environ Sci 2010;3:1519-23.
    [118]Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2009;2:466-79.
    [119]Caylor JC, Coonley K, Stuart J, Colpitts T, Venkatasubramanian R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl Phys Lett 2005;87:023105.
    [120]Lamberton GA, Tedstrom RH, Tritt TM, Nolas GS. Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials. J Appl Phys 2005;97:113715.
    [121]Dilley NR, Bauer ED, Maple MB, Sales BC. Thermoelectric properties of chemically substituted skutterudites YbyCoSnxSb12-x. J Appl Phys 2000;88:1948-51.
    [122]Yang J, Morelli DT, Meisner GP, Chen W, Dyck JS, Uher C. Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. Physical Review B 2003;67:165207.
    [123]Vaqueiro P, Sobany GG, Stindl M. Structure and electrical transport properties of the ordered skutterudites MGe1.5S1.5 (M=Co, Rh, Ir). J Solid State Chem 2008;181:768-76.
    [124]Korenstein R, Soled S, Wold A, Collin G. Preparation and characterization of the skutterudite-related phases CoGe1.5S1.5 and CoGe1.5Se1.5. Inorg Chem 1977;16:2344-6.
    [125]Shi X, Zhang W, Chen LD, Yang J, Uher C. Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations. Acta Mater 2008;56:1733-40.
    [126]Yang J, Meisner GP, Chen L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl Phys Lett 2004;85:1140-2.
    [127]Kaibe H, Rauscher L, Fujimoto S, Kurosawa T, Mukoujima M, Aoyama I, Ishimabushi H, Ishida K, Sano S. Development of thermoelectric generating cascade modules using silicide and Bi-Te. International Conference on Thermoelectrics, Proceedings ICT 2004
    [128]Li Y, Yang XQ, Zhai PC, Zhang QJ. Thermal stress simulation and optimum design of CoSb3/Bi2Te3 thermoelectric unicouples with graded interlayers. Multiscale and Functionally Graded Materials 2008;973:297-302.
    [129]Zhao DG, Li XY, He L, Jiang W, Chen LD. High temperature reliability evaluation of CoSb3/electrode thermoelectric joints. Intermetallics 2009;17:136-41.
    [130]Wang X, Xu KJ, Xu XB, Park SJ, Kim S. Selective particle distribution and mechanical properties of nano-CaCo3/ethylene-propylene-diene terpolymer/polypropylene composites with high content of nano-CaC03. J Appl Polym Sci 2009; 113:2485-91.
    [131]Ren J, Wang J, Wang H, Zhang J, Yang S. Study on the morphological and mechanical properties of nylon 6/ABS/nano-SiO2 composites. Journal of Macromolecular Science, Part B: Physics 2009;48:1069-80.
    [132]Huang Z, Lin Z, Cai Z, Mai K. Physical and mechanical properties of nano-CaCO3/PP composites modified with acrylic acid. Plastics, Rubber and Composites 2004;33:343-51.
    [133]Zhang J, Wang X, Lu L, Li D, Yang X. Preparation and performance of High-Impact Polystyrene (HIPS)/Nano-TiO2 Nanocomposites. J Appl Polym Sci 2002;87:381-5.
    [134]Laiarinandrasana L, Fu Y, Halary JL. Toughness improvement of epoxy networks by nanophase-separating antiplasticizers. J Appl Polym Sci 2012;123:3437-47.
    [135]Kim SW, Li XY, Gao HJ, Kumar S. In situ observations of crack arrest and bridging by nanoscale twins in copper thin films. Acta Mater 2012;60:2959-72.
    [136]Tian CY, Liu N. Effect of nano-TiN particles on microstructure and mechanical properties of Si3N4-based nanoceramics. Advances in Applied Ceramics;110:205-10.
    [137]Zhao XJ, Chen DL, Ru HQ, Zhang N. Zirconium nitride nano-particulate reinforced Alon composites:Fabrication, mechanical properties and toughening mechanisms. J Eur Ceram Soc 2011;31:883-92.
    [138]Nolas GS, Cohn JL, Slack GA. Effect of partial void filling on the lattice thermal conductivity of skutterudites. Physical Review B 1998;58:164-70.
    [139]Shi X, Chen L, Yang J, Meisner GP. Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering. Appl Phys Lett 2004;84:2301-3.
    [140]Xiong Z, Chen XH, Zhao XY, Bai SQ, Huang XY, Chen LD. Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Ba0.22Co4Sb12. Solid State Sci 2009; 11:1612-6.
    [141]He ZM, Stiewe C, Platzek D, Karpinski G, Mueller E, Li SH, Toprak M, Muhammed M. Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit. Nanotechnology 2007;18:235602.
    [142]Li JF, Liu J. Effect of nano-SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals. Physica Status Solidi a-Applications and Materials Science 2006;203:3768-73.
    [143]Zhao LD, Zhang BP, Li JF, Zhou M, Liu WS, Liu J. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 2008;455:259-64.
    [144]Yu BL, Tang XF, Zhang QJ, Liu TX, Luo PF, Wang J. Preparation and thermal transport properties of CoSb3 nano-compounds. International Conference on Thermoelectrics, Proceedings ICT 2003:101-4
    [145]Mi JL, Zhao XB, Zhu TJ, Tu JP. Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites. Appl Phys Lett 2007;91:172116.
    [146]Ji XL, Jing JK, Jiang W, Jiang BZ. Tensile modulus of polymer nanocomposites. Polym Eng Sci 2002;42:983-93.
    [147]Ravi V, Firdosy S, Caillat T, Lerch B, Calamino A, Pawlik R, Nathal M, Sechrist A, Buchhalter J, Nutt S. Mechanical properties of thermoelectric skutterudites. American Institute of Physics (AIP) Conf Proc 2008;969:656-62.
    [148]Deng KK, Wang XJ, Wu YW, Hu XS, Wu K, Gan WM. Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite. Mater Sci Eng, A 2012;543:158-63.
    [149]Sun C, Song M, Wang Z, He Y. Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites. J Mater Eng Perform 2012;20:1606-12.
    [150]Azhar AZA, Mohamad H, Ratnam MM, Ahmad ZA. Effect of MgO particle size on the microstructure, mechanical properties and wear performance of ZTA-MgO ceramic cutting inserts. Int J Refract Met Hard Mater 2011;29:456-61.
    [151]Nascimento GC, Cechinel DM, Piletti R, Mendes E, Paula MMS, Riella HG, Fiori MA (2010). Trans Tech Publications Ltd, Atibaia-SP, Brazil, pp.23-8
    [152]Naji Givi A, Abdul Rashid S, Aziz FNA, Salleh MAM. Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Composites Part B:Engineering 2010;41:673-7.
    [153]Wacharawichanant S, Thongyai S, Phutthaphan A, Eiamsam-ang C. Effect of particle sizes of zinc oxide on mechanical, thermal and morphological properties of polyoxymethylene/zinc oxide nanocomposites. Polym Test 2008;27:971-6.
    [154]Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B:Engineering 2008;39:933-61.
    [155]Perez-Carrillo LA, Puca M, Rabelero M, Meza KE, Puig JE, Mendizabal E, Lopez-Serrano F, Lopez RG. Effect of particle size on the mechanical properties of polystyrene and poly(butyl acrylate) core/shell polymers. Polymer 2007;48:1212-8.
    [156]Nakamura Y, Yamaguchi M, Okubo M, Matsumoto T. Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J Appl Polym Sci 1992;45:1281-9.
    [157]Young RJ, R. BPW. Effect of composition upon fracture of silica particle-filled epoxy-resin composites. Journal of Materials Science 1977;12:684-92.
    [158]Lange FF. The interaction of a crack front with a second phase dispersion. Philos Mag 1970;22:983-92.
    [159]Rogl G, Rogl P. Mechanical Properties of Skutterudites. Sci Adv Mater 2011;3:517-38.
    [160]Toth LE. Transition metal carbide and nitride. First edition New York:Academic Press 1967:71-89.
    [161]Li J, Gao L, Guo J. Mechanical properties and electrical conductivity of TiN-Al2O3 nanocomposites. J Eur Ceram Soc 2003;23:69-74.
    [162]Chen LD, Huang XY, Zhou M, Shi X, Zhang WB. The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions. J Appl Phys 2006;99:064305.
    [163]Song DW, Liu WL, Zeng T, Borca-Tasciuc T, Chen G, Caylor JC, Sands TD. Thermal conductivity of skutterudite thin films and superlattices. Appl Phys Lett 2000;77:3854-6.
    [164]Zheng Y, Xiong W, Liu W, Lei W, Yuan Q. Effect of nano addition on the microstructures and mechanical properties of Ti(C, N)-based cermets. Ceram Int 2005;31:165-70.
    [165]郭景坤.陶瓷材料的强化与增韧新途径的探索.无机材料学报1998;13:23-6.
    [166]Taya M, Hayashi S, Kobayashi AS, Yoon HS. Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J Am Ceram Soc 1990;73:1382-91.
    [167]Ohji T, Jeong Y-K, Choa Y-H, Niihara K. Strengthening and toughening mechanisms of ceramic nanocomposites. J Am Ceram Soc 1998;81:1453-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700