LTCC磁介复合陶瓷的制备及电磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合电子材料由于其独特的物理和多功能特性而同时显示出磁和介电性能。最近,随着低温共烧陶瓷(LTCC)技术和集成芯片元素的发展,这种具有显著磁导率和介电常数的新型复合材料得到了广泛研究。由于其同时具有电感和电容的功能,这种材料可用来制作无源集成复数零件,比如滤波器,在减少印刷电路板的占用空间、并进一步促进无源集成零件的小型化方面具有显著优势,可见这一新型复合材料在将来的电子器件生产方面具有潜在的应用价值。但是,这种同时具有铁磁和介电性能的高品质复合材料的研究一直面临着巨大挑战。本论文中,在Bi2O3烧结助剂的帮助下,我们分别制备了xTiO2+(1-x)Ni0.2Cu0.2Zn0.620(Fe2O3)0.98(NiCuZn ferrite)(0≤x≤60wt.%)和xBa0.6Sr0.4TiO3(BST)+(1-x)Ni0.2Cu0.2Zn0.62O(Fe203)0.98(NiCuZn ferrite)(0≤x≤60wt.%)复合陶瓷。NiCuZn铁氧体由于其高磁导率、高居里温度、高频率性能佳和相对较小的损耗被选为铁磁相。中介电常数和低介电损耗的TiO2是一种众所周知的性能优越的介电材料,被选为介电相之一,(Ba,Sr)TiO3由于其高介电常数等一系列优点被选为介电基体材料之二。本论文研究了两种复合陶瓷的烧结行为、微观结构以及电磁性能。
     用标准的电子陶瓷工艺法首次制备了xTi02+(1-x)Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98(NiCuZnferrite)(0≤x≤60wt.%)复合陶瓷。在3wt.%Bi2O3的帮助下,所有陶瓷样品均在900℃烧结成瓷。XRD结果显示陶瓷样品由NiCuZn、Fe3Ti3O10和TiO2三相组成。从SEM图谱可以看出,10wt.%Ti02-90wt.% Ni0.2Cu0.2Zn0.620(Fe2O3)0.98的陶瓷拥有较小的晶粒尺寸和较高的密度。随着Ti02含量的增加,相对介电常数εr先增大,在x=10wt.%处达到最大,然后减小。样品的磁导率和饱和磁化强度随TiO2含量的增加缓慢减小,其中磁导率显示出了优异的频率稳定性。含10wt.%TiO2的复合材料显示出了典型的磁滞回线。10wt.%Ti02-90wt.%Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98这一陶瓷组分在900℃的低温下显示出了较好的介电和磁性能(εr=50,30,tanδμ=0.13)。同样,用固相反应法首次制备了xBa0.6Sr0.4TiO3(BST)+(1-x)Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98(NiCuZn ferrite)(0≤x≤60wt.%)复合陶瓷。加入3wt.%Bi2O3后,所有复合陶瓷均在925℃时得到了>95%的相对密度。XRD结果显示复合陶瓷均由BST和NiCuZn铁氧体相组成。在NiCuZn铁氧体和BST之间发生了离子扩散,影响了陶瓷的电性能。随着BST含量的增加,复合陶瓷的介电常数增加,同时磁导率降低。40wt.%Ba0.6Sr0.4Ti03-60wt.%Ni0.2Cu0.2Zn0.620(Fe2O3)0.98这一陶瓷组分在950℃的低温下显示出了较好的介电和磁性能(εr=48,tanδ|ε=0.01,μ=20.8,tanδμ|10MHz=0.03),同时也表现出了优异的频率稳定性(fr=100MHz)。
     综上所述,10wt.%TiO2-90wt.Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98和40wt.Ba0.6Sr0.4TiO3-60wt.Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98两种复合陶瓷均显示出了优异的整体性能,可以被用作电感、电阻和电容。
Composite electronic materials exhibit both magnetic and dielectric properties due to their unusual physics and multi-functions. Recently, with the development of low-temperature co-fired ceramics (LTCC) technology and integrated chip elements, such composite materials with significant permeability and permittivity were extensively researched. Because of their both inductive and capacitive functions, these composite materials can be used to manufacture truly integrated passive complex elements, such as filters, by a single material, which has obvious advantages in reducing the space occupied by printed circuit boards and further allowing the miniaturization of the integrated elements. So they have potential application in the production of electronic devices in future. However, development of a high-quality composite material with simultaneous ferromagnetic and ferroelectric characteristics is an ever challenging aspect for investigation. In this paper, we prepared the xTi02+(1-x)Ni0.2Cu0.2Zn0.620(Fe2O3)0.98 (NiCuZn ferrite) (0≤x≤60 wt.%) and the xBao.6Sro.4Ti03 (BST)+(1-x)Ni0.2Cu0.2Zn0.620(Fe2O3)0.98(NiCuZn ferrite) (0≤x≤60wt.%) composite ceramics respectively, with addition of Bi2O3 as a sintering agent. Here, NiCuZn ferrite is chosen as a ferrite phase because of its high permeability, high curie temperature, high frequency, and relative low loss tangent. TiO2 is a dielectric phase due to its high dielectric constant and relatively low dielectric loss. And (BaSr)TiO3 is a dielectric compound with a large figure of merit and superior dielectric properties. The sintering behaviors, phases, microstructures, and electromagnetic properties of studied systems were investigated.
     A series of xTi02+(1-x)Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98 (NiCuZn ferrite) (0≤x≤60 wt.%) composite ceramics were primarily prepared by a solid-state reaction method. With addition of 3 wt.% Bi2O3, all the ceramics can be sintered at 900℃. The effects of composition x on the sintering behaviors, phase compositions and electromagnetic properties of TiO2+NiCuZn ferrite ceramics were investigated. X-ray diffraction (XRD) results showed that the ceramics were composed of NiCuZn, Fe3Ti3O10 and TiO2 phases. Scanning electron micrographs showed that 10 wt.% TiO2-90 wt.% Ni0.2Cu0.2Zn0.620(Fe2O3)0.98 ceramics had small grain size and high density. With an increase of TiO2 content x, the value ofεr decreased and the component with 10 wt.% TiO2 had maximum relative dielectric constant. The permeability and the saturation magnetization decreased gradually with increasing TiO2 content, and the permeability curve exhibited excellent stability of frequency. The composite materials with 10 wt.% TiO2 showed typical magnetic hysteresis of the magnetic materials. For the specimens with 10 wt.% TiO2-90 wt.%Ni0.2Cu0.2Zn0.620(Fe2O3)0.98, the good dielectric (εr=50) and magnetic properties (μ=30, tanδμ=0.13) have been obtained at 900℃.
     xBa0.6Sr0.4TiO3 (BST)+(1-x)Ni0.2Cu0.2Zn0.620(Fe2O3)0.98 (NiCuZn ferrite) (0≤x≤60 wt.%) composite ceramics were primarily prepared by a solid-state reaction method. With addition of 3 wt.% Bi2O3, all the composite ceramics can be sintered to a density>95% of theoretical density at 925℃. The effects of composition x on the sintering behaviors, phase compositions and electromagnetic properties of BST+NiCuZn ferrite composite materials were investigated. X-ray diffraction (XRD) results showed that the composites were composed of BST and NiCuZn phases. The ions diffusion was found to take place between NiCuZn ferrite and BST, which affected the electrical properties of the ceramics. With an increase of BST content x,the dielectric constant of the composites increases and the permeability decreases. For the specimens with 40 wt.% Bao.6Sro.4Ti03-60 wt.% Ni0.2Cu0.2Zn0.62O(FeO3)0.98, the good dielectric (εr=48,tanδ|ε=0.01)and magnetic properties (μ=20.8, tanδμ|10MHz=0.03) have been obtained at 950℃. Meanwhile, it exhibited excellent frequency stability which was up to fr=100 MHz.
     In conclusion, the 10 wt.% TiO2-90 wt.% Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98 ceramic and the 40 wt.% Bao.6Sro.4Ti03-60 wt.% Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98 composite exhibit excellent integrated properties, which can be used not only as inductors and resistors but also as capacitors.
引文
[1]钟慧,张怀武.低温共烧陶瓷(LTCC):特点、应用及问题[J].磁性材料与器件,2003,34(4):33-35.
    [2]Charles Q.Scrantom. LTCC technology:where we are where we're going-Ⅱ[J]. IEEE.1999,0-7803-5152-5:193.
    [3]M.R. Gongora-Rubio, P.Espinoza-Vallejos, et al. Overview of Low Temperature Co-fired Ceramic tape technology for meso-system technolory (MsST) [J]. Sensors and Actuators A.2001,89:222.
    [4]K. Delaney, J. Barton, et al. Characterisation of the electrical performance of buried capacitors and resistors in low temperature co-fired (LTCC) ceramic [J]. IEEE Electronic Components and Technology Conference.1998,6:900.
    [5]Micheal Richtarsic, Jack Thornron. Characterization and Optimization of LTCC for High Density Large Area MCM's [J].IEEE.1998:92.
    [6]Lih-Shan Chen, Shen-LiFu, et al. Capacitors enbeded in the low temperature Cofired Ceramic [J].IEEE 1998 IEMT/IMC Proceedings.59.
    [7]Wing-Yan Leung, Kwok-Keung M. Cheng, et al. Design and implementation of LTCC filters with enchanced stop-band characteristics for bluetooth applications [J].IEEE.2001:1008.
    [8]Calina Kniajer, Kentor Dechant, Drasad Apte. Low loss, low temperature cofired ceramics with higher dielectric constants for multichip modules (MCM) [J]. IEEE.1997:121.
    [9]Yu Ron, Kawthar A. Zaki. Low-Temperature Cofired Ceramic (LTCC) Ridge Waveguide Bandpass Chip Filters [J].IEEE Trans. Microw.1999:2317.
    [10]王啸.LTCC无源器件的应用与发展[J].集成电路通讯,2008,26(1):40-44.
    [11]王传声,叶天培,王正义.LTCC技术在移动通信领域的应用[J].世界产品与技术,2002,(1):19-23.
    [12]刘海文,郑伟.LTCC无源滤波器的研究现状及进展[J].微电子器件与技术2009,46(8):502-508.
    [13]Mistler, Richard E. Tape casting:the basic process for meeting theneeds of the electronics industry[J].Am Ceram Soc Bull.1990,69(6):1022-1026.
    [14]Gutierrez C A, Moreno R. Influence of slip preparation and casting conditions on aqueous tape casting of A12O3 [J].Mater. Res. Bull.2001,36(11):2059-2072.
    [15]杨光.MgO-Al2O3-SiO2系低温共烧陶瓷生带的制备及其性能研究[D].长沙:国防科学技术大学,2004.
    [16]张药西.低温烧结铁氧体粉料的最新进展[J].电子元器件及应用,2001,(1):25.
    [17]徐忠华,马生等.低温共烧陶瓷发展进程及研究热点[J].材料导报,2000,(4):30.
    [18]Hill N A.Why are there so few magnetic ferroelectrics [J].J. Phys. Chem. B 2000, 104(29):6694-6709.
    [19]Lopatin S,Lapatona I, Lisnevskaya I, et al. Magnetoelectric PZT/ferrite composite materials [J].Ferroelectrics.1994,162:63-68.
    [20]Gehring G A. On the microscopic theory of the magnetoelectric effect [J]. Ferroelectrics.1994,161:275-285.
    [21]Kanai T, Ohkoshi S, Nakajima A, et al. A ferroelectric ferromagnet composed of (PLZT)x(BiFeO3)1-x solid solution [J].Adv. Mater.2001,13(7):487-490.
    [22]Mantese J V, Micheli A L, Dungan D F, et al. Applicability of effective medium theory to ferroelectric/ferrimagnetic composites with composition and frequency-dependent complex permittivities and permeabilities [J].J. Appl. Phys.1996,79 (3):1655-1660.
    [23]陈国华.21世纪软磁铁氧体材料和元件发展趋势[J].磁性材料及器件,2001,32(4):34.
    [24]任利,张怀武,苏桦.应用于高频变压器的NiZn铁氧体材料性能分析[J].磁性材料及器件,2005,37(1):43.
    [25]A.Nakano,H.Momura. Effect of Ag on Microstructrue of the Low Temperature Sintered NiCuZn Ferrites [A].Proceedings of the 6th International Conference on Ferrites.1225-1228.
    [26]J.H. Nam, H.H. Jung, J.Y. Shin, et al.The Effect of Cu Substitution on the Electrical and Magnetic Properties of NiZn Ferrites [J].IEEE Trans. Magn.1995, 31(6):3985-3987.
    [27]苏桦.低温共烧NiCuZn铁氧体材料及叠层片式电感应用研究[D].成都:电子科技大学微电子与固体电子学院,2006.
    [28]赵特技,张怀武,苏桦.Cu含量对NiCuZn铁氧体材料电磁性能的影响[J].磁性材料与器件,2006,37(2):46-48.
    [29]张有纲,黄永杰,罗迪民,磁性材料[M].成都电讯工程学院出版社,1988,0.
    [30]Xiaohui Wang, Weiguo Qu, et al.The influence of Mn dopant on the electromagnetic properties of NiCuZn ferrite [J].Ceramics International,2004, 30:1615-1618.
    [31]R. Liang, X. Dong, Y. Chen, et al. Effect of various dopants on the tunable and dielectric properties of Ba0.6Sr0.4TiO3 ceramics [J].Ceramics International,2005, 31:1097-1101.
    [22]K.K. Patankar, V.L. mathe, R.P. Mahajan, et al. Dielectric behaviour and magnetoelectric effect in CuFe204-Bao.8Pb0.2Ti03 composites [J].Mater. Chem. Phys.2001,72:23.
    [33]J.S.Kim, C. Cheon, P.W. Jang, et al.Ferroelectric and ferromagnetic properties of 0.2BiFeO3-0.2RFeO3-0.6ATiO3(R=Pr, Nd and A=Ba, Pb)and 0.8BiFeO3-0.2BaTiO3 [J].J. Eur. Ceram.Soc.2004,24:1551.
    [34]T. Kanai, S.I. Ohkoshi, A. Nakajima, et al. A Ferroelectric Ferromagnet Composed of (PLZT)x(BiFeO3)1±x Solid Solution [J].Adv. Mater.2001,13:487-490.
    [35]S.Lopatin, I. Lopatina, I. Lisnevskaya. Magnetoelectric PZT/ferrite composite material [J].Ferroelectrics.1994,162:63-68.
    [36]N.A. Hill.Why Are There so Few Magnetic Ferroelectrics? [J].J. Phys.Chem. B 2000,104:6694.
    [37]J. Zheng, J. Wang, S.E. Lofland, et al. Multiferroic BaTiO3-CoFe2O4 Nanostructures [J].Science.2004,303:661-663.
    [38]J. Wang, J.B.Neaton, H. zheng, et al.Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures [J].Science.2003,299:1719-1722.
    [39]J.V. Mantese, A.L.Micheli, D.F. Dungan, et al. Applicability of effective medium theory to ferroelectric/ferrimagnetic composites with composition and frequency-dependent complex permittivities and permeabilities[J].J. Appl. Phys. 1996,79:1655.
    [40]T. Yamamoto, M. Chino, R. Tanaka, et al.,Evaluation of ferroelectric/ ferromagnetic composite by micro-composite designing [J].Ferroelectrics.1989, 95:175-178.
    [41]X.W. Qi, J. Zhou, Z.X. Yue, et al.A Ferroelectric Ferromagnetic Composite Material With Significant Peamibility and Permittivity [J].Adv. Funct. Mater. 2004,14:920-926.
    [42]X.W. Qi, J. Zhou, B.Li, et al.Preparation and Spontaneous Polarization-Magnetization of a New Ceramic Ferroelectric-Ferromagnetic Composite [J].J. Am.Ceram. Soc.2004,87(10):1848-1852.
    [43]J. Shen, Y. Bai, J. Zhou, et al.Magnetic Properties of a Novel Ceramic Ferroelectric-Ferromagnetic Composite [J].J. Am. Ceram.Soc.2005,88:3440-3443.
    [44]Y. Bai, J. Zhou, Z. Gui, et al. A ferromagnetic ferroelectric cofired ceramic for hyperfrequency [J].J. Appl. Phys.2007,101:083907.
    [45]J. Shen, J. Zhou, B. Li, et al.Ferroelectric and dielectric properties of [Pb(Ni1/3Nb2/3)03-PbTi03]/[(Ni0.2Cu0.2Zn0.6)Fe2O4] composites [J].Mater. Lett. 2006,60:1071-1075.
    [46]Y. Bai, F.Xu, L.Qiao, et al.The static and hyper-frequency magnetic properties of a ferromagnetic-ferroelectric composite [J].J. Magn. Magn. Mater.2009,321: 148-151.
    [47]L. Jia, T. Li, H. Zhang, et al.Electromagnetic properties of low-temperature co-fired xPZT+(1-x)NiCuZn-ferrite composites [J].J. Magn. Magn. Mater.2009, 321:2936-2940.
    [48]H. Hsiang,W. Liao, Y. Wang, et al. Interfacial reaction of TiO2/NiCuZn ferrites in multilayer composites [J].J. Eur. Ceram. Soc.2004,24:2015-2021.
    [49]D.R.Patil, S.S.Chougule, S.A. Lokare, et al. Electrical properties ofxNiFe2O4+(1-x)Ba0.7Sr0.3Ti03 composites [J].J. Alloys Compd.2008,452:414-418.
    [50]D.R.Patil, B.K. Chougule. Structural, electrical and magnetic properties of xNiFe204+(1-x)Bao.8 Sr0.2TiO3ME composites [J].J. Alloys Compd.2008,458: 335-339.
    [51]D.R.Patil, S.A. Lokare, S.S.Chougule, et al.Dielectric and magnetic properties of xNiFe204+(1-x)Ba0.9Sr0.1TiO3 composites [J].Physica B.2007,400:77-82.
    [52]H. Su, H. Zhang, X. Tang, et al.Dielectric and magnetic properties of low temperature fired NiCuZn-BaTiO3 composites [J].J. Magn. Magn. Mater.2009, 321:2763-2766.
    [53]Sea-Fue Wang, Yuh-Ruey Wang, et al.Densification and properties of fluxed sintered NiCuZn ferrites [J].J. Magn. Magn. Mater.2000,217:35-43.
    [54]Joong-Hee Nam, Sang Jin Park, et al.Microstructure and Magnetic Properties of Nanostructured NiCuZn Ferrite Powders Synthesized by Sol-Gel Process [J]. IEEE. Trans. Magn.2003,39(5):3139-3141.
    [55]Yen-Pei Fu, Ko-Yin Pan, et al.Microwave-induced combustion synthesis of Nio.25Cu0.25Zno.5 ferrite powders and their characterizations. Mater. Lett.2002,57: 291-296.
    [56]Yamamoto S,Tanamachi N, et al. Fabrication of high-permeability ferrite by spark plasma sintering method [J].J. Magn. Mater.2001,235(1-3):218-222.
    [57]M. Yan, J. Hu, W.Y. Zhang, Preparation and investigation of low firing temperature NiCuZn ferrites with high relative initial permeability [J].J. Magn. Magn. Mater.2006,303:249-255.
    [58]Jen-Yan Hsu, Wen-Song Ko, et al. The Effect of V2O5 on Sintering of NiCuZn Ferrite [J].IEEE. Trans. Magn.1995,31(6):3994-3996.
    [59]S.H. Seo, J.H.Oh. Effect of MoO3 Addition on Sintering Behaviors and Magnetic Properties of NiCuZn Ferrite for Multilayer Chip Inductor [J].IEEE. Trans. Magn.1999,35(5):3412-3414.
    [60]H.T. Kim, H.B.Im, Effect of Bi2O3 and MoO5 on the magnetic properties of Ni-Zn ferrites and lithium ferrites [J].IEEE. Trans. Magn.1982,18(6):1541-1543.
    [61]N. Rezlescu, L. Sachelare, et al.Influence of PbO on microstructure and properties of a NiZn ferrite [J]. Ceramics International.2003,29:107-111.
    [62]Zhenxing Yue, Shaofeng Chen, Preparation and electromagnetic propertiesof low-temperature sintered ferroelectric-ferrite composite ceramics [J].J. Alloys Compd.2004,375:243-248.
    [63]夏峰.PZTPMNPNN等铅基弛豫铁电陶瓷的结构和压电介电性能研究[D].西安:西北工业大学,2002.
    [64]周志刚等.铁氧体磁性材料[M].科学出版社,1981,2.
    [65]C.Liu, Z. Lan, X. Jiang, et al. Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites [J].J. Magn. Magn. Mater.2008,320:1335-1339.
    [66]R.D.Shannon. Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides[J].Acta Cryst.1976, A32:751-767.
    [67]M.L.S.Teo,L.B.Kong, Z.W. Li, et al.Development of magneto-dielectric materials based on Li-ferrite ceramics:Ⅱ.DC resistivity and complex relative permittivity [J].J. Alloys Compd.2008,459:567-575.
    [68]H. Su, H. Zhang, X. Tang, et al.Study on low-temperature sintered NiCuZn and MgCuZn spinel ferrites [J].J. Alloys Compd.2008,475:683-685.
    [69]M.K. Lee, H.C.Lee, C.M. Hsu, High dielectric constant TiO2 film grown on polysilicon by liquid phase deposition [J].Mater. Sci. Semicond. Process.2007, 10:61-67.
    [70]W.D. Kingery, H.K. Bowen, D.R. Uhlmaon John Wiley & Sons, Introduction to Ceramics [M].New York,1976:913-945.
    [71]M. Fujimoto, Inner Stress Induced by Cu Metal Precipitation at Grain Boundaries in Low-Temperature-Fired Ni-Zn-Cu Ferrite [J].J. Am.Ceram. Soc.1994,77: 2873-2878.
    [72]X. Qi, J. Zhou, Z. Yue, et al.Investigation of magnetic properties of Ni0.2Cu0.2Zn0.6Fe1.96O4-BaTiO3 composites [J].J. Mag. Mag. Mater.2004,269: 352-358.
    [73]Y.C. Lee, Y.L. Huang, Effects of CuO Doping on the Microstructural and Dielectric Properties of Ba0.6Sr0.4TiO3 Ceramics [J].J. Am. Ceram.Soc.2009,92 (11):2661-2667. DOI:10.1111/j.1551-2916.2009.03266.x
    [74]M.C.Dimri, A. Verma, S.C. Kashyap, et al.Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method [J].Mater. Sci. Eng. B 2006,133:42-48.
    [75]W.P. Chen, J.Q. Qi, Y. Wang, et al. Hydrogen-induced degradation in NiCuZn ferrite-based multilayer chip inductors [J].Mater. Lett.2005,59:1636-1639.
    [76]L. Jia, S.Chen, H. Zhang, et al. Synthesis and electromagnetic properties of PZTS-NCZF composites [J].Mater. Chem. Phys.2009,114:697-701.
    [77]H. Jiang, J. Zhai, X. Chou, et al. Influence of Bi2O3 and CuO addition on low-temperature sintering and dielectric properties of Ba0.6Sr0.4TiO3 ceramics [J]. Mater. Res. Bull.2009,44:566-570.
    [78]X. Tang, H. Zhang, H. Su, et al. High-frequencymicro-inductor fabricated on NiCuZn ferrite substrates [J].J. Magn. Magn. Mater.2005,293:812-815.
    [79]K.O.Low, F.R. Sale, Electromagnetic properties of gel-derived NiCuZn ferrites [J].J. Magn. Magn.Mater.2002,246:30-35.
    [80]C.R.K. Mohan, P.K. Bajpai, Effect of sintering optimization on the electrical properties of bulk BaxSr1-xTiO3 ceramics [J].Physics B.2008,403:2173-2188.
    [81]T. Nakamura, Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra [J].J. Magn. Magn. Mater.1997,168:285-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700