氧化镍纳米颗粒对小球藻的生物学效应及生物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有许多特性,且产量日益增加,人们担心纳米材料潜在的对环境和人体健康的有害影响最终是否会超过它带来的效益,因此需要对纳米材料的环境行为、生物效应进行研究和评价,并深入探讨其机理,以便能及早采取措施,使其潜在的对环境和健康的影响最小化。作为获得上述数据的基础研究,本文针对水生环境从以下几个方面进行了探索:
     (1)本文根据生物毒理学基本理论,将粒径20nm氧化镍纳米颗粒对小球藻的毒性定义为慢性3级/有害,且造成的是可恢复性损伤,低浓度氧化镍对小球藻生长有促进作用。
     (2)通过ICP-MS检测,得到了不同时间小球藻对氧化镍纳米颗粒的吸收效率;在发现氧化镍纳米颗粒与小球藻细胞作用后生成毒性更低的零价镍基础上,通过X-光电子能谱仪(XPS)检测分析了不同作用时间的Ni~02p/Ni~(2+)2p比率,分析发现48h前小球藻对氧化镍的修复主要是吸收作用,48h~72h发生的主要是转化作用。小球藻对氧化镍有很好的吸收和转化能力,吸收和转化率可分别达到84.73%和28.57%,但处理后的海水中镍元素含量仍高于中国(GB8978-1996)污水综合排放标准,需做进一步处理才能排放到环境中。小球藻对氧化镍的有效吸收和转化作用揭示了生物修复环境中氧化镍纳米颗粒污染的潜力。
     (3)为了进一步探讨小球藻对氧化镍纳米颗粒的生物修复机制,依据毒性实验和吸收转化实验结果,本文对比了72h前后受15mg/L氧化镍处理的小球藻与对照组小球藻蛋白质变化情况,发现了一些可能与转化相关的表达量上调和下调的蛋白质。
The nanoparticles (NPs) display novel physical and chemical characteristics, nevertheless, with the rapid development of nanotechnology, there is a higher risk for people and environment. People began to worry that the risks of NPs in terms of their environmental impact may outweigh their benefits. So it's urgent to study and estimate the behavior and biology effects of NPs, and to investigate the mechanisms. In this study, a series of ecotoxicological tests on NPs were designed and conducted as an initial step to address the potential aquatic environmental impacts of NPs. The main contents and results of the experiments were:
     (1) This paper based on the basic theory of the biological toxicology. Ecotoxicological tests on NiO NPs were designed. The toxicity is defined as chronic 3 / harmful by the EC50 value. The damages caused by NiO NPs are recoverable. NiO NPs in low concentration can promote the growth of Chlorella sp..
     (2)The concentration of Ni remained in sea-water is tested by ICP-MASS. On the basic of discory of Ni~0 after NPs exposed to Chlorella sp., the Ni~02p/Ni~(2+)2p ratio in different time is analysed by XPS. The results are as follows: the main role of Chlorella sp. to NiO NPs is absorption before 48h, while between 48-72h is transformation. The absorption and transformation rate of NiO NPs by Chlorella sp. is 84.73% and 28.57%, which shows that Chlorella sp. can be used to deal with waste-water. The concentration of Ni is higher than the quality standard of waste-water, so it's necessary to deal with the waste-water by more steps.
     (3) In order to study the biological repair mechanisms further, the paper compared the 2-D gels of protein of Chlorella sp. treted by 15mg/L NiO NPs with the control group at the time of 48h, 72h and 96h. Some up- or down-regulated protein spots were found, which may relate to reduction reaction.
引文
[1]Lam C,James J.Pulmonary toxicity of single-wall carbon nanotubes in Mice 7 and 90 days after intratracheal instillation.Toxicological Sciences.2004,77(1):126-134
    [2]http://www.tzhealth.com/health/Nanometer/2007-10-17/15261,html
    [3]Paul J,David R,Stephan H,et al.The potential risks of nano-materials:a rivew carried for ECETOC.Particle and Fibre Toxicology.2006,3:11-45
    [4]Wang J,Hu Q.Old bottle with new wine:algal indicators for nanotechnology-based toxicology.Electronic Journal of Biology.2005,1(1):9-13
    [5]Zhang X,Sun n,Zhang Z,et al.Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles.Chemosphere.2007,67(1):160-166
    [6]Zhang X,Sun H,Zhang Z,et al.Enhanced accumulation of arsenate in carp in the presence of Titanium dioxide nanoparticles.Water Air Soil Pollut.2007,178:245-254
    [7]Derfus A,Chan W,Bhatia S.Probing the cytotoxicity of semiconductor quantum dots.Nano Lett.2004,4:11-18
    [8]Oberd(o|¨)rster E.Manufactured nanomaterials(fullerenes,C_(60)) induce oxidative stress in the brain of juvenile largemouth bass.Environmental Health Perspectives.2004,112(10):1058-1062
    [9]Service R F,Is Nanotechnology Dangerous?.Science.2000,290:1526-1527
    [10]P Ball.Roll up for the revolution.Nature.2001,414:142-144
    [11]Gorman J.Taming high-tech particles.Science News.2002,161:200-201
    [12]Nel h,Xia T,M(a|¨)dler L,et al.Toxic Potential of Materials at the Nanolevel.Science.2006,311(3):622-627
    [13]Service R F.Nanotechnology calls rise for more research on toxicology of nanomaterials.Science.2005,310(5754):1609
    [14]Service R F.Nanomaterials show signs of toxicity.Science.2003,300(5617):243
    [15]Barlow P G,Clouter B A,Donaldson K.Carbonblack nanoparticles induce type Ⅱepithelial cells to release chemotaxins for alveolar macrophages.Particle and Fibre Toxicology.2005,2:11
    [16]Donaldson K,Stone V,Tran C L,et al.Nanotoxicology.Occup Environ Med.2004,61:727-728
    [17]何跃明,吕新生,艾中立.恶性肿瘤的磁靶向热疗.国外医学物理医学与康复学分册.2003,23(2):96-100
    [18]Royal Society and the Royal Academy of Engineering.Nanoscience and Nanotechnologies.Opportunities and Uncertainties.2004
    [19]朱小山.几种人工纳米材料的水生毒理学研究:(博士学位论文).天津:南开大学,2006.
    [20]Oberd(o|¨)rser G.Lung particle overload:implications for occupational exposures to particles.Regul Toxicol Pharmacol.1995,21(1):123-135
    [21]Sauders J.A novel skin penetration enhancer:evaluation by membrane diffusion and confocal microscopy.J Pharm Pharm Sci.1999,2:99-107
    [22]Bahnemann D,Kholuiskaya S,Dillert R,et al.Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO_2 particles.Appl Catalysis B-Environ.2002,36:161-169
    [23]Oberd(o|¨)rster G,Finkelstein J,Johnston C.Acute pulmonary effects of ultrafine particles in rats and mice.Res Rep Health Eff Inst.2000,96:5-74
    [24]Mafune F,Kohno J,Takeda Y,et al.Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation.Phys Chem B.2000,104:8333-8337
    [25]Mandal S,Gole A,Lala N,et al.Studies on the reversible aggregation of cysteinecapped colloidal silver particles interconnected via hydrogen bonds.Langmuir.2001,17:6262-6268
    [26]Enrique N,Anders B,et al.Environmental behavior and ecotoxicity of engineered nanoparticles to algae,plants,and fungi.Ecotoxicology.2008,17(5):372-386
    [27]Ridley M,Hackley V,Machesky M.Characterization and surface-reactivity of nanocrystalline anatase in aqueous solutions.Langmuir.2006,22:10972-10982
    [28]Hiemstra T,Yenema P.Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides:the bond valence principle.Colloid Interface Sci.1996,184:680-692
    [29]Metcalfe A,Stoll S.The effect of inhomogeneous stickiness on polymer aggregation.Colloid Interface Sci.2006,298:629-638
    [30]陈建民.环境毒物学.天津:天津大学出版社,2007
    [31]Donaldson K,Stone V.Current hypotheses on the mechanisms of toxicity of ultrafine particles.Ann Ist Super Sanit(?).2003,39(3):405-410
    [32]曾文炉,赵飞飞,曹照根等.固定化转小鼠金属硫蛋白-Ⅰ基因聚球藻去除重金属的研究.化学工程.2009,37(2)
    [33]夏其昌,曾嵘.蛋白质化学与蛋白质组学:科学出版社,2004
    [34]Baun A,Hartmann N,Grieger K.Ecotoxicity of engineered nanoparticles to aquatic Invertebrates:a brief review and recommendations for future toxicity testing. Ecotoxicology.2008,17:387-395
    [35]李师翁,李虎乾.小球藻干粉的营养学和毒理学研究.食品科学,1997,18(7):48-51
    [36]Shepard J,Olsson B,Tedengren M.Protein expression signatures identified in Mytilus edulis exposed to PCBs,copper and salinity stress.Mar Environ Res.2000,50:337-340
    [37]Shepard J,Bardely B.Protein expression signatures and lysosomal stability in Mytilus edulis exposed to graded coppe concentrations.Mar Environ Res.2000,50:457-463
    [38]王广策,曾呈奎.紫球藻两种藻红蛋白特性的比较研究-γ亚基在稳定藻红蛋白结构方面的作用.海洋与湖沼,2001,32(6):653-657
    [39]Huang B,Wang G C,Li Z G,et al.Experimental research of γ-phycoerythrin subunits on cancer treatment:a new photosensitizer in PDT.Cancer Biotherapy and Radiopharmaceuticals.2002,17(1):35-41
    [40]Ma S Y,Wang G C,Sun H B,et al.Characterization of the artificially covalent conjugate of β-phycoerythri and a-phycocyanin and the phycobilisome from Porphyridium cruentum.Plant Science.2003,164(2):253-257
    [41]Nikaido I,Asamizu E,Nakajima M,et al.Generation of 10154 expressed sequence tags from leafy gametophytes of a marine red alga,Porphyra yezoensis.DNA Research.2000,7:223-227
    [42]王广策,孙海宝,曾呈奎.三角褐指藻磷酸甘油酸变位酶基因可能侧翼序列的筛选、克隆以及序列的测定.海洋与湖沼.2002,33(3):259-264
    [43]Hoxmark R.Protein composition of different stages in the life cycle of Ulva mutabilis.Planta.1976,130:327-332
    [44]张士璀,马军英,范晓.海洋生物技术原理和应用.北京:海洋出版社,1997
    [45]范晓,张士璀,秦松等.海洋生物技术新进展.北京:海洋出版社,1999
    [46]曾呈奎,相建海.海洋生物技术.济南:山东科学技术出版社,1998
    [47]Sabeeha S,Merchant,Olivier Vallon,et al.The chlamydomonas genome reveals the evolution of key animal and plant functions.Science.2007,318:245-250
    [48]http://www.biogo.net/info/detail/2-809.html
    [49]Wong P F,Tan L J,Nawi H,et al.Proteomic of the red alga,Gracilaria changii (Gracilariales,Rhodophyta).Phycol,2006,42:113-120
    [50]Rossini G.Functional assays in marine biotoxin detection.Toxicology.2005,208:451-462
    [51]Giuseppe R,Anna M,Giampiero S,et al.Protein markers of algal toxin contamination in shellfish.Toxicon.2008,52:705-713
    [52]郭广生,郑东华,王志华.均匀沉淀法制备NiO纳米颗粒.北京化工大学学报.2004,31:74-76
    [53]黄国兰,戴树桂,孙红文等.有机污染物对藻类毒性的测定.环境化学,1994,13:259-262
    [54]《海洋调查规范海洋生物调查》(中华人民共和国国家标准[GB12763.6-91],国家技术监督局1991-03-22发布,1992-01-01实行)
    [55]段华波,黄启飞,王琪.危险废物生态毒性鉴别指标研究.环境监测管理与技术.2006,18:5-8
    [56]Christian E,Stephen R,Ralph M,et al.Genes and environment-Striking the fine balance between sophisticated biomonitoring and true functional environmental genomics.Science of the total environment.2008,400:142-161
    [57]高会.苯类化学品对典型海洋浮游生物的毒性研究:(硕士学位论文).辽宁:大连海事大学,2006
    [58]王海英,曾晓波,郭祀远.磁处理对小球藻超微结构的影响.激光生物学报.2007,16:443-448
    [59]曲敏丽,姜万超.纳米氧化锌抗菌机理探讨.印染助剂.2004,21(6):45-46
    [60]http://www.zdic.net/appendix/Elements/Nickel.htm
    [61]李永仙.NiO纳米颗粒对小球藻的胁迫性及生物界面转化研究:(硕士学位论文).辽宁:大连海事大学.2007
    [62]阎吉昌.环境分析.北京:化学工业出版社,2002
    [63]Kouhei N,Norishige Y,Haruka I,et al.Protein extraction for 2-D from the lamina of Ecklonia kurome(laminariales):recalcitrant tissue containing high levels of viscous polysaccharides.Electrophoresis.2008,29:672-681
    [64]http://www.chinabaike.com/article/316/332/2007/2007022046807.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700