铝热还原精炼制备高钛铁的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高钛铁是指含钛量为65%~75%的钛铁合金,是一种用途较为广泛的特种铁合金。目前制备优质高钛铁的主要方法为重熔法,但该方法采用废钛材为原料,生产成本较高,限制了其广泛应用。传统的铝热还原法制备的高钛铁存在氧含量高,杂质多等缺点。我国受废钛材原料的限制,主要采用铝热还原法制备钛铁。针对铝热法制备钛铁的技术难点,为了提高铝热法制备钛铁的质量,本论文提出了基于铝热还原-真空精炼法制备低氧优质高钛铁的新工艺,即将铝热还原得到的粗高钛铁进行真空精炼以达到脱氧去夹杂的目的。
     通过对铝热反应绝热温度以及单位热效应的计算,结果表明反应过程中单靠铝热反应放出的热量来维持体系的能量平衡是不够的,这也是造成铝热法高钛铁质量差的主要原因,因此需要通过外界对体系提供热量来维持反应的正常进行。铝及镁还原TiO_2体系的热力学计算结果表明:Al-TiO_2反应体系TiO_2生成Ti_2O_3最容易反应,TiO_2生成TiO的反应次之,TiO生成Ti在热力学上最为困难,添加CaO能明显降低吉布斯自由能,使其反应更容易发生。Mg-TiO_2反应体系与Al-TiO_2反应体系类似,但是一些反应达到平衡时的温度更低。
     采用DTA技术研究了以Al、Mg为还原剂的还原反应动力学过程,利用Freeman-Carroll法对动力学过程进行了分析探讨,计算了反应的表观活化能和反应级数。Al还原TiO_2的反应表观活化能为164.497kJ·mol~(-1),反应级数为0.4144。Al还原TiO_2体系中添加CaO后会导致反应滞后,反应1252℃左右进行,反应表观活化能为93.676kJ·mol~(-1),反应级数为0.00789。Mg还原TiO_2反应表观活化能为383.235kJ·mol~(-1),反应级数为0.591。Al-Mg还原TiO_2在573℃出现的放热峰为Mg还原TiO_2,表观活化能为404.01kJ·mol~(-1),反应级数为0.5838,而在1244℃左右的放热峰为Al还原反应,表观活化能为208.083kJ·mol~(-1),反应级数为0.1655。
     研究了精炼钛铁基本渣系的物化性能,CaO-Al_2O_3-TiO_2中低含量的TiO_2能降低熔渣的黏度,增强其流动性,当TiO_2超过一定量导致渣系初晶温度的提高以及熔渣过热度的降低,熔渣的黏度增大。添加适量的MgO能够有效改善CaO-Al_203-TiO_2三元渣的流动性。通过计算得出熔渣高温段的黏流活化能,其变化趋势与渣系黏度测量值变化趋势相吻合。
     根据炉渣结构的共存理论与CaO-Al_2O_3-TiO_2三元渣系在不同温度和TiO_2成分下黏度的文献值,建立了三元渣系的作用浓度和黏度计算模型,结果表明随着TiO_2含量的增加,TiO_2作用浓度增加,低含量的TiO_2能够降低熔渣的黏度,但是随着TiO_2含量的继续增加,液态渣的黏度增加,恶化熔渣流动性,计算值与文献值、实测值吻合。并利用该模型计算了不同CaO/Al_2O_3比值下渣系的低熔点相和高熔点相的浓度,与文献吻合,佐证了共存理论模型对该渣系的适用性,具有很好的理论价值和实际意义。
     通过对精炼高钛铁产品微观结构与化学成分的分析,并与原料高钛铁相比较,发现精炼能够有效地去除粗钛铁中的氧化铝等夹杂,起到辅助降低氧含量的目的。直接重熔的合金中相明显较少,基本以FeTi相,钛氧固溶体,铁钛氧固溶体和铁的氧化物形式存在。铝热还原制备的合金中相较复杂,且夹杂相较多。二次精炼所得的合金致密,Al残留含量由3.51%下降到2.17%,Si残留含量由2.16%下降到0.81%,尤其是氧含量由12.20%下降到3.20%,基本符合优质高钛铁的技术指标。
High titanium ferroalloy is a kind of special ferroalloys containing 65%~75% titanium, which has broad applications. At pressent, the major method of producing top-quality high titanium ferroalloy is remelting, however, this method is used waste titanium as raw materials and the production cost is relatively high, which restricts its extensive application. The high titanium ferroalloy prepared by traditional aluminothermy reduction process has many defects, such as high oxygen and impurity contents. Due to the limitation of waste titanium in China, the method of Alumino-thermic reduction was mostly used in industry. In order to improve the quality of titanium ferroalloy produced by Alumino-thermic reduction, focusing on the existing technical difficulties in the preparation of titanium ferroalloy, this paper presents a new process basing on Alumino-thermic reduction-vacuum melting, that is to refine the crude production of high titanium ferroalloy produced by Alumino-thermic reduction so as to remove the oxygen and impurity.
     According to the calculations of adiabatic temperatures and unit thermal effect by thermite reaction, the heat that released only by thermite reaction is not enough to maintain the system's energy equilibrium during reaction procedure. This is also the leading cause for low quality of high titanium ferroalloy prepared by aluminothermy; therefore it needs the outside to provide heat to maintain the system's normal reaction.The thermodynamic calculation results of Al-TiO_2 and Mg-TiO_2 reaction systems indicate that the TiO_2→Ti_2O_3 reaction occurs most easily, TiO_2→TiO reaction the second, and TiO→Ti reaction occurs most difficultly, and adding CaO could evidently reduce Gibbs Free Energy and make the reaction more easily. Mg-TiO_2 reaction system is similar to Al-TiO_2 reaction, but some reactions reach the equilibrium at lower temperatures.
     The reaction process kinetics used Al,Mg as reducing agent were studied by DTA technology, the kinetic mechanisms were analyzed by Freeman-Carroll method to calculate the reaction's apparent activation energies and the reaction orders. The apparent activation energy of Al reducing TiO_2 is 164.497 kJ·mol~(-1) and reaction order is 0.4144. The addition of CaO in the Al+TiO_2 reaction system delays the reaction, with the reaction occurring at the temperature around 1252℃, the apparent activation energy is 93.676 kJ·mol~(-1) and reaction order is 0.00789. The activation energy is 93.676 kJ·mol~(-1) and reaction order is 0.00789. The apparent activation energy of Mg reducing TiO_2 is 383.235 kJ·mol~(-1) and reaction order is 0.591. The exothermic peak is the reaction between Mg+TiO_2 when the temperature is 573℃in the Al+Mg+TiO_2 reaction systems, the apparent activation energy is 404.01 kJ·mol~(-1) and reaction order is 0.5838. While the other exothermic peak at 1244℃is reaction between Al+ TiO_2, the apparent activation energy is 208.083 kJ·mol~(-1) and reaction order is 0.16552.
     The physicochemical properties of main refining titanium ferroalloy slags are studied;low content TiO_2 can reduce viscosity of CaO-Al_2O_3-TiO_2 slag systems and increase their fluidity. While TiO_2 reaches a certain value, the liquidus temperature of the system and the reduction in the degree of superheat of the slag melt goes up, which result the viscocity of slags increased.Adding appropriate amount of MgO to the CaO-Al_2O_3-TiO_2 slags can improve the fluidity of the slags effectively. By calculation, the variation trend of slags' viscous flow activation energies of the slag systems are in accordance with the trend of measured viscosities of slag samples.
     According to the coexistence theory of slag structure and the referenced viscosities of CaO-Al_2O_3-TiO_2 at different temperatures and TiO_2 compositions,the calculation of mass action concentrations and viscosity for CaO-Al_2O_3-TiO_2 slag system has been established.The computation results showed that along with the increase of TiO_2 content, the action concentrations of TiO_2 were increasing, and low content TiO_2 can reduce the viscosity of the slags, But when the TiO_2 continued to increase, the viscosity of slag would increase, the fluidity of slag become worse, and the calculated results agree well with the values of reference and actual experiments record before.Also,the concentration of high melting point phase and low melting point phase at the different rate of CaO/Al_2O_3 are calculated by this theory computation model,which are identical with the references.This confirmed the applicability of the coexistence theory for the slag system, which has important theoretic value and practical meaning for the viscisity estimation.
     Microstructure and chemical compositions of high titanium ferroalloy throughrefining are analysed and high titanium ferroalloy prepared by aluminothermy are compared with, the paper found that refining could remove inclusions such as Al_2O_3 from the raw high tatinium ferroalloy efficiently,so as to aid to reduce the oxygen indirectly. It was found that phases in titanium ferroalloy prepared by remelting are comparatively less and the main phases were FeTi, titanyl solid solution, FeTiO solid solution and iron oxides. While phases in titanium ferroalloy prepared by aluminothermy method are comparatively complex and phases of inclusion are relatively much more. The productions prepared from refining have compact structure. The residual Al content of 3.51% decreased to 2.17%, and residual Si content from 2.16% down to 0.81%, especially oxygen content from 12.20% to 3.2%, which are in accord with the technical index of good-quality high titanium ferroalloy.
引文
1.莫畏,邓国珠,陆德祯等.钛合金[M],北京:冶金工业出版社,1979,9.
    2.M.A,雷斯.铁合金冶炼[M],北京:冶金工业出版社,1981,11.
    3.李春德.铁合金冶金学[M],北京:冶金工业出版社,2004,161-162.
    4.周进华.铁合金生产技术[M],北京:科学出版社,1991.
    5.章兼培,徐建民.低硅钛铁及其制备方法[P],中国:CN1183481,1998-06-03.
    6.戴维,舒莉.铁合金冶金工程[M],北京:冶金工业出版社,1999.
    7.甘冰.铝热法冶炼钛铁工艺研究[J],铁合金,1991,3.
    8.Satya Prasad V V,Sambasiva Rao A,Prakash U.Recycling of Valuable Scrap Throught electroslag Process[J],Transactions of the Indian Institute of Metals,2002(5):9-14.
    9.汪汉臣,王农,侯长征等.用残钛料真空试炼高钛钛铁[J],铁合金,1996,(1):36-38.
    10.Paton B E,Medovar B L,Benz M G.ESR for Titanium:Yesterday,Today,Tomorrow.Titanium99(Volume Ⅲ)/Processing of The Ninth World Confer-ence on Titanium.2000,Saint-Petersburg,Russia.Jun 7.-11,1999.1385-1398.
    11.Akulov V P,Kapustin L V,Galushka A A.Electroslag remelting of metal-urgical waste at Azovstal[J],Metallurgical Concern.,2001(3):6-9.
    12.夏文堂,张启修.有衬电炉渣冶炼高品位钛铁的研究[J],铁合金,2004(4):36-39.
    13.Chen G Z,Fray D J,Farthing T W.Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J].Nature,2000,407(9):361.
    14.Chen G Z,Gordo E,Fray D J.Direct electrolytic preparation of chromium powder[J],Metall Mater Trans B,2004,35(2):223.
    15.Xu Q,Deng L Q,Wu Y,et al.A study of cathode improvement fof electro- ecxidation of Nb_2O_5 in a eutectic CaCl_2-NaCl melt at 1073K[J],Alloy Compd,2005,396:288.
    16.Wang D H,Qiu G H,Jin X B,etal.Electrochemical metallization of solid terbium oxide[J],A ngew Chem Int Ed,2006,45:2384.
    17.刘妍,吴一,邹正光等.TiFe系储氢合金制备方法的研究进展[J],材料导报,2008,22(11):111-114.
    18.郭晓玲,郭占成,王志.TiO_2和Fe_2O_3直接电解还原制备TiFe合金[J],北京科技大学学报,2008,30(6):620-624.
    19.杜继红,奚正平,李晴宇等.熔盐电解还原制备TiFe合金[J],稀有金属材料与工程,2008,37(12):2240-2243.
    20.迟丽娜.激光诱导白蔓延反应合成Ti-Fe系合金[D],大连:大连理工大学,2006.
    21.肖翔鸿,刘名扬,罗发应.铝热法冶炼高钛铁工艺试验[J],钢铁钒钛,2001,22(4):47-51.
    22.Jones R T,Barcza N A,Curr T R.Plasma developments in Africa[J],Journal of Alloys and Compounds,1993,8(11):2819.
    23.刘名扬,肖翔鸿.以金红石为原料研制65%-75%的高钛铁[J],铁合金,2001,(3):15-21.
    24.宋雪静,魏莉,张廷安等.高钛铁中氧形成机理分析及脱氧实验[J],过程工程学报,2008,8(S1):176-179.
    25.许磊,竺培显,袁宜耀.高品位钛铁生产新工艺的研究与探讨[J],南方金属,2008,(4):4-7.
    26.夏冬冬,吴晓东.铝热法冶炼高钛铁合金的试验研究[J],上海金属,2008,30(2):28-31.
    27.张廷安,赫冀成.自蔓延冶金法制备TiB_2和LaB_6陶瓷微粉[M],沈阳:东北大学出版社,1999,12-30.
    28.豆志河,张廷安,侯闯等.自蔓延高温合成CaB_6的基础研究[J],中国有色金属学报,2004,14(2):322-326.
    29.袁润章主编.白蔓延高温合成技术进展研究[J],武汉:武汉工业大学出版社,1994,12-14.
    30.豆志河.基于铝热还原法制备CuCr合金的基础研究[D],沈阳:东北大学,2008.
    31.蔡杰,李文兰,长宝林等.自蔓延高温合成法(SHS)在陶瓷领域的应用[J],材料导报,1996,(5):32.
    32.伍继君,张广立,郭丽芬等.镁热还原法制备无定形硼粉绝热温度的计算和动力学研究[J],材料与冶金学报,2004,3(1):46-50.
    33.梁英教,车荫昌主编.无机热力学数据手册[M],沈阳:东北大学出版社,1993,64-220.
    34.福尔克特G,弗兰克K D.铁合金冶金学[M],上海:上海科学技术出版社,1978.
    35.马继骅.浅谈铝热法冶炼钛铁的热力学及工艺[J],铁合金,1996,(4):22-27.
    36.Vyazovkin S.Remarks on "transformation of dynamic DSC curves for thermosetting polymers in curing kinetic analysis"[J],Int.Reviews in Physical Chemistry,2000,19(1):45-60.
    37.Jovic V D,Barsoum M W,Jovic B M,etal.Corrosion behavior of Ti_3GeC_2 and Ti_2AlN in 1M NaOH[J],Electrochem.Soc,2006,153(7):B238-B243.
    38.王苹.Ti-Al-C体系热力学分析及动力学机理研究[D],武汉:武汉理工大学,2008:62-63.
    39.沈兴.差热、热重分析与非等温固相反应动力学[M],北京:冶金工业出版社,1995.
    40.丁卫华,胡国新.Ca(OH)_2对腐植酸粉末热解气化的影响研究[J],实验室研究与探索,2008, 27(7):35-37.
    41.郑瑛,陈小华,郑楚光.CaCO_3分解机理的研究[J],动力工程,2004,24(2):280-283.
    42.张鉴.冶金熔体的计算热力学[M],北京:冶金工业出版社,1998:173.
    43.杨庆山,陈建军,陈卫平.铝热还原Sc_2O_3制备Al-Sc中间合金[J],稀有金属与硬质合金,2007,35(2):5-8.
    44.徐淑香.铝热还原法制备CuCr合金渣系黏度的测量及其模型研究[D],沈阳:东北大学,2003:1-5
    45.宋宝来,薛济来,铁军等.铝热还原生产钒铁合金的工艺优化[J],稀有金属,2007,30(supple):114-116.
    46.E.M.Levun,H.F.Murdie.Phase Diagram for Ceramists[J],American Ceramic Society,1975,3:76
    47.李宗强.铝酸钙预熔渣及其在转炉渣洗脱硫中的应用[D],武汉:武汉科技大学,2006:20
    48.薛济来,李正邦,张家雯等.改善弹簧钢中氧化物夹杂形态的热力学条件[J],钢铁研究学报,2000,12(6):20-23.
    49.Ohta H,Suito H.Activities in CaO-SiO_2-Al_2O_3 slag and deoxidation equilibria of Si and Al[J].Metallrugical and Material Transaction,1996,27B(5):943-953.
    50.Hideaki,Ryo I.Thermodynamics on control of inclusion composition in Ultrac clean steels[J].ISIJ International,1996,36(5):528-536.
    51.胡新,贾强强.TiO_2,Cr_2O_4和熔剂对CaO-SiO_2-Al_2O_3渣系物性的影响[J],钢铁钒钛,1987,1:1-8.
    52.王常珍.冶金物理化学研究方法(第三版)[M],北京:冶金工业出版社,2002,325.
    53.豆志河,姚建明,张延安等.TiO_2对CaO-Al_2O_3-CaF_2渣系黏度的影响[J],材料导报,2008,22(5):152-154.
    54.豆志河,姚建明,张廷安等.CaO-Al_2O_3-CaF_2-SiO_2渣系的黏度[J],东北大学学报(自然科学版),2008,29(7):1000-10003.
    55.V.M.Breus,L.F.Kosoi,V.M.Ermolov.Viscosity of titanium-bearing lime-alumina slags[J].Steel in the USSR.1983(13):451-452
    56.Dr Ing,D Springorum.Slag atlas[M],Germany:Verein Deutscher Eisenhu- ttenleute,1995
    57.朱传运,刘承军,史培阳等.保护渣成分对结晶矿相的影响[J],东北大学学报(自然科学版),2004,25(6):559-561.
    58.Lauder B E,Spalding D B.The Numerical Computation of Turbulent Flows[J],Comp.Meth.Appl.Mech.1974,3:269-289.
    59.贾娟鱼,白晨光,邱贵宝等.含TiO_2三元渣系黏度计算模型[J],重庆大学学报,2002,25(12):39-41.
    60.徐士良.常用算法程序集[M],北京:清华大学出版社,1996:231-233.
    61.刘焕明,杜红,杨祖磐.高炉型熔渣中TiO_2的活度[J],金属学报,1992,28(2):B46-B49
    62.李金锡,张鉴.CaO-MgO-CaF_2-Al_2O_3-SiO_2五元渣系粘度的模型[J],北京科技大学学报,2000,22(4):316-319.
    63.李金锡,张鉴.CaO-MnO-FeO-MgO-CaF_2-Al_2O_3-SiO_2渣系粘度的计算模型[J],北京科技大学学报,2000,22(5):438-441.
    64.李金锡,张鉴.MnO-SiO_2,MgO-SiO_2和CaO-Al_2O_3-SiO_2熔渣粘度的计算模型[J],北京科技大学学报,1999,21(4):1-6.
    65.ZHANG Jian.Application of law of mass action to distribution of manganese between slag melts and liquid iron[J],Trans.Nonferrous Met.Soc.China,2001,11(5):778-783.
    66.张鉴,袁伟霞.CaO-Al_2O_3-SiO_2熔渣的作用浓度计算模型[J],北京科技大学学报,1995,17(5):418-424.
    67.成国光,张鉴,赵沛.含B2O3渣系的热力学计算模型[J],中国有色金属学报,1997,7(2):30-33.
    68.焦丽娜.真空熔炼法制备高钛铁的研究[D],沈阳:东北大学,2008:9-14.
    69.宋雪静.真空铝热法制备低氧高钛铁的研究[D],沈阳:沈阳理工大学,2008:17-18.
    70.宁兴龙.利用碳热法直接由钛矿熔炼中钛以及高钛铁合金[J],钛工业进展,1999,2:11-12.
    71.张鹏,刘福泉.铝热法生产高硅钛铁[J].铁合金,1997,2:11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700