高钛矿渣作为水工混凝土掺和料及骨料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西南地区钒钛矿产资源丰富。随着冶金工业的发展,作为工业副产品的高钛矿渣排放量急剧增加,不仅占用大量土地资源,而且一旦其中含有的有害物质渗入地下,会对土壤、地下水、地表水及地表生物造成严重的危害。随着人们环保意识的增强,废物资源化利用已被国际公认为保护环境、节能减排的新途径。因此,寻找利用高钛矿渣的途径意义重大。
     论文对高钛矿渣的化学成分、矿物组成以及物理性能进行了系统的分析。结果表明,高钛矿渣中CaO、SiO_2含量较少,仅为50%左右,而TiO_2含量高,大于20%,属低钙高钛矿渣。主要矿物组成为钛辉石、钙钛矿、巴依石、尖晶石,这类矿物在水介质条件下溶解能力和解体能力低,在高钛矿渣中呈现明显的结晶特性,有大量的晶体析出、长大。随着高钛矿渣掺量的增加,掺高钛矿渣的水泥净浆用水量减少,凝结时间稍延长;高钛矿渣需水量比随比表面积的增加略有提高。高钛矿渣中无死烧相,经压蒸检验安定性合格。
     探讨了高钛矿渣比表面积以及掺量对复合胶凝体系胶砂强度的影响规律。结果表明,水泥—高钛矿渣复合胶凝体系的胶砂强度不高,始终低于不掺高钛矿渣的胶砂强度,且随着高钛矿渣掺量的增加,胶砂强度逐渐降低;高钛矿渣比表面积存在一个最佳值(约为400m~2/kg),小于这个值,水泥—高钛矿渣复合胶凝体系的胶砂强度随比表面积的增加而增大;超过此值,比表面积继续增加,强度反而有降低的趋势。高钛矿渣比表面积不是影响复合胶凝体系胶砂强度的主要因素。随着掺量的增大,比表面积对掺高钛矿渣复合胶凝体系的胶砂强度的影响逐渐减小。高钛矿渣的潜在水硬活性很低,作为水泥混凝土掺和料时,掺量不宜大于30%。掺入高钛矿渣,水泥基复合胶凝体系的胶砂强度发展趋势类似于掺II级粉煤灰,最终强度略低于掺II级粉煤灰;当掺和料掺量控制为30%时,II级粉煤灰与高钛矿渣复掺能产生一定的复合胶凝增强效应,有利于水泥基复合胶凝体系强度的提高,但II级粉煤灰的掺量不宜过大。
     借助扫描电镜分析(SEM)、X射线衍射分析(XRD)、热分析(TG-DSC)等微观测试方法,以及吸水动力学等方法,分析了不同细度、不同掺量下水泥—高钛矿渣复合胶凝体系的水化过程、水化产物及孔结构的发展趋势。试验结果表明,高钛矿渣的水化产物主要有C-S-H凝胶、Ca(OH)_2晶体,还有少量AFt晶体;高钛矿渣具有填充效应和微集料效应,适量掺入高钛矿渣可以增加水化体系的致密程度,但掺量过高时,会降低整个体系的水化程度。随着水化反应的进行,水化凝胶产物明显增多,逐渐将高钛矿渣晶体颗粒包裹,使硬化水泥石的强度能够正常发展。但由于高钛矿渣中活性成分较少,导致生成的C-S-H凝胶含量较少,致使不能形成致密的网状结构,使得最终强度仍很低。随着高钛矿渣掺量的增加,掺高钛矿渣的水泥净浆试件平均孔径参数逐渐增大,均匀性参数逐渐减小。
     通过机械粉磨和掺入NaOH、Ca(OH)_2、Na_2CO_3、Na_2SiO_3、CaSO_4、Na_2SO_4以及掺石膏等方式来激发高钛矿渣的活性。试验结果表明,高钛矿渣粉磨细度在400m~2/kg左右时,水化活性最高;继续增加粉磨细度,对强度贡献不大。掺入化学激发剂,对于提高高钛矿渣的水化活性整体效果不明显,水泥—高钛矿渣复合胶凝体系的早期强度略有改善,到90d龄期时,外掺激发剂体系的胶砂强度反而低于不掺激发剂体系的胶砂强度,这有可能与高钛矿渣的稳定性晶体结构有关,具体原因尚有待进一步研究确认。
     高钛矿渣作为骨料的混凝土性能试验结果表明,与灰岩骨料混凝土相比,高钛矿渣作为骨料的强度差别不大,但干缩值明显增加,自生体积变形呈膨胀状态,且膨胀量较大。
Resources of vanadium titano-magnetite are abundant in Southwest of China.With the development of metallurgical industry,the intensive increment in the amountof high titanium slag discharged as industrial byproduct, not only occupies a large ofland resources, but also endangers living beings in the soil, underground water,surface water and earth’s surface seriously in case that the harmful substancescontained in the high titanium slag might permeate into the ground. With theincreased awareness of environmental protection, taking full advantage of wastematerials has been recognized as a new approach to protect environment and conserveenergy. Therefore, it is significant to find new ways to exploit high titanium slag.
     It has comprehensively analyzed chemical components, mineral compositions andphysical properties of high titanium slag. Results indicate that, in terms of chemicalcomponents, high titanium slag contains relatively few content of CaO and SiO2, onlyapproximately 50%, and high content of TiO2, more than 20%. In terms of mineralcomposition, it mainly contains titanaugite, perovskite, spinel and basnite, which arenot only difficult to dissolve and disaggregate in the condition of aqueous medium,but also are of obvious crystal characteristics which are typical of a large number ofcrystal precipitations and growth. With increment in content of high titanium slagincorporated into cement paste increases, normal consistency of cement pastedecreases and setting time extends a little. Water demand ratio of high titanium slagincreases slightly with its specific surface area increases. It fails to find dead burningphase in the high titanium slag and its soundness is qualified by autoclave inspection.
     It investigates influence of specific surface area and content of high titanium slagon mortar strength of composite cementitious system. Results show, mortar strengthof composite cementitious system made with cement and high titanium slag is slowerthan that without high titanium slag. What’s more, mortar strength decreases with increment in content of high titanium slag. The optimum specific surface area of hightitanium slag is about 400m~2/kg, less than which mortar strength of compositecementitious system increases with fineness while beyond which mortar strength yettends to decrease. Influence degree of fineness on mortar strength is diminishedgradually with high titanium slag content increases, which indicates that specificsurface area is not the major influencing factor on mortar strength of compositecementitious system. Potential activity of high titanium slag is so slow that it is notadvisable that its content by mass of cement should not exceed 30% when it is used ascement or concrete additive. The development trendency of mortar strength ofcement-based cementitious materials with high titanium slag is similar to that withgrade II fly ash, yet its final strength is slightly lower than the latter. When givenadditive content is 30%, mixing with grade II fly ash and high titanium slag canproduce a certain enhancement effect so that it is favorable to improve mortar strengthof composite cementitious system.
     In virtue of various measurements including scanning electron microscope, x-raydiffraction, thermal analysis and water-absorpting dynamics, it reveals the fulldevelopment of hydration process,hydration products and pore structure ofcement-high titanium slag cementitious with age in terms of fineness and content ofhigh titanium slag. Test results can be concluded as follows: Hydration products ofcement-based cementitious doped with high titanium slag mainly include C-S-H gel,Ca(OH)2 crystal and few AFt crystal. High titanium slag particles possess fillingeffects and micro-aggregate effects so that incorporating appropriate content of hightitanium slag into cement paste could enhance compact degree of hydration systemyet excessive high titanium slag may reduce hydration degree as a whole. Amount ofhydration products increases obviously with age, which enwrap high titanium slagparticles gradually and favor the development of mortar strength. However, as a resultof few active ingredients in the high titanium slag, C-S-H gel contents produced arequite few, correspondingly it fails to form compacted network structure, which resultin low final strength. High titanium slag will enhance pore average diameterparameter and aggravate pores distribution irregularity.
     By mechanical grinding and adding chemical reagents such as NaOH, Ca(OH)_2,Na_2CO_3, Na_2SiO_3, CaSO_4, Na_2SO_4 and gypsum, it investigates activation of hightitanium slag. Results show that, among the given ground fineness, when specificsurface area is around 400 m~2/kg, hydration activity of high titanium slag ranks thehighest. It contributes little to mortar strength if continuing to increase groundfineness. Adding chemical reagents only improves early strength of cement-hightitanium slag cementitious slightly. At 90 days, mortar strength of compositecementitious system is lower than that without adding chemical reagents instead,which may be connected with stable crystal structure of high titanium slag. Furtherefforts are needed to confirm this point.
     It examines concrete performances made with high titanium slag as aggregate.Results indicate that, in terms of concrete strength, there is little difference betweenconcrete made with limestone aggregate and high titanium slag individually yetdrying shrinksge of the latter is obviously bigger, while its autogenous volumedeformation is relatively mocro expansive.
引文
[1]祝淑芳,鲁礼林.含钛高炉渣综合利用与钛组分析出技术的进展[J].矿业快报,2008,(3):9–11.
    [2]胡克俊,锡淦,姚娟等.我国高钛矿渣生产技术现状[J].世界有色金属,2007,(5):29–32.
    [3]胡克俊,锡淦,姚娟等.国内高钛矿渣科研及生产现状[J].稀有金属快报,2007,26(3):7–15.
    [4]周旭,李江龙,罗崇理.高钛高炉渣碎石用做混凝土骨料的研究[J].钢铁钒钛,2001,22(4):43–46,68.
    [5]陈泉源,柳欢欢.钢铁工业固体废弃物资源化途径[J].矿冶工程,2007,27(3):49–56.
    [6]陈剑雄,肖斐,崔洪涛等.钛矿渣综合利用的研究[J].新型建筑材料,2004(6):22–24.
    [7]李亚杰.建筑材料[M].北京:中国水利水电出版社,2001.
    [8]西德尼·明德斯,J·弗朗西斯·杨,戴维·达尔文著,吴科如,张雄,姚武等译.混凝土,化学工业出版社,2005.
    [9]袁润章.胶凝材料学[M].武汉:武汉工业大学出版社,2003.
    [10]陈益民,许仲梓等著.高性能水泥制备和应用的科学基础[M].北京:化学工业出版社,2008.
    [11]杨华全,李文伟.水工混凝土研究与应用[M].北京:中国水利水电出版社,2005.
    [12]李纪青,秘洁芳.劣质粉煤灰的改性激活及高强度粉煤灰砌块的研究[J].粉煤灰综合利用,2000,(2):34–36.
    [13]史才军,巴维尔·克利文科,黛拉·罗伊著,史才军,郑克仁编译,杨南如审校.碱—激发水泥和混凝土,化学工业出版社,2008.
    [14]刘世荣,肖金凯.贵州黄磷渣的成分特征[J].矿物学报,1997,17(3):330–336.
    [15]吴秀俊.电炉磷渣的矿相及性能[J].建材发展导向,1984,(4):5–15.
    [16]陈豪立.黄磷炉渣的综合利用途径[J].贵州化工,1999,(4):7–9.
    [17]刘冬梅,方坤河,吴凤燕.磷渣开发利用的研究[J].矿业快报,2005,(3):21–25.
    [18]王强,鲍立楠,阎培渝.转炉钢渣粉在水泥混凝土中应用的研究进展[J].混凝土,2009(2):53–56.
    [19]郭家林,赵俊学,黄敏.钢渣综合利用技术综述及建议[J].中国冶金,2009,19(2):35–38.
    [20]唐明述,袁美栖,韩苏芬等.钢渣中MgO、MnO、FeO的结晶状态与钢渣的体积稳定性[J].硅酸盐学报,1979,7 ( 1 ):35–46.
    [21]张同生,刘福田,王建伟.钢渣安定性与活性激发的研究进展[J].硅酸盐通报,2007,26(5):980–984.
    [22]何晓慧,谭英显,周云麟.全矿渣混凝土及其应用[A].高性能混凝土和矿物掺和料的研究与工程应用技术交流会论文集[C],2006.
    [23]王冬梅,何绮嗣,赵桂芹等.全矿渣混凝土的研究及应用前景[J].鞍山科技大学学报,2007,30(5).
    [24]黄双华,陈伟,孙金坤.高钛高炉渣在混凝土材料中的应用[J].新型建筑材料,2006(11):71–73.
    [25]罗松林,杨秀云,攀钢高钛矿渣碎石混凝土的试验及在工程中的应用[J].四川建筑,2005,9(25).
    [26] Martin Cyr,AndréCarles–Gibergues,Arezki agnit–Hamou.Titanium fume and ilmenitefines characterization for their use in cement–based materials[J].Cement and ConcreteResearch,2000,30(7):1097–1104.
    [27]肖裴.高钛矿渣混凝土性能的研究[D].重庆:重庆大学,2004.
    [28]敖进清.高钛型高炉渣微粉特性及其在高性能混凝土中的应用[D].武汉:武汉科技大学,2002.
    [29]杨合.含钛高炉渣再资源化的一个启发性观点[D].东北大学,博士论文,2005.
    [30]敖进清.磨细高钛矿渣水化特性研究[J].钢铁钒钛,2004,25(4):43–46.
    [31]余韵.粒化高炉钛矿渣制作矿渣微粉研究[J].攀枝花科技与信息,2007,32(1):9–13.
    [32]李彬,齐琳琳,隋智通.钛渣中TiO2作晶核剂对玻璃晶化的影响[J].中国有色金属学报,2000,10(1):117–119.
    [33]马俊伟,隋智通,陈炳辰,聂永丰.高钛矿渣中钙钛矿的浮选分离及其机理[J].中国有色金属学报,2002,12(1):171–177.
    [34]李玉海,娄太平,隋智通.含钛高炉渣中钛组分选择性富集及钙钛矿结晶行为[J].中国有色金属学报,2000,10(5):719–722.
    [35]刘荣进,陈平,汪漠等.钛矿渣粉对水泥砂浆性能的影响[J].水泥,2007(5):20–22.
    [36]周芝林,谭克锋,潘宝凤.利用攀钢钛矿渣生产混凝土空心砌块的试验研究[J],西南科技大学学报,2003,18(3):43–46.
    [37]谭克锋,周芝林.钛矿渣活性激发及用其生产墙体材料可行性[J].武汉理工大学学报,2004,26(7).
    [38]刘晓华,隋智通,盖国胜.高钛矿渣用于新型建筑材料[J].内蒙古科技大学学报,2007,26(4):373–374.
    [39]孔祥文,王丹,隋智通等.聚合物乳液改性含钛高炉渣免烧砖[J].过程工程学报,2006,6(2):31–318.
    [40]王怀斌,程相利,苍大强等.高炉钛渣提高混凝土强度的作用机理[J].建筑材料学报,2009,12(4):402–406,432.
    [41]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [42]施惠生,赵立萍.含钛矿渣制备及其对水泥性能的影响研究[J].水泥,2005,11。
    [43]冯乃谦,石云兴.超细粉对水泥浆体的流化与增强效应[J].混凝土与水泥制品,1997,(2):4–7.
    [44]刘冬梅.矿物掺和料对水泥浆体水化性能和微观结构的影响[D].武汉:武汉大学,2007.
    [45]陈剑雄,李鸿芳,陈寒斌等.掺超细石灰石粉和钛矿渣粉超高强混凝土研究[J].建筑材料学报,2005,8(6):672–676.
    [46] BARNES P.Structure and performance of cements[M].London and New York:AppliedScience Publishers,1983,237–317.
    [47]石云兴,马如龙,赵国俊等.碱磷渣活性的实验研究[J].硅酸盐建筑制品,1996,(l):8–11.
    [48]陆平.水泥材料科学导论[M].上海:同济大学出版社.1991.
    [49] Li Dongxu,Shen Jinlin,Chen I in,et a1.The influence of fast-setting early–strength agenton high phosphorous slag content cement[J].Cement Concrete Research,2001,31–19.
    [50]蒋青青,李东旭.绿色复合水泥的制备及性能研究[J].材料导报,2006,20(8):152–154.
    [51] Amit Rai,J. Prabakar,C. B. Raju and R. K. Morchalle.Metallurgical slag as a componentin blended cement[J],Construction and Building Materials,16(8),2002,9:489–494.
    [52]陈寒斌,陈剑雄,肖斐.掺复合矿物超细粉混凝土的耐久性研究[J].建筑材料学报,2006,9(3):353–356.
    [53]陈健中.用吸水动力学法测定混凝土的孔结构参数[J],混凝土,1989,(6):9–13.
    [54]郭伟.煤矸石的活性激发及活性评价方法的探讨[D].南京:南京工业大学,2005.
    [55] Oner M.A study of intergrinding and separate grinding of blastfurnace slag cement[J].Cement Concrete Res 2000,30:473–480.
    [56] Shi C.An overview on the activation of reactivity of natural pozzolans[J].Can J Eng 2001,28:778–786.
    [57]高树军,吴其胜,张少明.高能球磨矿渣的形貌及其活性[J].建筑材料学报,2003,6(2):157–161.
    [58] Kumar S,Bandopadhyay A,Rajinikanth V.Improved processing of blended slag cementthrough mechanical activation[J].J Mater Sci 2004,39:3449–3452.
    [59] Wang PZ,Trettin R,Rudert V.Effect of fineness and particle size distribution of granulatedblastfurnace slag on the hydraulic reactivity in cement systems[J].Adv Cement Res 2005,17(4):161–166.
    [60]方军良,陆文雄,徐彩宣.粉煤灰的活性激发技术及机理研究进展[J].上海大学学报,2002,8(3):255-259.
    [61]张继东,水淬高钛矿渣的粉磨性能研究[J].水泥工程,2004(4):73-75.
    [62]徐彬,蒲心诚.矿渣玻璃体分相结构与矿渣潜在水硬活性本质的关系探讨[J].硅酸盐通报,1997,25(6):729–733.
    [63]钟白茜,杨南如.水玻璃一矿渣水泥的水化性能研究[J].硅酸盐通报,1994(1):4–8.
    [64]禹尚仁,王悟敏.无熟料硅酸钠矿渣水泥的水化机理[J].硅酸盐学报,1990,18(2):104–108.
    [65]李志清.碱胶凝材料的研究[D].南京:河海大学硕士毕业论文,2006.
    [66] Douglas E,Brandstetr J.Preliminary study on the alkali activation of ground granulatedblastfurnace slag[J].Cement Concrete Res 1990(20):746–756.
    [67] Wang SD,Scrivener KL,Pratt PL.Factors affecting the strength of alkali–activated slag[J].Cement Concrete Res 1994,24(6):1033–1043.
    [68] Malolepszy J,Petri M.High strength slag–alkaline binder[C].8th Int Congr Chem Cem,Rio de Janeiro 2006,4:108–111.
    [69] Bakharev T,Sanjayan JG,Cheng YB.Alkali activation of Australian slag cements[J],Cement Concrete Res 1999,29:113–120.
    [70] A Fernandez–J G P alomo,F Puertas.Alkali–activated slag mortars Mechanical strengthbehaviour[J],Cement and Conerete Research 29,1999:1313–1321.
    [71] Wu X,Jiang W,Roy DM.Early activation and properties of slag cement[J],CementConcrete Res 1990,20:961–974.
    [72]张兰芳,陈剑雄,李世伟.碱激发矿渣-锂渣混凝土试验研究[J].建筑材料学报,2006,(4):21-26.
    [73]史才军,李荫余,唐修仁.磷渣活性激发机理初探[J].东南大学学报,1989,19(1):141–145.
    [74]熬进清,彭毅,全红等.支持向量机算法优化钛矿渣胶凝材料组成研究[J].建筑材料学报,2006,9(4):393–398.
    [75]张兰芳,陈剑雄,岳瑜.灰色理论模型在矿渣、粉煤灰混凝土中的应用[J].粉煤灰综合利用,2004,(06):7–9.
    [76]刘思峰,党耀国,方志耕.灰色系统理论及其应用(第三版),科学出版社,2004.
    [77]尚建丽,王宝卿,崔宏志.应用灰色系统理论进行混凝土裂缝分析及预测[J].西安建筑科技大学学报,2005,37(01):100–103.
    [78]王向东,朱为玄,徐道远.灰色理论在预测混凝土性能参数长期值中的应用[J].河海大学学报,1999,27(06):64–67.
    [79]张喜德,韦树英,彭修宁.混凝土碳化深度的灰色预测[J].广西大学学报,2002,27(04):313–316.
    [80]朱劲松,宋玉普.灰色理论在混凝土疲劳强度中的应用[J].混凝土,2002,(6):10–12.
    [81]王杰,赵碧建,张桂玉.高钛矿渣系列建材产品的开发及应用[J].新型建筑材料,2002,(2):35–36.
    [82]魏国强,詹炳根,孙道胜.混凝土集料-浆体界面过渡区微观结构表征技术综述[J].安徽建筑工业学院学报(自然科学版),2008,16(4):80–85.
    [83]许辉,黄莹.混凝土骨料对界面过渡区的影响与改善评述[J].科技创新导报,2009,(20):60-61.
    [84]陈露一,郑志河,邵慧权.混凝土界面过渡区不均匀特性研究[J].武汉理工大学学报,2007,29(9):111–114.
    [85]王嘉.水泥石—石灰石骨料界面过渡层结构和性能的研究[J].硅酸盐学报,1987,15.
    [86]胡曙光,王发洲,丁庆军.轻集料与水泥石的界面结构[J].硅酸盐学报,2005,33(6):713–717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700