髓母细胞瘤与室管膜瘤患者脑脊液比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:髓母细胞瘤与室管膜瘤都为恶性神经上皮肿瘤,髓母细胞瘤较室管膜瘤恶性程度更高,皆好发于儿童,在所有儿童中枢神经系统肿瘤的发病率中分别位居第二、第三,对儿童健康影响极大。由于髓母细胞瘤和室管膜瘤是四脑室内最为常见的肿瘤,与脑干关系密切,手术不易彻底切除,加之两种肿瘤皆具有沿脑脊液循环途径种植转移的倾向,导致其治愈率低,预后差。脑脊液因与这两种肿瘤的接近性和临床可行性而具有重要的临床诊断价值。因此在脑脊液中寻找到肿瘤生物标志物,将有助于早期诊断、鉴别诊断,判断预后,监测肿瘤复发及治疗反应。
     蛋白质组学是采用高分辨率的蛋白质分离手段结合高通量的蛋白质鉴定技术,全景式地研究在特定时间和空间上的蛋白质表达谱。而比较蛋白质组学研究差异样品间蛋白质表达的变化。比较蛋白质组学包括两大主要技术,即蛋白质分离技术与蛋白质鉴定技术。双向荧光差异凝胶电泳(2D-DIGE)是先进的蛋白质分离技术,能显著提高微量蛋白检测的灵敏度,而且因其引入内标概念,更有利于对差异表达蛋白质的准确检测。质谱技术为蛋白质组学研究中主要的蛋白质鉴定技术,包括一级质谱(MS)和二级质谱(MS/MS).二级质谱又称串联质谱,可以更精确、更灵敏地分析、鉴定蛋白质样品。
     目的:本研究应用比较蛋白质组学技术,对髓母细胞瘤脑脊液、室管膜瘤脑脊液及正常对照组脑脊液进行比较蛋白质组学研究,分离、鉴定差异表达蛋白质,以期为髓母细胞瘤、室管膜瘤脑脊液生物标志物的探寻提供线索、为揭示髓母细胞瘤及室管膜瘤发病机制奠定理论及实验基础。同时结合基因芯片技术,建立髓母细胞瘤、室管膜瘤和小脑组织的基因表达谱,以明确脑脊液中差异蛋白质的编码基因在相应肿瘤组织中的表达情况,为脑脊液中差异蛋白质来源推测提供一定的实验依据。
     方法:
     实验分为三组:髓母细胞瘤组:选取9例髓母细胞瘤患者脑脊液、3例髓母细胞瘤肿瘤组织;室管膜瘤组:9例室管膜瘤患者脑脊液、3例室管膜瘤肿瘤组织;正常对照组:6例无其他神经系统病变的头痛患者的脑脊液(脑脊液生化检查正常),3例外伤手术减压的小脑组织。
     (1)三组之间脑脊液比较蛋白质组学定量分析:①使用10%浓度的TC/丙酮分别沉淀三组脑脊液蛋白,Bradford法定量蛋白。②分析胶双向电泳:每组样品各取50μg进行荧光标记,采用CyDye最小标记法标记蛋白,Cy2标记内标组(三组蛋白质等量混合为内标组),Cy3、Cy5标记实验组或对照组,标记蛋白混合后(150μg)进行2D-DIGE分离蛋白质。第一向等电聚焦电泳(IEF):使用24cm长的固相pH梯度(IPG)干胶条(pH3~10)进行等电聚焦;第二向SDS-PAGE电泳:IPG胶条经过2次平衡后,转移至12%SDS-PAGE凝胶中进行电泳。用激光扫描仪于荧光模式下进行Cy2、Cy3、Cy5成像扫描,Cy2、Cy3、Cy5标记的蛋白成像分别由488nm、532nm、633n的激发波长收集,蛋白点分别显示为蓝色、绿色和红色。使用DeCyder图像分析软件中的胶内差异分析(DIA)模块和生物学差异分析(BVA)模块分析图像结果,确定差异蛋白点。③制备胶双向电泳:从两个实验组和1个对照组中各取600μg蛋白进行双向凝胶电泳,考马斯亮兰染色。④利用基质辅助激光解吸附电离-飞行时间串联质谱(MALDI-TOF-TOF)选择性鉴定差异显著的蛋白质,主要为在髓母细胞瘤和/或室管膜瘤脑脊液中表达上调2倍以上的蛋白质。将考染的制备胶与分析胶进行比较,切取制备胶上与分析胶上差异表达点相匹配的蛋白斑点,使用胰蛋白酶进行胶内酶解蛋白,由MALDI-TOF/TOF质谱仪获得一级和二级肽指纹图谱,利用GPS软件在人IPI数据库中检索,采用MS& MS/MS联合搜索的方式,将蛋白质打分大于60分、置信水平在95%以上作为数据取舍标准。
     (2)三组之间组织比较基因表达谱定量分析:建立髓母细胞瘤、室管膜瘤、小脑组织基因差异表达数据库。①分别提取髓母细胞瘤、室管膜瘤组织及小脑组织总RNA,并定量、质检和纯化总RNA;②cDNA的合成和纯化;③体外转录(IVT)合成生物素标记的cRNA;④cRNA片段化后与Affymetrix Human Genome U133plus 2.0基因表达谱芯片杂交。⑤洗脱、扫描芯片,应用GCOS软件进行数据分析。
     结果:
     (1)脑脊液2D-DIGE结果显示:
     ①髓母细胞瘤组与正常对照组差异表达在2倍以上的蛋白质点共35个,其中17个蛋白质点表达上调,18个蛋白质点表达下调。
     ②室管膜瘤组与正常对照组差异表达在2倍以上的蛋白质点共74个,其中38个蛋白质点表达上调,36个蛋白质点表达下调。
     ③髓母细胞瘤组与室管膜瘤组差异表达在2倍以上的蛋白质点共59个,其中12个蛋白质点表达上调,47个蛋白质点表达下调。
     (2)质谱鉴定结果显示:选择性对28个上调的蛋白质点进行MALDI-TOF/TOF鉴定,其中18个蛋白质点成功鉴定,对应12个蛋白质。
     ①补体因子H异构体1、α-2巨球蛋白、血清转铁蛋白、纤维蛋白原β链、免疫球蛋白重链恒定区α1、触珠蛋白异构体2前蛋白原、触珠蛋白(高度类似)、β肌动蛋白(高度类似)在室管膜瘤组中较正常对照组和髓母细胞瘤组显著升高,而在髓母细胞瘤组与正常对照组之间无显著差异。
     ②补体因子B异构体1(片段)在室管膜瘤组和髓母细胞瘤组中较正常对照组皆显著增高,而在两种肿瘤组之间表达无显著差异。
     ③α-1抗胰蛋白酶异构体1和神经细胞粘附分子异构体3在髓母细胞瘤组中较正常对照组和室管膜瘤组中显著升高,而室管膜瘤组与正常对照组之间无显著差异。
     ④未知功能蛋白ALB和未知功能蛋白DKFZp686M08189仅在髓母细胞瘤组中表达升高。
     (3)组织基因表达谱结果显示:
     ①补体因子H编码基因仅在髓母细胞瘤中探测到表达而触珠蛋白编码基因仅在室管膜瘤中探测到表达。
     ②α-1抗胰蛋白酶编码基因在小脑组织、室管膜瘤组织探测到表达,而在髓母细胞瘤中未探测到表达。
     ③α-2巨球蛋白编码基因、神经细胞粘附分子编码基因、血清转铁蛋白编码基因和β肌动蛋白编码基因在髓母细胞瘤、室管膜瘤、小脑组织中都探测到表达。
     ④补体因子B编码基因、纤维蛋白原β链编码基因和免疫球蛋白重链恒定区α1编码基因在髓母细胞瘤、室管膜瘤、小脑组织中都未探测到表达。
     结论:髓母细胞瘤脑脊液、室管膜瘤脑脊液、正常对照脑脊液2D-DIGE图谱之间存在差异,选择性鉴定出12个在髓母细胞瘤脑脊液和/或室管膜瘤脑脊液中显著增高的蛋白质,为在脑脊液中探寻两种肿瘤的潜在生物标志物提供了有意义的研究线索;基因表达谱研究有助于推测脑脊液中差异蛋白质来源,为选取价值较大的差异蛋白质进行深入研究指出方向。
Background Both medulloblastoma and ependymoma are neuroepithelial tumors. Medulloblastoma has a higher degree of malignancy than ependymoma. The incidence of medulloblastoma ranked second in central nervous system tumors in childhood, while the incidence of ependymoma ranked third. They have a great bad impact on children's health. Because they are the most common tumors in the fourth ventricle and get close to brain stem, it is difficult to resect the tumors completely. Moreover, they have a tendency to spread through the cerebrospinal fluid (CSF), which results in the low rate of cure with poor prognosis. CSF has the important clinical value because of contact with the tumors and the clinical feasibility of the approach. Therefore, if the tumor biomarkers are found in the CSF, it will be helpful to make the early diagnosis as well as differential diagnosis, to determine prognosis, to monitor tumor recurrence and to observe treatment response.
     Proteomics study the protein expression profiles in the certain time and surroundings by means of the combination of high-resolution protein separation technique and high-throughput protein identification technique. Comparative proteomics analyze the changes of protein expression level between different samples. Comparative proteomics contain two main kinds of technique, protein separation technique and protein identification technique. Two-dimensional differential in-gel electrophoresis (2D-DIGE), an advanced protein separation technique, can significantly improve the sensitivity of the detection of trace protein. Introducing the concept of internal standard,2D-DIGE is more conducive to detect the differentially expressed proteins accurately. Mass spectrometry (MS) and tandem mass spectrometry (MS/MS) in proteomic research are the major protein identification techniques. MS/MS is more accurate and more sensitive for identification of protein.Objective To provide the clues in search of biomarkers in CSF of medulloblastoma and ependymoma and to offer theoretical and experimental basis for revealing the pathogenesis of medulloblastoma and ependymoma, the differentially expressed proteins in CSF between medulloblastoma, ependymoma and normal control group are isolated and identified via the comparative proteomic techniques. Combined with genechip technology, gene expression profiles of medulloblastoma, ependymoma and cerebellar tissue are established in order to identify differences in the mRNA expression of the genes encoding the differentially expressed proteins. The study of gene expression profile provides some experimental evidences to speculate the sources of differentially expressed proteins in CSF.
     Methods
     The experiment was divided three groups:medulloblastoma group:nine cases of CSF in patients with medulloblastoma, three cases of medulloblastoma tissue; ependymoma group: nine cases of CSF in patients with ependymoma, three cases of ependymoma tissue; normal control group:six cases of CSF in patients with headache who had no other neurological disorders(normal CSF examination),3 cases of cerebellum tissue from traumatic surgical decompression.
     (1) Quantitative analysis of comparative proteomics between the three groups:①With 10% TCA/acetone, total proteins in CSF of three groups were precipitated and extracted respectively. Then the proteins were quantified with Bradford method.②Analytical gel electrophoresis:2D-DIGE was used. The internal standard comprised equal amounts of proteins extracted from three groups. Internal standard and proteins from two of three groups were minimally labeled with fluorescent dyes, Cy2、Cy3 and Cy5, then the three samples pooled. Every sample's labelled protein is 50μg. First dimension IEF was performed with 24 cm immobilized pH 3-10 linear gradient dry strip for isoelectric focusing. Then, the proteins were isolated according to the difference of isoelectric point. Second dimension SDS-PAGE was performed with homogeneous 12.5% gels after equilibration twice. Then, the proteins were isolated according to the difference of molecular weight. The fluorescence signals of the three differently CyDye-labeled protein samples were imaged by using a laser scanner and wavelengths of 488 nm (Cy2, blue),532 nm (Cy3, green) and 633 nm (Cy5, red). The detection and quantification of protein spots were performed for the differential in-gel analysis (DIA) module of DeCyder software. Biological variation analysis (BVA) module of DeCyder can provide data on differential protein expression levels beteeen the three groups.③Preparative gel electrophoresis:600μg proteins from every group run 2D-PAGE respectively. Then the gels were stained with Coomassie brilliant blue.④Protein identification:differentially expressed proteins were selectively identified by matrix-assisted laser desorption ionization-time of flight-time of flight-mass spectrometry (MALDI-TOF-TOF-MS), Mainly up-regulated proteins in 2 fold in CSF of medulloblastoma and/or ependymoma. After comparison between preparative gel and analytical gel, the spots in preparative gel that matched differentially expressed spots in analytical gel were excised. After enzymolysis of trypsin, MS and MS/MS were obtained with mass spectrometer. Peptide mass data were searched in data IPI human with GPS software.
     (2) Quantitative analysis of comparative gene expression profiles between the three groups:①Total RNA of medulloblastoma, ependymoma and cerebellum were extracted respectively. Then quantification, clean up and checking of total RNA were performed.②Synthesis and clean up of cDNA.③Synthesis of biotin-labeled cRNA in vitro transcription.④Fragmenting the cRNA and hybridization with Affymetrix Human Genome U133plus 2.0 genechip.⑤Elution and scan of the genechip.⑥Data analysis with GCOS software.
     Results
     (1) 2D-DIGE analysis showed that the levels of 35 protein spots were significantly altered in medulloblastoma CSF compared with control CSF when average ratio of the matched spot was assigned as>2.0 or<-2.0, of which 17 spots were up-regulated and 18 spots were down-regulated.
     (2) 2D-DIGE analysis revealed that levels of 74 protein spots were significantly changed in ependymoma CSF compared with control CSF when average ratio>2.0 or<-2.0, of which 38 spots were up-regulated and 36 spots were down-regulated.
     (3) 2D-DIGE analysis demonstrated that levels of 59 protein spots were significantly altered in medulloblastoma CSF compared with ependymoma CSF when average ratio>2.0 or<-2.0, of which 12 spots were up-regulated and 47 spots were down-regulated.
     (4) 28 up-regulated (average ratio>2.0) spots were selected to be identified with MALDI-TOF/TOF, of which 18 spots were identified successfully, corresponding to 12 unique proteins.
     (5) Isoform 1 of complement factor H, alpha-2-macroglobulin, serotransferrin, fibrinogen beta chain, immunoglobulin heavy constant alpha 1, haptoglobin isoform 2 preproprotein, highly similar to Haptoglobin and highly similar to actin cytoplasmic 1 (beta-actin) were markedly increased in ependymoma CSF compared with the medulloblastoma CSF and control CSF, which were not significantly altered between the medulloblastoma CSF and control CSF. Isoform 1 of complement factor B was markedly increased in medulloblastoma CSF and ependymoma CSF compared with control CSF, which was not significantly changed between ependymoma CSF and the medulloblastoma CSF. Isoform 1 of alpha-1-antitrypsin and isoform 3 of neuronal cell adhesion molecule was markedly increased in medulloblastoma CSF compared with ependymoma CSF and control CSF, which was not significantly altered between ependymoma CSF and control CSF. Putative uncharacterized protein ALB and putative uncharacterized protein DKFZp686M08189 were markedly increased only in medulloblastoma CSF.
     (6) Gene expression profiles:the gene encoding complement factor H was detected to express only in medulloblastoma, while the gene encoding haptoglobin was detected to express only in ependymoma. The gene encoding alpha-1-antitrypsin was detected to express in ependymoma and cerebellum, but not in medulloblastoma. The gene encoding alpha-2-macroglobulin, the gene encoding neuronal cell adhesion molecule, the gene encoding serotransferrin and the gene encoding beta-actin was detected to express in medulloblastoma, ependymoma and cerebellum. The gene encoding complement factor B, the gene encoding fibrinogen beta chain and the gene encoding immunoglobulin heavy constant alpha 1 were not detected to express in medulloblastoma, ependymoma and cerebellum.
     Conclusions There were some significantly differential protein spots in 2D-DIGE of CSF between medulloblastoma, ependymoma and cerebellum.12 differentially expressed proteins in CSF of medulloblastoma and/or ependymoma were identified, which provided meaningful clues for exploring the potential biomarkers of two kinds of tumor in CSF. However, these potential biomarkers needed further validation. The study of gene expression profile was helpful to speculate the the sources of differentially expressed proteins in CSF and pointed out the direction to select the valuable proteins for further study.
引文
[1]Bailey P, Cushing H. Medulloblastoma cerebelli. Arch Neurol Psychiatr,1925,14: 192-224.
    [2]Grizzi F, Weber C, Di leva A. Antiangiogenic strategies in medulloblastoma:reality or mystery[J]. Pediatr Res,2008,63(5):584-590.
    [3]舒凯,雷霆,李龄.髓母细胞瘤诊断与治疗研究[J].中华神经外科疾病研究杂志,2005,4(4):382-384.
    [4]杨柳松,毛颖,周良辅.髓母细胞瘤的分子生物学研究进展[J].国际神经病学神经外科杂志,2005,32(4):365-369.
    [5]黄怀忠,胜青,周政.髓母细胞瘤的诊治研究新进展[J].国际神经病学神经外科杂志,2010,37(3):241-246.
    [6]LoisDN, OhgakiH, W iestlerOD, eta.l World organization classification of tumours of the central nervous system. Lyon:International Agency for Research on Cancer (IARC) Press, 2007:132-140.
    [7]杨学军.解读《世界卫生组织中枢神经系统肿瘤分类(2007年)》[J].中国神经精神疾病杂志,2007,33(9):513-517.
    [8]Dhall G. Medulloblastoma[J]. J Child Neurol,2009,24(11):1418-1430.
    [9]王忠诚.王忠诚神经外科学[M].武汉:湖北科学技术出版社,2005:550-554.
    [10]姜鹏,王义善.髓母细胞瘤临床治疗现状[J].实用肿瘤杂志,2010,25(1):98-102.
    [11]刘保国,漆松涛,彭玉平,等.成人髓母细胞瘤的临床特点与治疗[J].中国临床神经外科杂志,2005,10(6):424-427.
    [12]李家敏,刘素文,申文江.质子放射治疗在髓母细胞瘤中的临床应用[J].中华放射医学与防护杂志,2006.26(2):194-195.
    [13]Fossati P, Ricardi U, Orecchia R. Pediatric medulloblastoma:toxicity of current treatment and potential role of protontherapy[J]. Cancer Treat Rev,2009,35(1):79-96.
    [14]熊小鹏,胡超苏.髓母细胞瘤治疗进展[J].中国神经肿瘤杂志,2007,5(3):211-215.
    [15]Packer RJ, Siegel KR, Sutton LN, et al. Efficacy of adjuvant chemotherapy for patients with poor-risk medulloblastoma:a preliminary report. Ann Neurol,1988,24(4):503-508.
    [16]Packer RJ, Sutton LN, Elterman R, et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg,1994,81(5):690-698.
    [17]Rutkauskiene G, Labanauskas L. Treatment of patients of high-risk group of medulloblastoma with the adjuvant lomustine, cisplatin, and vincristine chemotherapy [J]. Medicina (Kaunas),2005,41(12):1026-1034.
    [18]Gandola L, Massimino M, Cefalo G, et al. Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma[J]. J Clin Oncol,2009, 27(4):566-571.
    [19]Zia MI, Forsyth P, Chaudhry A, et al. Possible benefits of high-dose chemotherapy and autologous stem cell transplantation for adults with recurrent medulloblastoma. Bone Marrow Transplant J].2002,30(9):565-569.
    [20]Ridola V, Grill J, Doz F, et al. High-dose chemotherapy with autologous stem cell rescue followed by posterior fossa irradiation for local medulloblastoma recurrence or progression after conventional chemotherapy[J]. Cancer,2007,110(1):156-163.
    [21]Gill P, Litzow M, Buckner J, et al. High-dose chemotherapy with autologous stem cell transplantation in adults with recurrent embryonal tumors of the central nervous system. Cancer,2008,112(8):1805-1811.
    [22]张世蕾,殷晓璐,邱永明.髓母细胞瘤的分子遗传学研究[J].诊断病理学杂志,2008,15(4):333-336.
    [23]Michiels EM, Weiss MM, Hoovers JM, et al. Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization[J]. J Pediatr Hematol Oncol,2002,24(3):205-210.
    [24]Rossi A, Caracciolo V, Russo G, et al. Medulloblastoma:from molecular pathology to therapy [J]. Clin Cancer Res.2008 Feb 15;14(4):971-976.
    [25]Gulino A, Arcella A, Giangaspero F. Pathological and molecular heterogeneity of medulloblastoma[J]. Curr Opin Oncol.2008 Nov; 20(6):668-675.
    [26]Gailani MR, Bale SJ, Leffell DJ, et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome [J]. Cell,1992,69(1):111-117.
    [27]Schofield D, West DC, Anthony DC, et al. Correlation of loss of heterozygosity at chromosome 9q with histological subtype in medulloblastomas[J]. Am J Pathol,1995 146(2): 472-480.
    [28]Stone DM, Hynes M, Armanini M, et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog[J]. Nature,1996,384(6605):129-134.
    [29]Di Marcotullio L, Ferretti E, De Smaele E, et al. REN (KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma[J]. Proc Natl Acad Sci USA, 2004,101(29):10833-10838.
    [30]Svard J, Heby-Henricson K, Persson-Lek M, et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway[J]. Dev Cell,2006,10(2):187-197.
    [31]Guessous F, Li Y, Abounader R. Signaling pathways in medulloblastoma[J]. J Cell Physiol.2008,217(3):577-583.
    [32]Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine[J]. Nature,2000,406(6799):1005-1009.
    [33]Berman DM, Karhadkar SS, Hallahan AR, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade[J]. Science,2002,297(5586):1559-1561.
    [34]Hamilton SR, Liu B, Parsons RE, Papadopoulos N, et al. The molecular basis of Turcot's syndrome[J]. N Engl J Med,1995,332(13):839-847.
    [35]Gilbertson RJ. Medulloblastoma:signaling a change in treatment[J]. Lancet Oncol, 2004,5(4):209-218.
    [36]Huang H, Mahler-Araujo BM, Sankila A, et al. APC mutations in sporadic medulloblastomas[J]. Am J Pathol,2000,156(2):433-437.
    [37]Eberhart CG, Tihan T, Burger PC. Nuclear localization and mutation of beta-catenin in medulloblastomas[J]. J Neuropathol Exp Neurol.2000,59(4):333-337.
    [38]Ellison DW, Onilude OE, Lindsey JC, et al. Beta-catenin status predicts a favorable outcome in childhood medulloblastoma:theUnited Kingdom Children's Cancer Study Group Brain Tumour Committee[J]. J Clin Oncol,2005,23(31):7951-7957.
    [39]李斌,甄海宁,章翔Notch信号在中枢神经系统肿瘤中的研究进展[J].第四军医大学学报,2008,29(2):184-186.
    [40]Brou C, Logeat F, Gupta N, et al. A novel proteolytic cleavage involved in Notch signaling:the role of the disintegrin-metalloprotease TACE[J]. Mol Cell.2000,5(2):207-216.
    [41]Hartmann D, de Strooper B, Serneels L, et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts[J]. Hum Mol Genet,2002,11(21):2615-2624.
    [42]Fan X, Mikolaenko I, Elhassan I, et al. Notchl and notch2 haveopposite effects on embryonal brain tumor growth[J]. Cancer Res.2004,64(21):7787-7793.
    [43]Lasky JL, Wu H. Notch signaling, brain development, and human disease[J]. Pediatr Res.2005,57(5 pt 2):104R-109R.
    [44]Fan X, Mikolaenko I, Elhassan I, et al. Notchl and notch2 have opposite effects on embryonal brain tumor growth[J]. Cancer Res,2004,64(21):7787-7793.
    [45]王涛,惠旭辉.儿童髓母细胞瘤诊治进展[J].国际神经病学神经外科杂志,2007,34(6):561-564.
    [46]Gershon TR, Becher OJ. Medulloblastoma:therapy and biologic considerations[J]. Curr Neurol Neurosci Rep,2006,6(3):200-206.
    [47]Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone[J]. N Engl J Med.2005,352(10):978-986.
    [48]Rutkowski S, vonBueren A, vonHoff K, et al. Prognostic relevance of clinical and biological risk factors in childhood medulloblastoma:results of patients treated in the prospectivemulticenter trial HIT'91 [J]. Clin Cancer Res,2007,13(9):2651-2657.
    [49]Lamont JM, Me Manamy CS, Pearson AD, et al. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients[J]. Clin Cancer Res,2004, 10(16):5482-5493.
    [50]陈礼刚,李定君,夏祥国,等.儿童髓母细胞瘤中ERBB-2的表达[J].泸州医学院学报,2006,29(1):8-10.
    [51]Gilbertson RJ, Pearson AD, Perry RH, et al. Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma[J]. Br J Cancer,1995,71(3):473-477.
    [52]Gilbertson RJ, Clifford SC, MacMeekin W, et al. Expression of the ErbB-neuregulin signaling network during human cerebellar development:implications for the biology of medulloblastoma[J]. Cancer Res,1998,58(17):3932-3941.
    [53]Emanuel SL, Hughes TV, Adams M, et al. Cellular and in vivo activity of JNJ-28871063, a nonquinazoline pan-ErbB kinase inhibitor that crosses the blood-brain barrier and displays efficacy against intracranial tumors[J]. Mol Pharmacol,2008, 73(2):338-348.
    [54]Ellison DW, Onilude OE, Lindsey JC, et al. Beta-catenin status predicts a favorable outcome in childhood medulloblastoma:theUnited Kingdom Children's Cancer Study Group Brain Tumour Committee [J]. J Clin Oncol,2005,23(31):7951-7957.
    [55]陈礼刚,李定君,名扬,等.P27在儿童髓母细胞瘤中的表达变化及意义[J].泸州医学院学报,2007,30(6):473-475.
    [56]王勇,毛伯镛,程宏伟,等.uPA和KDR在髓母细胞瘤中的表达及意义[J].中华神经外科杂志,2003,19(2):106-108.
    [57]李元洋,毛伯镛,董小红.癌基因产物c-jun和c-fos在髓母细胞瘤中的表达及临床意义[J].中华外科杂志,2004,42(4):213-215.
    [58]邓全军,毛伯镛,张尚福,等.环氧合酶-2在髓母细胞瘤中的表达及临床意义[J].四川大学学报(医学版),2004,35(5):641-643.
    [59]唐晓平,毛伯镛,余定庸,等.髓母细胞瘤CyclinD1、P16的表达及其与临床病理特点和预后的关系[J].中华神经外科杂志,2004,20(5):377-380.
    [60]姜曙,鞠延,毛伯镛,等.髓母细胞瘤PCNA和c-erbB-2表达与预后关系的研究[J].华西医学,2000,15(3):339-340.
    [61]Ellison DW. Childhood medulloblastoma:novel approaches to the classification of a heterogeneous disease[J]. Acta Neuropathol,2010,120(3):305-316.
    [62]Ellison DW, Onilude OE, Lindsey JC, et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma:the United Kingdom Children's Cancer Study Group Brain Tumour Committee[J]. J Clin Oncol,2005,23(31):7951-7957.
    [63]Evans DG, Farndon PA, Burnell LD, et al. The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma [J]. Br J Cancer,1991,64(5):959-961.
    [64]Kool M, Koster J, Bunt J, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features[J]. PLoS One,2008,3(8):e3088.
    [65]Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma Comprises Four Distinct Molecular Variants[J]. J Clin Oncol.2010:in press.
    [66]Thompson MC, Fuller C, Hogg TL, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations [J]. J Clin Oncol,2006, 24(12):1924-1931.
    [67]Ellison DW, Kocak M, Dalton J, et al. Definition of Disease-Risk Stratification Groups in Childhood Medulloblastoma Using Combined Clinical, Pathologic, and Molecular Variables [J]. J Clin Oncol.2010:in press.
    [68]郭双平,李青,马福成,等.成人室管膜瘤的临床及病理学特点[J].中华神经医学杂志,2006,5(11):1138-1141.
    [69]李文良,刘群.室管膜瘤的诊断及治疗新进展[J].中国神经肿瘤杂志,2006,4(3):166-172.
    [70]孙宇,张玉琪.儿童室管膜瘤的治疗进展与预后[J].中华神经外科杂志,2004,2(3):266-268.
    [71]郭双平,李青,马福成,等.儿童室管膜瘤19例临床病理分析[J].诊断病理学杂志,2006;13(4):264-266.
    [72]丁志燕,黄彩虹,刘爽.间变性室管膜瘤临床病理观察[J].现代肿瘤医学,2010,18(4):676-678.
    [73]Maksoud YA, Hahn YS, Engelhard HH. Intracranial ependymoma[J]. Neurosurg Focus,2002,13(3):1-5.
    [74]朱海东.第四脑室肿瘤的诊断及显微手术治疗[D].长沙:中南大学,2007.
    [75]Guyotat J, Signorelli F, Desme S, et al. Intracranial ependymomas in adult patients: analyses of prognostic factors [J]. J Neurooncol,2002,60(3):255-268.
    [76]Kumandas S, Per H, Gumus H, et al. Torticollis secondary to posterior fossa and cervical spinal cord tumors:report of five cases and literature review[J]. Neurosurg Rev, 2006,29(4):333-338.
    [77]Merchant TE, Mulhern RK, Krasin MJ, et al. Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma[J]. J Clin Oncol,2004,22(15):3156-3162.
    [78]Rogers L, Pueschel J, Spetzler R, et al. Is gross-total resection sufficient treatment for posterior fossa ependymomas? [J]. J Neurosurg,2005,102(4):629-636.
    [79]Oppenheim J S, Strauss R C, Mormino J, et al. Ependymomas of the third ventricle[J]. Neurosurgery,1994,34(2):350-353.
    [80]Zacharoulis S, Moreno L. Ependymoma:an update. J Child Neurol.2009,24(11): 1431-1438.
    [81]Merchant TE, Fouladi M. Ependymoma:new therapeutic approaches including radiation and chemotherapy [J]. J Neurooncol,2005,75(3):287-299.
    [82]王忠诚.王忠诚神经外科学[M].武汉:湖北科学技术出版社,2005:554-557.
    [83]Salazar OM. A better understanding of CNS seeding and a brighter outlook for postoperatively irradiated patients with ependymomas [J]. Int J Radiat Oncol Biol Phys,1983, 9(8):1231-1234.
    [84]Reni M, Gatta G, Mazza E, Vecht C. Ependymoma. Crit Rev Oncol Hematol,2007, 63(1):81-89.
    [85]Rand V, Prebble E, Ridley L, et al. Investigation of chromosome lq reveals differential expression of members of the S100 family in clinical subgroups of intracranial paediatric ependymoma[J]. Br J Cancer,2008,99(7):1136-1143.
    [86]Ward S, Harding B, Wilkins P, et al. Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma [J]. Genes Chromosomes Cancer,2001,32(1):59-66.
    [87]Rand V, Prebble E, Ridley L, et al. Investigation of chromosome 1q reveals differential expression of members of the S100 family in clinical subgroups of intracranial paediatric ependymoma[J]. Br J Cancer,2008,99(7):1136-1143.
    [88]Modena P, Lualdi E, Facchinetti F, et al. Identification of tumorspecific molecular signatures in intracranial ependymoma and association with clinical characteristics [J]. J Clin Oncol,2006,24(33):5223-5233.
    [89]Modena P, Lualdi E, Facchinetti F, et al. Identification of tumor specific molecular signatures in intracranial ependymoma and association with clinical characteristics[J]. J Clin Oncol,2006,24(33):5223-5233.
    [90]McLaughlin MP, Marcus RB, Buatti JM, et al. Ependymoma:results, prognostic factors and treatment recommendations[J]. Int J Radiat Oncol Biol Phys,1998,40(4): 845-850.
    [91]Vanuytsel LJ, Bessell EM, Ashely SE, et al. Intracranial ependymoma:long-term results of a policy of surgery and radiotherapy[J]. Int J Radiat Oncol Biol Phys,1992, 23(2):313-319.
    [92]Pollack IF, Gerszten PC, Martinez AJ, et al. Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery,1995,37(4):655-666.
    [93]Rousseau P, Habrand JL, Sarrazin D, et al. Treatment of intracranial ependymomas of children:review of a 15-year experience. Int J Radiat Oncol Biol Phys,1994,28(2): 381-386.
    [94]姚佐锋.54例室管膜瘤的临床病理特征及预后影响因素分析[D].长沙:中南大学,2008.
    [95]Gilbertson RJ, Bentley L, Hernan R, et al. ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease[J]. Clin Cancer Res,2002,8(10):3054-3064.
    [96]Ridley L, Rahman R, Brundler MA, et al. Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma[J]. Neuro Oncol,2008,10(5):675-689.
    [97]Tabori U, Ma J, Carter M, Zielenska M, et al. Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J Clin Oncol.2006,24(10):1522-1528.
    [98]Tabori U, Wong V, Ma J, et al. Telomere maintenance and dysfunction predict recurrence in paediatric ependymoma[J]. Br J Cancer,2008,99(7):1129-1135.
    [99]Wong VC, Morrison A, Tabori U, et al. Telomerase inhibition as a novel therapy for pediatric ependymoma[J]. Brain Pathol,2010,20(4):780-786.
    [100]Kroksveen AC, Opsahl JA, Aye TT, et al. Proteomics of human cerebrospinal fluid: Discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics[J]. J Proteomics,2011,74(4):371-388.
    [101]张旭华,刘师莲,李玮.脑瘤患者脑脊液肿瘤相关蛋白的蛋白质组学初步研究[J].生物医学工程研究,2005,24(4):258-260.
    [102]Roche S, Gabelle A, Lehmann S. Clinical proteomics of the cerebrospinal fluid: Towards the discovery of new biomarkers[J]. Proteomics Clin Appl,2008.2(3):428-436.
    [103]Blennow K, Hampel H. CSF markers for incipient Alzheimer's disease[J]. Lancet Neurol, 2003,2(10):605-613.
    [104]Ibach B, Binder H, Dragon M, et al. Cerebrospinal fluid tau and beta-amyloid in Alzheimer patients, disease controls and an age-matched random sample[J]. Neurobiol Aging. 2006,27(9):1202-1211.
    [105]张太翔,田国宁,张金玲,等.蛋白质组学与神经系统疾病的研究进展[J].中国畜牧兽医,35(7):46-48.
    [106]Maurer MH. Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF) [J]. Mass Spectrom Rev,2010,29(1):17-28.
    [107]熊正平.蛋白质组学筛选肝癌差异蛋白及其与肿瘤分子[D].长沙:中南大学,2008.
    [108]于雁灵.比较蛋白质组定量分析及其在疾病研究中的应用[D].上海:复旦大学,2004.
    [109]Yuan X, Desiderio DM. Proteomics analysis of human cerebrospinal fluid[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2005,815(1-2):179-189.
    [110]赵红梅,盛敏杰,于靖.蛋白质组学研究中生物标志物的验证[J].同济大学学报(医学版),2010,31(3):137-140.
    [111]Zhang J. Proteomics of human cerebrospinal fluid-the good, the bad, and the ugly[J]. Proteomics Clin Appl,2007, 1(8):805-819.
    [112]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins [J]. J Biol Chem,1975.250(10):4007-4021.
    [113]Bjellqvist B, Ek K, Righetti PG, et al. Isoelectric focusing in immobilized pH gradients:principle, methodology and some applications[J]. J Biochem Biophys Methods, 1982,6(4):317-339.
    [114]李焕敏,邵明,谭红愉,等.脑脊液蛋白质组学高丰度蛋白去除方法的建立与评价[J].现代临床医学生物工程学杂志,2007,13(2):94-96.
    [115]Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis:a single gel method for detecting changes in protein extracts[J]. Electrophoresis,1997,18(11):2071-2077.
    [116]Tonge R, Shaw J, Middleton B,et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology [J]. Proteomics,2001, 1(3):377-396.
    [117]赵平平.多发性硬化患者血清差异蛋白质组学研究[J].石家庄:河北医科大学,2008.
    [118]Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis:two-dimensional difference gel electrophoresis incorporating a pooled internal standard[J]. Proteomics,2003,3(1):36-44.
    [119]王英超,党源,李晓艳,等.蛋白质组学及其技术发展.生物技术通讯,2010,20(1):139-143.
    [120]张颖,杨舸.蛋白质组学研究的有效工具-双向电泳鉴定技术[J].重庆文理学院学报(自然科学版),2010,29(5):66-68.
    [121]张玉平,彭国光.帕金森病患者脑脊液蛋白质的双向凝胶电泳图谱初步分析[J].中国神经精神疾病杂志,2006,32(4):336-339.
    [122]杨国堂,李艳艳,张伟,等.蛋白质组学及其技术体系[J].食品与药品,2010,12(5):206-209.
    [123]乔彦涛,缪佳铮,孙世伟,等.串联质谱的蛋白质序列鉴定技术综述[J].计算机科学与探索,2010,4(2):97-107.
    [124]Steen H, Mann M. The ABC's (and XYZ's) of peptide sequencing [J]. Nat Rev Mol Cell Biol,2004,5(9):699-711.
    [125]Hale JE, Gelfanova V, You JS, et al. Proteomics of cerebrospinal fluid:methods for sample processing[J]. Methods Mol Biol,2008,425:53-66.
    [126]洪桢,陈生弟.人类脑脊液的蛋白质组学研究[J].上海交通大学学报(医学版),2008,28(5):600-603.
    [127]苟黎明,邵小宝,李克.蛋白质组学研究中高丰度蛋白质去除方法的研究进展[J].临床检验杂志,2010,28(4):298-300.
    [128]周乐,和平,屈建强,等.去除白蛋白对脑脊液双向凝胶电泳结果的影响[J].西安交通大学学报(医学版),2010,31(3):351-353.
    [129]孙太欣,彭国光.双向凝胶电泳脑脊液蛋白质提取方法的比较[J].中国医药生物技术,2007,2(3):172-175.
    [130]Goldman D, Merril CR, Ebert MH. Two-dimensional gel electrophoresis of cerebrospinal fluid proteins[J]. Clin Chem,1980,26(9):1317-1322.
    [131]Hoogland C, Sanchez JC, Tonella L, et al. The 1999 SWISS-2DPAGE database update[J]. Nucleic Acids Res,2000,28(1):286-288.
    [132]Harrington MG, Merril CR, Asher DM, et al. Abnormal proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease[J]. N Engl J Med,1986,315(5): 279-283.
    [133]Zerr I, Bodemer M, Otto M, et al. Diagnosis of Creutzfeldt-Jakob disease by two-dimensional gel electrophoresis of cerebrospinal fluid[J]. Lancet,1996,348(9031):846-849.
    [134]Hsich G, Kenney K, Gibbs CJ, et al. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies[J]. N Engl J Med,1996, 335(13):924-930.
    [135]Niclou SP, Fack F, Rajcevic U. Glioma proteomics:status and perspectives[J]. J Proteomics,2010,73(10):1823-1838.
    [136]Niclou SP, Fack F, Rajcevic U. Glioma proteomics:status and perspectives [J]. J Proteomics,2010,73(10):1823-1838.
    [137]Khwaja FW, Reed MS, Olson JJ, et al. Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients[J]. J Proteome Res,2007,6(2): 559-570.
    [138]Ohnishi M, Matsumoto T, Nagashio R, et al. Proteomics of tumor-specific proteins in cerebrospinal fluid of patients with astrocytoma:usefulness of gelsolin protein. Pathol Int, 200959(11):797-803.
    [139]Rajagopal MU, Hathout Y, Macdonald TJ, et al. Proteomic profiling of cerebrospinal fluid identifiesprostaglandin D2 synthase as a putative biomarkerfor pediatric medulloblastoma:A pediatric brain tumor consortium study[J]. Proteomics,2011, 11(5):935-943.
    [140]Bryant PA, Venter D, Robins-Browne R, et al. Chips with everything:DNA microarrays in infectious diseases[J]. Lancet Infect Dis,2004,4(2):100-111.
    [141]陆玉,刘天佳,杨锦波.基因芯片的结构与应用[J].国外医学口腔医学分册,2006,33(1):6-8.
    [142]韩莹,桑锋,鲁亚平.基因芯片技术及其应用研究[J].生物技术通报,2006,(4):12-15.
    [143]Fodor SP, Rava RP, Huang XC, et al. Multiplexed biochemical assays with biological chips[J]. Nature,1993,364(6437):555-556.
    [144]Fodor SP, Read JL, Pirrung MC, et al. Light-directed, spatially addressable parallel chemical synthesis[J]. Science,1991,251(4995):767-773.
    [145]孙恒文,胡义德.基因芯片技术在肿瘤研究中的进展[J].中华肿瘤防治杂,2006,13(8):635-638.
    [146]李巍松,施诚仁.基因芯片在儿童实体肿瘤的研究进展[J].中华小儿外科杂志,2006,27(2):98-101.
    [147]Hacia JG, Collins FS. Mutational analysis using oligonucleotide microarrays[J]. J Med Genet,1999,36(10):730-736.
    [148]Kallioniemi OP. Biochip technologies in cancer research[J]. Ann Med,2001,33(2): 142-147.
    [149]江荣才,浦佩玉,申长虹,等.应用微阵列方法探讨室管膜瘤的基因表达谱[J].中华外科杂志,2003,41(10):770-772.
    [150]江荣才,浦佩玉,申长虹,等.应用微阵列初步分析髓母细胞瘤的基因表达谱[J].中华医学遗传学杂志,2004,21(2):179-181.
    [151]Lukashova-v Zangen I, Kneitz S, Monoranu CM, et al. Ependymoma gene expression proWles associated with histological subtype, proliferation, and patient survival[J]. Acta Neuropathol,2007,113(3):325-37.
    [152]Sowar K, Straessle J, Donson AM, et al. Predicting which children are at risk for ependymoma relapse[J]. J Neurooncol,2006,78(1):41-46.
    [153]Al-Halabi H, Nantel A, Klekner A, et al. Preponderance of sonic hedgehog pathway activation characterizes adult medulloblastoma[J]. Acta Neuropathol,2011,121(2): 229-239.
    [154]Kool M, Koster J, Bunt J, et al. Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features[J]. PLoS One.2008,3(8):e3088.
    [155]Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma Comprises Four Distinct Molecular Variants [J]. J Clin Oncol.2010:(in press)
    [156]de Bont JM, Kros JM, Passier MM, et al. Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis[J]. Neuro Oncol,2008,10(5):648-660.
    [157]丁明丽.小麦成熟胚脱分化过程的DNA甲基化研究[D].郑州:河南农业大学,2008.
    [158]郭遂群.子宫内膜癌雌激素依赖型与非依赖型基因表达谱的初步研究[D].广州:第一军医大学,2006.
    [159]Ferreira VP, Pangburn MK, Cortes C. Complement control protein factor H:the good, the bad, and the inadequate [J]. Mol Immunol,2010,47(13):2187-2197.
    [160]何智,陈政良.补体系统丝氨酸蛋白酶的结构与功能[J].国外医学免疫学分册,2004,27(4):316-319.
    [161]Xu Y, Narayana SV, Volanakis JE. Structural biology of the alternative pathway convertase[J]. Immunol Rev,2001,180:123-35.
    [162]Schmidt CQ, Herbert AP, Hocking HG, et al. Translational mini-review series on complement factor H:structural and functional correlations for factor H[J]. Clin Exp Immunol,2008,151(1):14-24.
    [163]李建国,肖慧捷,杨霁云.补体H因子研究进展[J].国外医学儿科学分册,2005,32(3):143-146.
    [164]余华.肾上腺髓质素的表达与肿瘤的关系[J].国外医学放射医学核医学分册,2004,28(5):213-216.
    [165]Ajona D, Hsu YF, Corrales L, et al. Down-regulation of human complement factor H sensitizes non-small cell lung cancer cells to complement attack and reduces in vivo tumor growth[J]. J Immunol,2007,178(9):5991-5998.
    [166]Junnikkala S, Hakulinen J, Jarva H, et al. Secretion of soluble complement inhibitors factor H and factor H-like protein (FHL-1) by ovarian tumour cells [J]. Br J Cancer, 2002,87(10):1119-1127.
    [167]Wilczek E, Rzepko R, Nowis D, et al. The possible role of factor H in colon cancer resistance to complement attack[J]. Int J Cancer,2008,122(9):2030-2037.
    [168]Junnikkala S, Jokiranta TS, Friese MA, et al. Exceptional resistance of human H2 glioblastoma cells to complement-mediated killing by expression and utilization of factor H and factor H-like protein 1[J]. J Immunol,2000,164 (11):6075-6081.
    [169]Bauer J, Gebicke-Haerter PJ, Ganter U, et al. Astrocytes synthesize and secrete alpha 2-macroglobulin:differences between the regulation of alpha 2-macroglobulin synthesis in rat liver and brain. Adv Exp Med Biol,1988,240:199-205.
    [170]Cucullo L, Marchi N, Marroni M, et al. Blood-brain barrier damage induces release of alpha2-macroglobulin[J]. Mol Cell Proteomics,2003,2(4):234-241.
    [171]肖颖.α2-巨球蛋白基因多态性与帕金森病和特发性震颤的关系[D].天津:天津医科大学,2004.
    [172]梅小娟,李光乾.中枢神经系统感染患儿脑脊液a2-MG检测的临床意义[J].浙江临床医学,2002,4(2):100-101.
    [173]朱伟,赵合庆.α2巨球蛋白、β2微球蛋白在中枢神经系统疾病诊断方向的应用[J].卒中与神经疾病杂志,2010,17(1):52-55.
    [174]Kovacs DM. alpha2-macroglobulin in late-onset Alzheimer's disease[J]. Exp Gerontol,2000,35(4):473-479.
    [175]Lindner I, Hemdan NY, Buchold M, et al. Alpha2-macroglobulin inhibits the malignant properties of astrocytoma cells by impeding beta-catenin signaling[J]. Cancer Res, 2010,70(1):277-287.
    [176]庄明强,艾智武,吴满.α1-抗胰蛋白酶的研究进展[J].微生物学杂志,2007,27(6):92-95.
    [177]权燕敏,张卫柱,李灵君,等.α1-抗胰蛋白酶的研究进展[J].现代农业科学,2009,16(5):14-16.
    [178]晁栋.α1抗胰蛋白酶与肺癌易感性及其对肺癌生物学行为影响机制的研究[D].西安:中国人民解放军第四军医大学,2008.
    [179]Karashima S, Kataoka H, Itoh H, et al. Prognostic significance of alpha-1-antitrypsin in early stage of colorectal carcinomas[J]. Int J Cancer,1990, 45(2):244-250.
    [180]Ikeyama Y, Orita T, Nishizaki T, et al. Immunohistochemical expression of alpha-1-antitrypsin in human gliomas[J]. No Shinkei Geka,1991,19(11):1047-1051.
    [181]Ng HK, Lo ST. Immunostaining for alpha 1-antichymotrypsin and alpha 1-antitrypsin in gliomas[J]. Histopathology,1988,13(1):79-87.
    [182]Levy AP, Asleh R, Blum S. et al. Haptoglobin:basic and clinical aspects[J]. Antioxid Redox Signal,2010,12(2):293-304.
    [183]王凤君,黄文华,黎鳌.触珠蛋白研究进展[J].生物化学与生物物理进展,1994,21(5):386-389.
    [184]Miyoshi E, Nakano M. Fucosylated haptoglobin is a novel marker for pancreatic cancer:detailed analyses of oligosaccharide structures [J]. Proteomics,2008,8(16): 3257-3262.
    [185]Dziegielewska KM, Saunders NR, Schejter EJ, et al. Synthesis of plasma proteins in fetal, adult, and neoplastic human brain tissue [J]. Dev Biol,1986,115(1):93-104.
    [186]Sanchez DJ, Armstrong L, Aguilar R, et al. Haptoglobin gene expression in human glioblastoma cell lines[J]. Neurosci Lett,2001,303(3):181-184.
    [187]Lee MY, Kim SY, Choi JS, et al. Upregulation of haptoglobin in reactive astrocytes after transient forebrain ischemia in rats[J]. J Cereb Blood Flow Metab,2002, 22(10):1176-1180.
    [188]Zhao X, Song S, Sun G, et al. Neuroprotective role of haptoglobin after intracerebral hemorrhage [J]. J Neurosci,2009,29(50):15819-15827.
    [189]Chen W, Lu H, Dutt K, et al. Expression of the protective proteins hemopexin and haptoglobin by cells of the neural retina[J]. Exp Eye Res,1998,67(1):83-93.
    [190]Huang YC, Wu YR, Tseng MY, et al. Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington's disease[J]. PLoS One, 2011,6(1):e15809.
    [191]龙华,曾勇,郑英.转铁蛋白的研究与发展[J].生物工程进展,2001,21(2):32-39.
    [192]王丛珠,王登平,郑佐娅.转铁蛋白介导作用的应用进展[J].放射免疫学杂志,2003,16(5):304-306.
    [193]邱惠芳,王军臣.转铁蛋白在肿瘤和脑主动靶向治疗中应用的研究进展[J].国际病理科学与临床杂志,2010,30(4):359-362.
    [194]Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium [J]. Adv Drug Deliv Rev,2004,56(12):1695-1716.
    [195]钱忠明.脑铁代谢和神经变性性疾病[J].生理科学进展,2002,33(3):197-203.
    [196]Moos T, Rosengren Nielsen T, et al. Iron trafficking inside the brain[J]. J Neurochem,2007,103(5):1730-1740.
    [197]田勇,杜杭根.脑胶质瘤中神经细胞粘附分子的研究进展[J].浙江创伤外科,2006,11(2):184-187.
    [198]万斌,刘德明.神经细胞粘附分子的研究进展[J].江西医学院学报,2005,25(4):150-152.
    [199]魏海峰.神经细胞粘附分子[J].生命科学,2000,12(5):221-223.
    [200]van Kammen DP, Poltorak M, Kelley ME, et al. Further studies of elevated cerebrospinal fluid neuronal cell adhesion molecule in schizophrenia[J]. Biol Psychiatry,1998, 43(9):680-686.
    [201]Figarella-Branger D, Dubois C, Chauvin P, et al. Correlation between polysialic-neural cell adhesion molecule levels in CSF and medulloblastoma outcomes[J]. J Clin Oncol.1996, 14(7):2066-2072.
    [202]徐修才,吴竞生,翟志敏.人纤维蛋白原的研究进展[J].国外医学临床生物化学与检验学分册,2004,25(6):503-505..
    [203]Reynes G, Vila V, Martin M, et al. Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma[J]. J Neurooncol,2011, 102(1):35-41.
    [204]Lund CV, Nguyen MT, Owens GC, et al. Reduced glioma infiltration in Src-deficient mice[J]. J Neurooncol,2006,78(1):19-29.
    [205]Sahni A, Simpson-Haidaris PJ, Sahni SK, et al. Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2) [J]. J Thromb Haemost,2008,6(1):176-183.
    [206]Lee JW, Namkoong H, Kim HK, et al. Fibrinogen gamma-A chain precursor in CSF:a candidate biomarker for Alzheimer's disease [J]. BMC Neurol,2007,7:14.
    [207]贺淹才.肌动蛋白和肌动蛋白基因的研究进展[J].生命的化学,2002,22(3):248-250.
    [208]鲍永华,鄢敏,赵志辉,等.哺乳动物免疫球蛋白重链恒定区基因研究进展[J].动物医学进展,2006,27(5):32-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700