催化裂化汽油S-Zorb反应吸附脱硫工艺吸附剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国汽油的80%来自于催化裂化(FCC)汽油,FCC汽油硫含量高,汽油中90%以上的硫化物都来源于FCC汽油。传统的加氢脱硫技术会引起烯烃加氢饱和,造成汽油辛烷值损失过大,因此在生产超低硫汽油中的应用受到限制。反应吸附脱硫(RADS)技术兼具催化加氢脱硫以及吸附的优点,能够有效地使汽油达到深度脱硫的效果。S-Zorb工艺遵循反应吸附脱硫的机理,是目前最具广阔发展空间及应用前景的脱硫工艺之一。吸附剂是S-Zorb工艺的核心技术。本论文以Ni-ZnO基吸附剂为研究基础,以模型溶液为对象,采用实验室固定床装置,系统研究了载体种类、活性组分种类及类型对吸附剂反应吸附脱硫性能的影响,采用BET、XRD、H2-TPR、TG-DTA及FT-IR等分析手段对吸附剂进行表征;对吸附剂的再生性能及稳定性进行考察;并对反应吸附脱硫机理进行探讨。主要研究内容如下:
     本文首先以噻吩-正辛烷为模型溶液,Ni-ZnO作为活性组分,硅藻土-Al203为载体,采用混捏法制备NiZnO/硅藻土-Al203吸附剂。通过吸附剂评价实验得出NiZnO/硅藻土-Al203吸附剂的最佳组成为:载体中硅藻土与A1203含量比为1:1;硅藻土-Al203含量占吸附剂总质量为50%;Zn/Ni摩尔比为0.4。吸附剂的最佳制备条件为:焙烧温度为600℃;焙烧时间为1h。吸附剂最适宜的还原工艺条件为:H2还原流量为30ml/min;还原温度为370℃;还原压力为0.5MPa。吸附剂最适宜的反应工艺条件为:反应温度为400℃;反应压力为1MPa;H2/oil体积比为400。在最佳条件下,NiZnO/硅藻土-Al203吸附剂的硫容为1.073%。
     接着对Ni-ZnO基吸附剂载体进行筛选,同样以噻吩-正辛烷为模型溶液,考察不同活性白土、各类分子筛以及各种金属氧化物作载体的吸附剂的脱硫性能,结果表明三种载体吸附剂的脱硫性能都较NiZnO/硅藻土-Al203吸附剂有不同程度的提高,不同载体吸附剂的脱硫性能由大到小排序依次为NiZnO/HY分子筛>NiZnO/ZrO2-TiO2> NiZnO/TiO2>NiZnO/白土-Al2O3>NiZnO/硅藻土-Al203。由于FCC汽油中含有大量烯烃,采用噻吩-烯烃-正辛烷模型溶液,考察烯烃对不同载体吸附剂脱硫性能的影响,结果表明不同载体吸附剂的脱硫性能均有不同程度的下降,其中NiZnO/硅藻土-Al203和NiZnO/HY分子筛的脱硫性能下降最小,NiZnO/ZrO2-TiO2和NiZnO/白土-Al203次之,而NiZnO/TiO2的脱硫性能下降最明显,达到30.39%。从烯烃饱和率数据可见,以HY分子筛为载体的吸附剂的烯烃饱和率最高,达到70.19%,而吸附剂NiZnO/硅藻土-Al203、NiZnO/ZrO2-TiO2和NiZnO/TiO2的烯烃饱和率相对较小,因此对油品造成的辛烷值损失较小。综合考虑,ZrO2-TiO2作为吸附剂载体既具有相对较佳的噻吩脱除性能又具有相对较低的烯烃饱和率。
     在上述研究基础上,以噻吩-烯烃-正辛烷模型溶液为原料,研究了不同ZnO前躯体对镍基氧化锌吸附剂脱除噻吩性能的影响。XRD表征结果表明,NiZnO(硝酸锌)/TiO2-ZrO2.NiZnO(氯化锌)/TiO2-ZrO2和NiZnO(:碱式碳酸锌)/TiO2-ZrO2的ZnO晶粒尺寸较NiZnO/TiO2-ZrO2明显减小,同时这三种吸附剂中归属于惰性的金红石结构的Ti02消失,表明碱式碳酸锌、氯化锌及硝酸锌作为氧化锌前躯体可以有效抑制载体中Ti02锐钛矿向惰性金红石晶相的转化,从而增强了载体的机械性能。经筛选确定硝酸锌前躯体吸附剂具有最高的脱硫活性。接着研究了不同加氢活性组分对镍基氧化锌吸附剂脱除噻吩性能的影响,结果表明Mo系吸附剂较Ni系和Co系吸附剂具有较高的脱硫活性,但是其烯烃饱和率较高,相比之下,Ni系和Co系吸附剂的烯烃饱和率则相对较低,Ni-Co双组份吸附剂的烯烃饱和率最低,经考察筛选得出最佳CoZnO/ZrO2-TiO2吸附剂组成为:Co含量为35%,ZnO含量为15%,吸附剂硫容达到1.245%,烯烃饱和率为27.20%。
     采用空气氧化-氢气还原两步法使Ni-ZnO基吸附剂得以再生,结果表明本论文制备的Ni-ZnO基吸附剂具有优良的再生性能及稳定性。
     提出噻吩在Ni-ZnO基吸附剂上的反应吸附脱硫机理,并用具体实验验证了这一机理的正确性。首先噻吩以S-M的模式吸附在吸附剂表面的Ni0活性位上,通过氢气进一步弱化噻吩的C-S键,导致C-S键断裂使Ni被硫化成Ni3S2,从而释放出C4物种;第二步,Ni3S2在氢气的作用下再次被还原成具有活性的单质Ni,生成H2S;最后,H2S迅速与吸附剂中ZnO组分反应生成ZnS,将系统中的S储存至ZnO中,自此实现吸附剂的“自再生”循环。以上研究结果可为S-Zorb吸附剂的国产化开发提供依据。
FCC gasoline, accounting for more than 80% of commercial gasoline in China, contains very high levels of sulfur compounds. More than 90% of sulfur compounds in commercial gasoline come from FCC gasoline. The removal of sulfur compounds traditional by hydrodesulfurization (HDS) techniques will inevitably result in the saturation of many olefins and cause serious octane number lost. Therefore, the application of the traditional HDS techniques in producing ultra-low sulfur containing gasoline is limited. Reactive adsoption desulfurization (RADS) is effective for deep desulfurization because it combines the advantages of the catalytic HDS and adsorption. S-Zorb process for desulfurization follows the mechanism of reactive adsorption and it is a novel green process with extensive development space and application prospects. Adsorbents play a vital role in S-Zorb process. In this paper, Ni-ZnO based adsorbent were chosen as main research basement and model fuel was chosen as treatment object to explore the performance of adsorbents with different types of supports and active components on RADS using a lab fixed bed continuous flow reactor. The adsorbents were characterized by BET, XRD, H2-TPR, TG-DTA and FT-IR in order to find out the influence of specific types of surface chemistry and structural characteristics on the sulfur adsorptive capacity. The regeneration property and stability and the adsorption Mechanism have been studied. The main and important results are described as follows:
     The model fuel(thiophene-n-octane) was chosen as treatment object and ZnNi/diatomite-Al2O3 adsorbents were prepared by kneading method. According to the activity measurement results, the optimal composition for ZnNi/diatomite -Al2O3 was diatomite:Al2O3=25%:25%, Zn/Ni molar ratio=0.4.The optimal preparation condition for the adsorbent was Tcalcination =600℃, tcalcination=1h. The optimal reduction condition for the adsorbent was LH2=30ml/min, Treduction=370℃, Preduction=0.5MPa. The optimal reaction condition for the adsorbent was Treaction=400℃, Preaction=1 MPa,H2/oil=400. Under these conditions, the adsorptive capacity of ZnNi/diatomite-Al2O3 adsorbent was about 1.073%.
     Next, the model fuel(thiophene-n-octane) was chosen as treatment object and Ni-ZnO chosen as active components to explore the performance of adsorbents with different types of supports (caly-Al2O3, zeolites, metal oxides) on RADS. The adsorption results shown that the adsorptive capacity of different support adsorbents is in the following order:NiZn/Ti-Zr> NiZn/Ti> NiZn/Al-clay> NiZn/Al-diatomite. The commercial FCC gasoline contains amounts of olefins. To examine the effect of olefin on the adsorption of thiophene, the adsorptive desulfurization of the model fuel (thiophene -1-octene -n-octane) over the five different support adsorbents at the same reaction conditions was examined. The results showed that the desulfurization rate of the five different support adsorbents samples decreased in various degrees. The adsorptive capacity of NiZn/HY and NiZn/Al-diatomite samples decreased only slightly, while the adsorptive capacity of NiZn/Ti sample decreased extensively(Reduction rate was 30.39%). The olefin saturation rate of NiZn/ HY sample (70.19%)was higher than that of the other four samples, implying that the HY-supported adsorbent will lead to a great loss of octane number for gasoline, while, the olefin saturation rates of NiZnO/diatomite-Al2O3、NiZnO/ZrO2-TiO2和NiZnO/TiO2 were relatively low. On the basis of comprehensive compare, ZrO2-TiO2 was the most suitable support of the adsorbent.
     The model fuel(thiophene-l-octene-n-octane) was chosen as treatment object. The four Ni/ZnO-based adsorbents with different ZnO precursors of ZnO,2ZnCO3·3Zn(OH)2 (ZN), ZnCl2(ZC) and Zn(NO3)2·6H2O(BZC) were prepared in this study. The RADS performance of the four different ZnO textures was evaluated in the same conditions. According to XRD patterns, the characteristic XRD peaks of ZnO crystalline phase for the modified ZnO precursor adsorbents (NiZnO(BZC)/ZrO2-TiO2, NiZnO(ZC)/ZrO2-TiO2and NiZnO(ZN)/ ZrO2-TiO2) become much boarder than that for the NiZnO/ZrO2-TiO2, implying that Zn(NO3)2·6H2O, ZnCl2 and 2ZnCO3·3Zn(OH)2 as ZnO precursors can significantly improve the dispersion of ZnO on the support surface. In addition, for NiZn/Ti-Zr sample the crystallite phases of TiO2 are attributed to the anatase phase and the rutile phase;however, there are, X-ray diffraction data indicated only the anatase phase of TiO2 at the NiZnO(BZC)/ ZrO2-TiO2, NiZnO(ZC)/ ZrO2-TiO2 and NiZnO(ZN)/ZrO2-TiO2 samples, without detection of rutile phase. This indicates that the addition of 2ZnCO3·3Zn(OH)2, ZnCl2 or Zn(NO3)2·6H2O can inhibit the transformation of anatase to rutile, thus improve the desulfurization activity of the adsorbents. The effect of types of hydrogenated active components(Mo,Co,Ni) was investigated, the results shown that the desulfurization performances of Mo series adsorbents were higher than Co series and Ni series adsorbents, while the olefin saturation rates of Mo series adsorbents were higher than that of Co series and Ni series adsorbents, implying that the Mo series adsorbents will lead to a great loss of octane number for gasoline. The olefin saturation rate of Ni-Co series adsorbents was the lowest. The optimal composition for CoNZnO/ZrO2-TiO2was Co(wt%)=35%, ZnO(wt%)=15%, the adsorptive capacity and the olefin saturation rate of CoNZnO/ZrO2-TiO2 adsorbent were 1.245% and 27.20% separately.
     The muticycle fixed-bed tests show promise for adsorption desulfurization over the Ni/ZnO-based adsorbents.A two-step regeneration schemes are deemed to be appropriate to return the adsorbent to its original state.
     The thiophene RADS reaction mechanism was proposed and it was proved to be convenient and accurate. Firstly, S-M adsorbed thiophene in the model fuel is first decomposed on surface Ni of the adsorbent to form Ni3S2 while the C4 hydrocarbon portion of the molecule is released back into the process stream, followed by the reduction of Ni3S2 to form H2S in the presence of H2, and then H2S is rapidly stored in the adsorbent accompanied by the conversion of ZnO into ZnS. The above conclusion can provide practice experiences for the Localization of S-Zorb process adsorptive desulfurization adsorbent.
引文
[1]张景成,柳云骐,安高军等.吸附脱硫技术生产清洁油品[J].化学进展.2008,20(11):1834-1845
    [2]张丽,李春虎,候影飞等.吸附法车用燃料油脱硫技术进展[J].精细石油化工进展.2007,8(8):51-55
    [3]冯丽娟,高晶晶,王振永等.柴油吸附脱硫技术研究进展[J].精细石油化工进展.2006,7(6):46-50
    [4]Ma X L, Sun L, Song C S. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications [J]. Catalysis Today.2002,77(1-2):107-116
    [5]祖德光.催化裂化汽油脱硫降烯烃技术的选择[J].炼油技术与工程.2005,35(9):10-13
    [6]姚海军,罗俊平,侯东等.燃料油脱硫技术进展及发展趋势[J].精细石油化工.2009,26(4):77-81
    [7]王林学.改性活性半焦选择性吸附汽油脱硫的研究[D].山东:中国海洋大学,2009
    [8]邢金仙,刘晨光.催化裂化汽油中硫和族组成及硫化物类型的馏分分布[J].炼油技术与工程.2003,33(6):6-9
    [9]杨永坛,杨海鹰,宗保宁等.催化裂化汽油中硫化物的气相色谱-原子发射光谱分析方法及应用[J].分析化学.2003,31(10):1153-1158
    [10]Babich I V, Moulijn J A. Science and technology of novel process for deep desulfurization of oil refinery streams:a review[J]. Fuel.2003,82:607-631.
    [11]Shafi R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes:an overview[J]. Catalysis Today.2000,59:423-442
    [12]Shih S S, Owens P J, Palit S, et al. Mobil'S OCTGain process:FCC gasoline desulfurization reaches a new performance level [A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,1999. AM-99-30
    [13]钱伯章.生产清洁汽柴油燃料脱硫工艺的进展[J].天然气与石油,2002,20(3):28-31
    [14]Salazar J A, Martines N P, Perez J A. The ISALTM Process:A Refiner's Option To Meet Rfg Specifications [A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,1998. AM-98-50
    [15]Kaufmann T G, Caldor A, Stuntz G F, et al. Catalysis science and technology for cleaner transportation fuels[J]. Catalysis Today.2000,62:77-90
    [16]冯钰,高金森,徐春明.清洁汽油生产技术现状及发展趋势[J].石化科技,2002,9(4):238-242
    [17]Nocca J L, Cosyns J, Debuisschert Q, et al. The domino interaction of refinery processes for gasoline quality attainment[A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical&Refiners Association,2000. AM-00-61
    [18]张志雄,葛培珠.催化汽油选择性加氢技术综述[J].山东化工,2011,40(2):27-32
    [19]李明丰,夏国富,褚阳.催化裂化汽油选择性加氢脱硫催化齐?RSDS-I的开发[J].石油炼制与化工.2003,34(7):1-4
    [20]朱渝,王一冠,陈巨星等.催化裂化汽油选择性加氢脱硫技术(RSDS)工业应用试验[J].石油炼制与化工,2005,36(12):6-10
    [21]赵乐平,方向晨,王艳涛等.催化裂化汽油选择性深度加氢脱硫技术OCT-MD的开发Ⅲ[J].炼油技术与工程.2008,38(7):3-5
    [22]Tech C D. Ultra-low sulfur gasoline via catalytic distillation[J]. Hydrocarbon Process. 2000,79(11):122-123
    [23]Rock K L. Ultra-low sulfur gasoline via catalytic distillation[A]. In:Proceedings of the Fifth International Conference on Refinery Processing, AIChE 2002 Spring National Meeting, New Orleans:L A,2002,200-205
    [24]Huff J, George A, Alexander B D, et al. Sulfur Removal Process[P]. US:6048451,2000
    [25]刘植昌,胡建茹,高金森.离子液体用于催化裂化汽油烷基化脱硫的实验室研究[J].石油炼制与化工.2006,37(10):22-25
    [26]黄蔚霞.离子液体对催化裂化汽油脱硫降烯烃的催化性能研究[D].北京:石油化工科学研究院,2004
    [27]祝文书,罗国华,徐新等.催化精馏用于噻吩硫化物烷基化脱硫的研究[J].化学反应工程与工艺.2004,20(2):139-133
    [28]Huang C P, Chen B H, Zhang J, et al. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy & Fuel.2004,18(6):1862-1864
    [29]Maple R E, Wizig H W. Removal of sulfur from light FCC gasoline [A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,2000. AM-00-54
    [30]刘翠微,聂鑫,周建峰等.催化裂化汽油氧化脱硫的研究[J].高等学校化学学报.2006,27(1):144-146
    [31]Bombote P, Dias A P. Hydrophobic, highly conductive ambient temperature molten salts [J]. Inorganic Chemistry.1996,35:1168-1178
    [32]Rogers R D, Seddon K R. Ionic liquids-Solvents of the future[J]. Science.2003,302: 792-793
    [33]Fadeev A G, Meagher M M. Opportunities for ionic liquids in recovery of biofuels[J]. Chemical Communications.2001:295-296
    [34]Gore W. Method of Desulfurization of Hydrocarbons [P]. US:6160193,2000
    [35]Gore W. Method of Desulfurization of Hydrocarbons[P]. US:6274785,2001
    [36]Stanciulescu M, Ikura M. Method for the Production of Hydrocarbon Fuels with Ultra-low Sulfur Content [P]. US:0075483,2003
    [37]Rappas A S, Nero V P, Decanio S J. Process for Removing Low Amounts of Organic Sulfur from Hydrocarbon Fuels[P]. WO:02/18518,2003
    [38]Rappas A S, Nero V P, Decanio S J. Process for Removing Low Amounts of Organic Sulfur from Hydrocarbon Fuels[P]. US:6406616,2002
    [39]Rappas A S. Process for Removing Low Amounts of Organic Sulfur from Hydrocarbon fuels[P]. US:6402940,2002
    [40]Brandvold T A, Kocal J A. Removal of Sulfur-containing Compounds from Liquid Hydrocarbon Streams[P]. WO:03/074633,2003
    [41]Kocal J A, Brandvold T A. Removal of Sulfur-containing Compounds from Liquid Hydrocarbon Streams[P]. US:6368495,2002
    [42]Luis C C, Emiliano H, Francisco P, et al. Oxidative desulfurization of synthetic diesel using supported catalysts PartⅠ. Study of the operation conditions with a vanadium oxide based catalyst[J]. Catalysis Today.2005,107-108:564-569
    [43]单玉华,邬国英,李为民等.氧化法精制汽油或柴油的方法[P].CN:1302844A,2001
    [44]宋丽芝,吕志辉,王海波等.馏分油氧化脱硫催化剂及其制备[P].CN:1458228A,2003
    [45]陆善祥,余国贤,陈辉等.石油馏分油催化氧化脱硫法[P].CN:1563284 A,2005
    [46]Kong L Y, Li G, Wang X S. Mild oxidation of thiophene over TS-1/H2O2[J]. Catalysis Today.2004,93-95:341-345
    [47]毕贵芹,亓玉台,沈健等.氧化法生产超低硫汽油[J].炼油技术与工程.2004,34(6):19-21
    [48]张艳维,沈健,袁兴东等.Ti3(PW12040)4催化氧化吸附脱硫的研究[J].石油炼制与化工.2005,36(3):20-23
    [49]李钢,赵月峰,刘斌等.钛硅分子筛/H202体系催化汽油氧化脱硫[J].大连理工大学学报.2008,3(48):313-317
    [50]姬乔娜,张伟,余谟鑫等.S042-/Zr02型固体超强酸改性及其催化氧化脱除噻吩类硫化物[J].功能材料.2009,11(40):1933-1937
    [51]乐哲廷.吸附法脱除油品硫的研究[D].上海:华东理工大学,2011
    [52]Amos A, Mark C. SulphCo-desulfurization via selective oxidation pilot plant results and commercialization plans[A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,2000. AM-01-55
    [53]Mei H, Mei B W, Yen T F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization[J]. Fuel.2003,82 (4):405-414
    [54]韩雪松,赵德智,戴咏川等.超声波作用下柴油深度氧化脱硫的研究[J].石油炼制与化工.2006,37(2):30-33
    [55]Yasuhiro S, Takayuki H, Isao K. A deep desulfurization process for light oil by photochemical reaction in an organic two-phase liquid-liquid extraction system [J]. Industrial & Engineering Chemistry Research.1998,37:203-211
    [56]赵地顺,刘翠微,马四国.FCC汽油光催化氧化脱硫的实验室研究[J].石油炼制与化工.2006,37(6):23-26
    [57]王文波,石生敏,汪树军等.汽油的电化学-化学氧化耦合法脱硫[J].石油学报(石油加工).2005,21(5):41-47
    [58]Liu W Y, Lei Z L, Wang J K. Kinetics and mechanism of plasma oxidative desulfurization in liquid phase[J]. Energy & Fuels.2001,15(1):38-43
    [59]Vazquez-Duhalt R, Torres E, Valderrama B, et al. Will biochemical catalysis impact the petroleum refining industry [J]. Energy & Fuels.2002,16:1239-1250
    [60]Monticello D J. Biodesulfurization and the upgrading of petroleum distillates [J]. Current Opinion in Biotechnology.2000,11:540-546
    [61]Bauer L N. Separation and concentration of sulfur-containing compounds based on complexation[M]. Probl Khim Nefti,1992,34-39
    [62]Broettel F G. New routes for diesel desulfurization[J]. Chemical Engineering.2001, 108(8):15-18
    [63]Doug C, Steven B. Desulfurization by selective oxidation and extraction of sulfur-containing compound to economically achieve ultra-low proposed diesel fuel sulfur requirments[A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,2000. AM-00-25
    [64]Zhao X J, Krishnaiah G, Novak K R. What will Gasoline Sulfur Compliance Cost You?-Brane Membrane Technology Economic Analysis [A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,2005. AM-05-06
    [65]Weitkamp J, Schwark M, Ernest S. Removal of thiophene impurities from benzene by selective adsorption in zeolite ZSM-5[J]. Journal of the Chemical Society, Chemical Communications.1991:1133-1134
    [66]Chica A, Strohmaier K, Iglesia E. Adsorption, desorption and conversion of thiophene on H-ZSM5[J]. Langmuir.2004,20(25):10982-10991
    [67]Salem A S H. Naphtha desulfurization by adsorption[J]. Industrial & Engineering Chemistry Research.1994,33(2):336-340
    [68]Wes W C, Quigley H D, Yamamoto P A. Infrared spectroscopy and temperature-programmed desorption study of adsorbed thiophene on γ-Al2O3[J]. Langmuir.1996, 12(6):1500-1510
    [69]Richardeau D, Joly G, Canaff C, et al. Adsorption and reaction over HFAU zeolites of thiophene in liquid hydrocarbon solutions[J]. Applied Catalysis A.2004,263(1):49-61
    [70]Jiang Z X, Liu Y, Sun X P, et al. Adsorption of dibenzothiophene on modified activated carbons for ultra-deep desulfurization of fuel oils[J]. Chinese Journal of Catalysis.2003, 24(9):649-650
    [71]Jiang Z, Liu Y, Sun X, et al. Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils[J]. Langmuir.2003,19(7):731-736
    [72]Kim J H, Ma X, Zhou A, et al. Utral-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:a study on adsorptive selectivity and mechanism[J]. Catalysis Today.2006,111(1/2):74-83
    [73]Zhou A, Ma X, Song C. Liquid-phase adsorption of multi-ring thiophenic sulfur compounds on carbon materials with different surface properties[J]. The Journal of Physical Chemistry B.2006,110:4699-4707
    [74]Tian F P, Jiang Z X, Liang C H, et al. Deep desulfurization of gasoline by adsorption on mesoporous MCM-41[J]. Chinese Journal of Catalysis.2005,26(8):628-630
    [75]Haji S, Erkey C. Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications [J]. Industrial & Engineering Chemistry Research.2003,42(26):6933-6937
    [76]IrvineR L, Benson B A, Frye R A. IRVADTM Process-low Cost Break through for Low Sulfur Gasoline[A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,1999. AM-99-42
    [77]张晓静,秦如意,刘金龙.FCC汽油吸附脱硫工艺技术-LADS工艺[J].天然气与石油.2003,21(1):39-41
    [78]秦如意,张晓静,刘金龙.FCC汽油吸附脱硫工艺的研究[J].石油炼制与化工.2003,34(3):24-28
    [79]Yang R T, Takahashi A, Yang F H. New sorbents for desulfurization of liquid fuels by π-complexation[J]. Industrial & Engineering Chemistry Research.2001,40(26): 6236-6239
    [80]Yang R T, Hernandez-Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science.2003,301(5629):79-81
    [81]Hernandez-Maldonado A J, Yang R T. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(Ⅰ)-Y Zeolites[J]. Journal of the American Chemical Society.2004,126:992-993
    [82]Takahashi A, Yang F H, Yang R T. New Sorbents for desulfurization by π-complexation: thiophene/benzene adsorption[J]. Industrial & Engineering Chemistry Research.2002, 41(10):2487-2496
    [83]Hernandez-Maldonado A J, Yang R T. Desulfurization of commercial jet fuels by Aadsorption via π-complexation with vapor phase ion exchanged Cu(Ⅰ)-Y zeolites[J]. Industrial & Engineering Chemistry Research.2004,43(19):6142-6149
    [84]Hernandez-Maldonado A J, Yang R T. New sorbents for desulfurization of diesel fuels via π-complexation[J]. AIChE Journal.2004,50(4):791-801
    [85]Hernandez-Maldonado A J, Stamatis S D, Yang R T, et al. New sorbents for desulfurization of diesel fuels via π-complexation:layered beds and regeneration[J]. Industrial & Engineering Chemistry Research.2004,43(3):769-776
    [86]Wang Y H, Yang R T, Heinzel J M. Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials[J]. Chemical Engineering Science,2008,63(2):356-365
    [87]Yang L M, Wang Y J, Huang D, et al. Preparation of high performance adsorbents by functionalizing mesostructured silica spheres for selective adsorption of organosulfur compounds[J]. Industrial & Engineering Chemistry Research.2007,46 (2):579-583
    [88]Meng C M, Fang Y M, Jin L J, et al. Deep desulfurization of model gasoline by selective adsorption on Ag+/Al-MSU-S[J]. Catalysis Today.2010,149(1-2):138-142
    [89]He G S, Sun L B, Song X L, et al. Adjusting host properties to promote cuprous chloride dispersion and adsorptive desulfurization sites formation on SBA-15[J]. Energy & Fuels. 2011,25 (8):3506-3513
    [90]Shan J H, Chen L, Sun L B, Liu X Q. Adsorptive removal of thiophene by Cu-modified mesoporous silica MCM-48 derived from direct synthesis[J]. Energy & Fuels.2011,25 (7):3093-3099
    [91]Tian W H, Sun L B, Song X L, et al. Adsorptive desulfurization by copper species within confined space[J]. Langmuir.2010,26 (22):17398-17404
    [92]陈晓陆,孙兆林,王洪国等.基于分子模拟技术的Cu(Ⅰ)Y分子筛对硫化物及烯烃选择性吸附行为的分析[J].石油学报(石油加工).2010,26(1):82-86
    [93]Velu S, Ma X L, Song C S. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents [J]. Industrial & Engineering Chemistry Research.2003,42(21): 5293-5304
    [94]Velu S, Ma X L, Song C S. Zeolite-based adsorbents for desulfurization of jet fuel by selective adsorption [J]. Fuel Chemistry Division Preprints.2002,47(2):447-448
    [95]Ma X L, Velu S, Kim J H, Song C S. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications [J]. Applied Catalysis B:Environmental.2005, 56(1-2):137-147
    [96]Ma X L, Sprague M, Song C S. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications[J]. Industrial & Engineering Chemistry Research.2005,44(15):5768-5775
    [97]Sentorun-Shalaby C, Saha S K, Ma X L, Song C S. Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-surfur diesel fuel[J]. Applied Catalysis B:Environmental.2011,101(3-4):718-726
    [98]Tang H, Li Q, Song Z Y, et al. Enhancement of desulfurization performance of nickel-based adsorbents by hydrogen reduction pretreatment[J]. Catalysis Communications.2011,12(12):1079-1083
    [99]Li W L, Tang H, Zhang T, Li Q, Xing J M, Liu H Z. Ultra-deep desulfurization adsorbents for hydrotreated diesel with magnetic mesoporous aluminosilicates[J]. AIChE Journal.2010,56(5):1391-1396
    [100]Yang X X, Erickson L E, Hohn K L. Sol-gel Cu-Al2O3 adsorbents for selective adsorption of thiophene out of hydrocarbon[J]. Industrial & Engineering Chemistry Research.2006,45(18):6169-6174
    [101]田福平,吴维成,蒋宗轩,杨永兴,蔡天锡,李灿.FCC汽油中含硫化合物在Ce交换的Y型分子筛上的吸附[J].催化学报.2005,26(9):734-736
    [102]唐克,宋丽娟,段林海等.杂原子Y分子筛的二次合成及其吸附脱硫性能[J].物理化学学报.2006,22(9):1116-1120
    [103]唐克,宋丽娟,段林海等.杂原子Y分子筛的二次合成及其吸附脱硫性能(Ⅱ)[J].燃料化学学报.2007,35(5):624-627
    [104]Tang K, Song L J, Duan L H, et al. Deep desulfurization by selective adsorption on a heteroatoms zeolite prepared by secondary synthesis[J]. Fuel Processing Technology. 2008,89(1):1-6
    [105]Zhang J C, Song L F, Hu J Y, et al. Investigation on gasoline deep desulfurization for fuel cell applications[J]. Energy Conversion & Management.2005,46(1):1-9
    [106]Liu D, Gui J Z, Song L. A density functional study of the chemsorptions of thiophene on Cu(I)Y zeolite[J]. Fuel Chemistry Division Preprints.2006,51(1):234-235
    [107]Liu D, Song L, Gui J Z, et al. Adsorption structures of heterocyclic sulfur compounds on Cu(I)Y zeolite:a first principle study[J]. Studies in Surface Science and Catalysis. 2007,170:1699-1704
    [108]王洪国,姜恒,徐静等.苯和1-辛烯对Ce(Ⅳ)Y分子筛选择性吸附脱硫的影响[J].物理化学学报.2008,24(9):1714-1718
    [109]Wang H G, Song L J, Jiang H, et al. Effects of olefin on adsorptive desulfurization of gasoline over Ce(IV)Y zeolites[J]. Fuel Processing Technology.2009,90(6):835-838
    [110]张晓彤,徐静,宋丽娟等.烯烃对CeY分子筛脱硫效果影响的红外光谱研究[J].燃 料化学学报.2010,38(1):91-95
    [111]刘道胜,宋丽娟,鞠秀芳等.噻吩在NiY上吸附与脱附行为的研究[J].石油化工高等学校学报.2010,23(2):21-24
    [112]Tang X L, Qian W, Hu A, et al. Adsorption of thiophene on Pt/Ag-supported activated carbons prepared by ultrasonic-assisted impregnation[J]. Industrial & Engineering Chemistry Research.2011,50(15):9363-9367
    [113]Tang X L, Shi L. Study of the adsorption reactions of thiophene on Cu(Ⅰ)/HY-Al2O3 by Fourier Transform Infrared and Temperature-Programmed Desorption:adsorption, desorption, and sorbent regeneration mechanisms[J]. Langmuir.2011,27(19): 11999-12007
    [114]Tucker C, Sughrue E, Vanderlaan J. Production of Ultra-low Sulfur Fuel:Today and Tomorrow[A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,2003. AM-03-48
    [115]Jun H K, Lee T J, Kim J G. Role of iron oxide in the promotion of Zn-Ti-based desulfurization sorbents during regeneration at middle temperatures[J]. Industrial & Engineering Chemistry Research.2002,41:4733-4738
    [116]Slimane R B, Abbasian J. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization [J]. Fuel Processing Technology.2001,70:97-113
    [117]Tawara K, Nishimura T, Iwanami H. Ultra-deep hydrodesulfurization of kerosene for fuel cell system(Part 1) evaluations of conventional catalysts[J]. Sekiyu Gekkaishi.2000, 43(2):105-113
    [118]Tawara K, Nishimura T, Iwanami H. Ultra-deep hydrodesulfurization of kerosene for fuel cell system(Part 2) regeneration of sulfurpoisoned nickel catalyst in hydrogen and finding of auto-regenerative nickel catalyst[J]. Sekiyu Gakkaishi.2000,43(2):114-120
    [119]Tawara K, Nishimura T, Iwanami H, et al. Ultra-deep hydrodesulfurization of kerosene for fuel cell system(Part 3) development and evaluation of Ni/ZnO catalyst[J]. Sekiyu Glkkaishi.2001,44(1):43-51
    [120]Tawara K, Nishimura T, Iwanami H, et al. New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations[J]. Industrial & Engineering Chemistry Research.2001,40:2367-2370
    [121]Bezverkhyy I, Ryzhikov A, Gadacz G, Bellat J P. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO[J]. Catalysis Today.2008,130:199-205
    [122]Bezverkhyy I, Safonova O V, Afanasiev P, et al. Reaction between thiophene and Ni nanoparticles supported on SiO2 or ZnO:In situ synchrotron x-ray diffraction study [J]. The Journal of Physical Chemistry C.2009,113:17064-17069
    [123]Gupta R P, Gangwal S K, Jain S C. Zinc titanate sorbents[P]. US:5714431,1998
    [124]Greenwood G J. Next generation sulfur removal technology [A]. NPRA Annual Meeting[C]. San Anonio:National Petrochemical & Refiners Association,2000. AM-00-12.
    [125]Khare G P. Process for the production of a sulfur sorbent[P]. US:6184176,2001
    [126]Khare G P. Sorbent compositions[P]. US:5958830,1999
    [127]Cryanesh K. Sorbent composition, process for producing and use in desulfurization [P]. WO:0114051,2001
    [128]谷涛,慕旭宏,陈西波.吸附脱硫技术在清洁汽油生产中的研究与应用进展[J].化工进展.2005,24(1):90-95
    [129]李鹏,张英.中国石化清洁汽油生产技术的开发和应用[J].炼油技术与工程.2010,40(12):11-15
    [130]宗保宁,林海龙,盂祥堃等.一种汽油吸附脱硫方法[P].CN:1407604,2003
    [131]曾小军,张晓昕,宗保宁.激冷镍基合金脱硫吸附剂的研究[J].石油炼制与化工2006,37(1):17-21
    [132]谷涛,慕旭宏,宗保宁.磁稳定床中镍基非晶态合金汽油吸附脱硫研究[J].石油学报(石油加工).2007,23(1):8-14
    [133]江雨生,盂祥堃,张晓昕等.用镍系非晶态合金脱除苯中硫的研究[J].石油化工.2004,33(2):122-125
    [134]谢福中,胡华荣,乔明华等.噻吩在猝冷骨架Ni上吸附脱硫的XPS研究[J].高等学校化学学报.2006,27(9):1729-1732
    [135]刘金香.固体催化剂的研究方法[J].石油化工.2000,29(6):378-391
    [136]辛勤.固体催化剂研究方法(上册)[M].北京:科学出版社,2004:105-110
    [137]刘希尧.工业催化剂分析测定表征[M].北京:中国石化出版社,1993:305-306
    [138]Ward J W. The nature of active sites on zeolites:X. The acidity and catalytic activity of X zeolites[J]. Journal of Catalysis.1969,14:365-378
    [139]Engelhard T G, Lohse U, Samoson A, et al. High resolution 29Si n.m.r. of dealuminated and ultrastable Y-zeolites[J]. Zeolites.1982,2:59-62
    [140]赵洪石,何文,罗守全等.硅藻土应用及研究进展[J].山东轻工业学院学报(自然科学版).2007,21(1):80-82
    [141]Yuan P, He H P, Wu D Q, et al. Characterization of diatomaceous silica by Raman spectroscopy[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy. 2001,21(9):783-786
    [142]王少锋,刘金龙,张建民等.吸附剂酸性对催化裂化汽油吸附脱硫的影响[J].石油炼制与化工.2006,37(9):19-22
    [143]Wormsbecher R F, KIM G. Sulfur reduction in FCC gasoline[P]. US:005376608A,
    [144]Larrubia M A, Ramirez J, Busca G A. A FT-IR study of the adsorption of indole, carbazole, benzothiophene, dibenzothiophene and 4,6-dibenzothiophene over solid adsorbents and catalysts [J]. Applied Catalysis A:General.2002,224(1):167-178
    [145]李荣勇,胡常伟,杨争等.用热分析方法研究制备Ni/A1203催化剂过程中的热分解过程[J].四川大学学报(自然科学版).1997,34(6):813-817
    [146]Ryzhikov A, Bezverkhyy I, Bellat J. Reactive adsorption of thiophene on Ni/ZnO:Role of hydrogen pretreatment and nature of the rate determining step[J]. Applied Catalysis B: Environmental.2008,84:766-772
    [147]Wang S, Lu G Q, Millar G J. Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts:State of the Art[J]. Energy & Fuels.1996, 10:896-904
    [148]Alvarez R, Toffolo A, Perez V, et al. Synthesis and characterization of CoMo/Zn-Al mixed oxide catalysts for hydrodesulphuration of thiophene[J]. Catalysis Letter. 2010,137:150-155
    [149]Karthikeyan D, Lingappan N, Sivasankar B. Hydroisomerization of n-octane over bifunctional Ni-Pd/HY zeolite catalysts[J]. Industrial & Engineering Chemistry Research. 2004,43:6538-6546
    [150]Wen X Y, Li C T, Fan X P, et al. Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3. Energy & Fuels.2011,25:2939-2944
    [151]Sanchez J M, Ruiz E, Otero J. Selective removal of hydrogen sulfide from gaseous streams using a zinc-based sorbent[J]. Industrial & Engineering Chemistry Research. 2005,44:241-249
    [152]King D L, Faz C, Flynn T. Desulfurization of gasoline feedstocks for application in fuel reforming[J]. Society of Automotive Engineers.2000,40(26):6236-6239
    [153]Salem A B S H, Hamid H S. Removal of sulfur compounds from naphtha solutions using solid adsorbents [J]. Chemical Engineering & Technology.1997,20(5):342-344
    [154]罗国华,徐新,佟泽民等.沸石分子筛选择吸附焦化苯中的噻吩[J].燃烧化学学报.1999,27(5):476-480
    [155]Marathon Oil Corporation. Removal of sulfur from a hydrocarbon stream by low severity adsorption[P]. WO:98/51762,1999
    [156]舒玉瑛,马丁,徐龙伢等.不同环大小分子筛对钼基分子筛催化剂上甲烷无氧芳构化反应的影响[J].催化学报.2002,23(1):24-28
    [157]王淑娟,陶克毅.不同类型分子筛对甲缩醛的催化性能[J].吉林大学学报(理学版).2002,40(3):320-323
    [158]孙秀良,黄崇品,张榤等.Beta分子筛中A1的分布和Brφnsted酸的酸性强度[J].物理化学学报.2009,25(6):1136-1142
    [159]宋月芹,刘锋,康承琳等.不同分子筛负载Pt催化剂上的正己烷异构化[J].石油学报(石油加工).2009,25(3):344-350
    [160]刘中清,王一萌,傅军等.静态水热晶化法高效合成MCM-22分子筛[J].催化学报.2002,23(5):439-422
    [161]王幸宜.催化剂表征[M].上海:华东理工大学出版社,2008:23-27
    [162]卢国庆.高性能活性白土的制备工艺及其机理研究[D].广西:广西大学,2009
    [163]Binitha N N, Sugunan S. P-Cymene preparation over modified montmorillonite clays [J]. Catalysis Communications.2007,8(11):1793-1797
    [164]Centi G, Perathoner S. Catalysis by layered materials:A review[J]. Microporous and Mesoporous Materials.2008,107(1-2):3-15
    [165]Wivela C, Clausenb S B, Candiab R, et al. Mossbauer Emission Studios of Calcined Co-Mo/Al2O3 Catalysts:Catalytic Signiticance of Co Precursors [J]. Journal of Catalysis. 1984,87(2):497-513
    [166]Shinichi I, Akihiro M, Hlidehiko K, et al. Preparation of novel titania support by applying the multi-gelat method for ultra-deep HDS of diesel oil[J]. Applied Catalysis A: General.2004,269(1-2):7-12
    [167]Afanasiev P, Geantet C, Breyysse M. Preparation of high surface area Mo/ZrO2 catalysts by a molten salt method:application to hydrodesulfurization[J]. Journal of Catalysis.1995,153(1):17-24
    [168]Chuah G K. An Investigation into the Preparation of High Surface Area Zirconia[J]. Catalysis Today.1999,49(1-3):131-139
    [169]Naoyuki K, Kihyouk C, Yozo K, et al. Optimization of silica content in alumina-silica support for NiMo sulfide to achieve deep desulfurization of gas oil. Applied Catalysis A: General.2004,273(1-2):287-294
    [170]Murali D G, Massoth F E, Shabtai J. Catalytic functionalities of supported sulfides: I. Effect of support and additives on the CoMo catalyst[J]. Journal of Catalysis.1984, 85(1):44-52
    [171]张登前,段爱军,赵震等NiMo/ZrO2-Al2O3柴油深度加氢脱硫催化剂的研究[J].工业催化.2008,16(10):117-120
    [172]Zhang D Q, Duan A J, Zhao Z, et al. Preparation, characterization and hydrotreating performances of ZrO2-Al2O3-supported NiMo catalysts[J]. Catalysis Today.2010, 149(1-2):62-68
    [173]Damyanova S, Petrov L, Centeno M A, et al. Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2-Al2O3 and ZrO2-SiO2 carriers[J]. Applied Catalysis A:General.2002,224(1-2):271-284
    [174]Li G R, Li W, Zhang M H. Morphology and hydrodesulfurization activity of CoMo sulfide supported on amorphous ZrO2 nanoparticles combined with Al2O3[J]. Applied Catalysis A:General.2004,273(1-2):233-238
    [175]周亚松,范小虎,张绍金等.以Ti02-SiO2为载体的催化剂加氢脱硫性能研究[J].复旦学报(自然科学版).2003,42(3):387-391
    [176]Weissman J G, Ko E I, Kaytal S. Titania-Zirconia mixed oxide aerogels as supports for hydrotreating catalysts[J]. Applied Catalysis A:General.1993,94(1):45-59
    [177]徐广通,刁玉霞,邹亢等S Zorb装置汽油脱硫过程中吸附剂失活原因分析[J].石油炼制与化工.2011,42(12):1-6
    [178]Ho S C, Chou T C. The role of anion in the preparation of nickel catalyst detected by TPR and FTIR spectra[J]. Industrial & Engineering Chemistry Research.1995,34 (7): 2279-2284
    [179]Klimova T, Calderon M, Ramirez J. Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization[J]. Applied Catalysis A:General.2003,240:29-40
    [180]Li C P, Chen Y W. Temperature-programmed-reduction studies of nickel oxide/alumina catalysts:effects of the preparation method[J]. Thermochimica Acta.1995,256(2): 457-465
    [181]张因,杨燕萍,潘丽等.载体对负载镍催化剂顺酐加氢性能的影响[A].第七届全国催化剂制备科学与技术研讨会论文集[C].太原:中国化学会,2009.247-250
    [182]Subramanian V, Ni Z, Seebauer E G, et al. Synthesis of high-temperature titania-alumina supports[J]. Industrial & Engineering Chemistry Research.2006,45: 3815-3820
    [183]王明哲,阮宇军.催化裂化汽油吸附脱硫反应工艺条件的探讨[J].炼油技术与工程.2010,40(9):5-10
    [184]Li P, Liu J, Nag N, et al. In situ synthesis and characterization of Ru promoted CO/Al2O3 Fischer-Tropsch catalysts[J]. Applied Catalysis A:General.2006,307(2): 212-221
    [185]Glesia E, Soled S L, Fiato R A, et al. Bimetallic synergy in cobalt-ruthenium Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis.1993,143(2):345-368
    [186]梅长松,钟顺和.负载金属对M003-TiO2光催化剂结构与催化性能的影响[J].燃料化学学报.2005,33(2):229-234
    [187]Borowieecki T, Giecko G, Panczyk M. Effect of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons[J]. Applied Catalysis A:General.2002,230(1):85-97
    [188]Khare G P. Desulfurization process and novel bimetallic sorbent systems for same[P]. US:6274533,2001
    [189]Hernandez-Maldonado A J, Yang R T. Desulfurization of Liquid Fuels by Adsorption via π Complexation with Cu(I)-Y and Ag-Y Zeolites[J]. Industrial & Engineering Chemistry Research.2003,42:123-129
    [190]Sanchez J M, Ruiz E, Otero J. Selective Removal of Hydrogen Sulfide from Gaseous Streams Using a Zinc-Based Sorbent[J]. Industrial & Engineering Chemistry Research. 2005,44:241-249
    [191]王文寿,郭洪臣,刘海鸥等.NiO或NiSO4改性的纳米HZSM-5催化剂的加氢脱硫活性[J].催化学报.2008,29(8):705-709
    [192]王文寿.FCC汽油中硫化物在改性纳米HZSM-5催化剂上的脱除[D].辽宁:大连理工大学,2009
    [193]Layman K A, Bussell M. E. Infrared Spectroscopic Investigation of thiophene adsorption on silica-supported nickel phosphide catalysis [J]. The Journal of Physical Chemistry B.2004,108:15791-15802
    [194]Rodriguez J A, Dvorak J, Capitano A T, et al. Adsorption of thiophene on surfaces of clean and Ni-promoted molybdenum sulfide[J]. Surface Science.1999,429:462-468
    [195]Khan N A, Hwu H H, Chen J G. Low-temperature hydrodesulfurization of thiophene on Ni/Pt(111) bimetallic surfaces with monolayer Ni coverage[J]. Journal of Catalysis.2002, 205:259-265
    [196]Wu Z L, Hao Z X, Ying P L, et al. An IR study on selective hydrogenation of 1,3-butadiene on transition metal nitrides:1,3-butadiene and 1-butene adsorption on Mo2N/γ-Al2O3 catalyst. The Journal of Physical Chemistry B.2000,104:12275-12281
    [197]Oyama S T, Gott T, Asakura K, et al. In situ FTIR and XANES studies of thiophene hydrodesulfurization on Ni2P/MCM-41[J]. Journal of Catalysis.2009,268:209-222
    [198]Mills P, Korlann S, Bussell M E. Vibrational study of organometallic complexes with thiophene ligands:models for adsorbed thiophene on hydrodesulfurization catalysts[J]. The Journal of Physical Chemistry A.2001,105:4418-4429
    [199]Wu Z L, Wei Z B, Xin Q, et al. FT-IR spectroscopic studies of thiophene adsorption and reactions on MO2N/γ-Al2O3 catalysts. The Journal of Physical Chemistry B.2002,106: 979-987
    [200]Zhang J C, Liu Y Q, Tian S, et al. Reactive adsorption of thiophene on Ni/ZnO adsorbent:Effect of ZnO textural structure on the desulfurization activity [J] Journal of Gas Chemistry,2010,19(3):327-332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700