微/纳米结构复合型TiO_2光催化剂的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体TiO_2光催化剂在空气净化、污水处理、自洁净玻璃、防雾和抗菌等领域具有广阔的应用前景。目前,TiO_2光催化剂还存在光催化活性较低以及对太阳光的利用率很低等难题。近年来,TiO_2光催化剂的改性技术得到了迅速发展,包括半导体复合、过渡金属离子掺杂、非金属掺杂、贵金属沉积、表面光敏化等方法。
     本论文针对纳米TiO_2的缺点,重点研究纳米TiO_2与其它半导体的复合,利用表面吸附层反应成功地将纳米TiO_2与ZnO和CuO复合,制备了微/纳米结构的ZnO/TiO_2和CuO/TiO_2复合物,并对其光催化活性进行了研究。主要内容如下:
     第一,综述了半导体光催化剂TiO_2的光催化反应机理,以及TiO_2光催化剂的研究进展及其应用。
     第二,为了使得光生电子和光生空穴的寿命延长,提高TiO_2的光催化活性,将其与禁带宽度相近的ZnO复合。以Zn(Ac)2和NaOH为原料,采用湿法合成微米尺寸的花状和棒状的ZnO微晶,将其作为纳米TiO_2的载体,利用表面吸附层反应成功地制备了微/纳米结构的ZnO/TiO_2复合物。
     第三,为了拓宽TiO_2光催化剂的光响应范围,并且能更好的分离e~--h~+对,提高光催化量子产率,将其与禁带宽度较窄的CuO复合。以CuSO_4·5H_2O、NaOH和C_6H_(12)O_6为原料,在常压下70℃时,不加任何添加剂的情况下,制备微米尺寸的球状和立方块状Cu_2O微晶,经热处理后得球状和立方块状CuO,将其作为纳米TiO_2的载体,利用表面吸附层反应成功地制备了微/纳米结构的CuO/TiO_2复合物。
     第四,通过光催化实验,验证复合光催化剂的光催化活性。以甲基橙为模拟废水,将微/纳米结构的ZnO/TiO_2和CuO/TiO_2复合物与甲基橙溶液混合均匀,分别经高压汞灯或日光灯照射反应,研究其光催化性能。实验结果得出了花状和棒状ZnO/TiO_2复合催化剂分别是摩尔比为1:3和1:1的光催化活性最好;球状和立方块状CuO/TiO_2的复合催化剂均为复合比例为2:1的光催化性能最好。并用催化活性最好的催化剂研究不同浓度的催化剂、不同甲基橙初始浓度对光催化效果的影响。
As a semiconductor photocatalyst, considerable attention has been focused on TiO_2 owing to its unique properties and promising applications, such as air purification, waste water treatment, self-cleanness, mist prevention, bacillus resistance and so on. However, it is still a great challenge to overcome the problems of low photocatalytic activity and low utilization of sunlight. In recent years, there is a rapid development of the improvement of TiO_2 photocatalyst, including the compositing of semiconductor, the doping of the transition metal ions and the non-metallic ions, the depositing of the precious metals and the sensitizing of TiO_2 surface.
     In this paper, have been focused on the combination of nanosized TiO_2 and other semiconductors materials based on its disadvantages. Micro/nano-structures ZnO/TiO_2 and CuO/TiO_2 composites photocatalyst were prepared by the hydrolyzation method in the surface adsorption layer of the micron dimentional ZnO and CuO. And the photocatalytic activity of the composites was given as a detailed research. The main contents are as follows:
     Firstly, the reaction mechanisms, the research progresses and the applications of TiO_2 photocatalysts were reviewed.
     Secondly, in order to keep light electron and hole prolonging and improve the photocatalytic activity, TiO_2 was composited with ZnO which has the similar band-gap. Zn(Ac)_2 and NaOH are used without further purification, the micron dimentional flower-shape and rod-shape ZnO microcrystallines were prepared through a facile wet synthesis. Additionally, the micro/nano ZnO/TiO_2 composite photocatalyst was successfully synthesized by the surface adsorption layer reaction with these microcrystallines as the carriers.
     Thirdly, TiO_2 was composited with CuO which has the narrower band-gap to broaden the light response range, separate electron-hole pairs, and improve the photocatalytic activity. In a typical preparation, CuSO_4·5H_2O, NaOH, and C_6H_(12)O_6 were all commercially available and used without further purification, the micron dimentional spherical and cubic Cu2O microcrystalline were prepared at 70℃and atmospheric pressure without any surfactants. After heat treatment, the spherical and cubic CuO were obtained. Then with CuO as the carrier of nanometer TiO_2, the micro/nano CuO/TiO_2 composite was successfully prepared by the surface adsorptive layer reaction.
     Fourthly, experiments were carried out to test the photocatalytic activity of the composite photocatalyst. Methyl orange was selected as a representative dye pollutant of industrial wastewaters. The photoreactor was designed with a high-pressure mercury lamp or fluorescent irradiation, and the abtained micro/nano ZnO/TiO_2 and CuO/TiO_2 was added as the photocatalyst into Methyl orange. The experimental results indicated that the flower-shape and rod-shape ZnO/TiO_2 composites showed the best photocatalytic activity with the mole ratio of ZnO:TiO_2 3 to 1 and 1 to 1. However, the spherical and cubic of CuO/TiO_2 composites gave the best light catalytic performance with the both mole ratio of CuO:TiO_2 2 to 1. The effects of different concentrations of catalysts and different initial concentrations of methyl orange on photocatalytic activity were also studied using the catalysts which had the best catalytic activity.
引文
[1] A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238(5358) : 37-38.
    [2] Frank S N, Bard A J, High efficiency solar cell based on dye-sentized colloidal arsenical gallium [J]. Electrochem. Am Chem Soc, 1977,99(14): 4667.
    [3] Michael R. H., Scot T. M., Wonyong C., et al. Chem. Rev. [J]. 1995, 95: 69-96.
    [4] Chen X. B., Mao S, S., Chem. Rev. [J]. 2007, 107 (7): 2891-2959.
    [5]菅盘铭,夏亚穆,李德宏等.掺杂TiO2纳米粉的合成、表征及催化性能的研究[J].催化学报, 2001, 22(2):161-164.
    [6] Pilizzettie. Fine particles science and technology from micro to nanoparticles[M]. London: Kluwer, Ltd, 1996: 657-673.
    [7] Wu C G , Tzeng L F, Kuo Y T. Enhancement of the photocatalytic activity of TiO2 film via surface modification of the substrate[J]. Applied Catalysis A: General, 2002, 226:199-211.
    [8]成英之,张渊明,唐渝. WO3-TiO2薄膜型复合光催化剂的制备和性能[J].催化学报, 2001, 22(3): 203-205.
    [9]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社. 2002,12, 1-2.
    [10] Matthews R W. J. Phys. Chem. 1987, 91:3328-3333.
    [11] Jaffrezic-Renault N, Pichat P, Foissy A, et al. J. Phys.Chem. 1986, 90: 2733-2738.
    [12] Vorontsov A V, Stoyanova I V, Kozlov D V, et al. J. Catal. 2000, 189: 360-369.
    [13] Sauer M L and Ollis D F. J. 1991, 129: 81-91.
    [14] Brezova V and Stasko A. J. Catal. 1994,147: 156-162.
    [15] Onishi H, Aruga T and Iwasawa Y. J. Catal. 1994, 146: 557-567.
    [16] Cant N W and Cole J R. J. Catal. 1992, 134: 317-330.
    [17] Miyauchi M, Nakajima A, Fujishima A, et al. Chem. Mater. 2000, 12: 3-5.
    [18] Nozik A J, Proceedings of the 9th International Conference on Photochemical Conversion and Storage of Solar Energy. 1992.
    [19]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社, 2002, 12, 42-43.
    [20] (西)Fernando J. Beltran著;周云瑞译.水和废水的臭氧反应动力学.中国建筑工业出版社, 2007, 203-204.
    [21] Tuichi C S and Ollis D F. J. Catal. 1990, 122 : 178-192.
    [22]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社, 2002, 12, 144-188.
    [23] L. P. Childs, D. F. Ollis. [J]. Catal. 1980, 66, 383.
    [24] Grzechulska J, Morawski A W. Photocatalytic decomposition of azo-dye acid black in water over modified titanium dioxide [J].Applied Catalysis B: Environmental, 2002, 36, 45.
    [25] Lettmann C, Hildenbrand K Kisch H, Macyk W, Maier W. Visible light Photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst [J]. Applied Catalysis B: Environmental, 2001, 32: 215-227.
    [26]马骁轩. TiO2光催化技术降解废水有机物的研究[J].安徽农业科学, Journal of Anhui Agri Sci. 2009, 37 (8) : 3739-3742.
    [27]胡春,干怡中.凹凸棒负载TiO2对偶氮染料和纺织废水光催化脱污[J].环境科学, 2001, 21 (l) : 123-125.
    [28] HDAKA H, YAMADA S, SUENAGE S, et al. Photodegradation of surfactants part IV complete photocata[J]. J Mol Cat, 1990, 59: 279 - 290. [29 ]雷乐成,汪人翠.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [30]葛飞,易晨俞,陈鹏等. TiO2固定膜光催化降解甲胺磷农药废水[J].中国给水排水, 2001 (10) : 9-11.
    [31] MIYAKEM, YONEYAME H, TAMURA H. The correlation between photo-electrochemical cell reactions and photocatalytic reactions on illuminated rutile [J] . Bull Chem Soc Jpn , 1997, 50 (6) : 1492-1496.
    [32]戴遐明.半导体氧化物超细粉末对Cr(IV)的光催化还原研究[J].环境科学, 1996, 17 (6) : 34-38.
    [33] Serpone N, Solar Energy Materials and Solar Cells. 1995, 38: 369-379.
    [34]祖庸,雷闫盈,李晓娥等.现代化工. 1999,19: 46-48.
    [35]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社, 2002, 12, 282-283.
    [36]仇雁翎,李田,赵建夫,朱志良.环境工程学报,第1卷,第11期,2007年11月,23-28.
    [37]谈国强等编.生物陶瓷材料.化学工业出版社, 2006.10. 186-189.
    [38]Yamashita H, Ichihashi Y, Anpo M. et al. [J]. Phys. Chem. 1996, 100: 16041-16044.
    [39] Yamashita H, Ichihashi Y, Harada M. et al. [J]. Catal. 1996, 158, 97.
    [40]岩尾雅俊,安藤孝,竹鼻俊博.工业材料. 1997, 45, 89-91.
    [41] Morikawa M.,Takahashi M.Titanium oxide photocatalyst for paper coating and its photocatalytic ability. Konnsyrkku, 2002, 30: 2-4.
    [42]张伟伟.纳米氧化钛的制备、改性及光阴极保护性能[D].青岛:中国海洋大学博士毕业论文. 2008:2.
    [43]谈国强等编.生物陶瓷材料.化学工业出版社, 2006.10. 188.
    [44]下吹越光绣.工业材料. 1997, 45, 67-70.
    [45] Miwa Y.,Imura T.,Akamatsu M.,et al.Formation of uniform photocatalytic or hydrophilic coating films.Jpn.Kokai Tokkyo Koho JP 2002, 316, 090.
    [46] Ni M, LeungM K H, Leung D Y C, et al. Renew Sustain Energy Rev., 2007, 11: 401-425.
    [47]盛国栋,李家星,王所伟,王祥科.提高TiO2可见光催化性能的改性方法[J].化学进展. 2009,21(12): 2492-2504.
    [48]黄永生,冯海波. TiO2光催化剂的改性研究[J].舰船防化. 2009, (3):12-14.
    [49]邵绍燕,楚英豪,姚远,尹华强.纳米TiO2在环境应用方面的研究进展[J].环境科学与技术. 2008, 31(3) : 43-46.
    [50] Wong W K,Malati M A.Doped TiO2 for TiO2 Solar Energy Applications[J].Solar Eneragy,2006, 36:163-168.
    [51]李昱昊,毛立群,张顺利等.河南大学学报(自然科学版)[J],2004,34(2):28.
    [52]罗东卫,程永清,秦华宇,冯蕾.改性纳米TiO2光催化剂的研究进展及表征方法[J].钛工业进展. 2009, 26(1): 11-15.
    [53] Yang H M, Shi R R, Zhang K et al. J Alloys Comp[J], 2005, 398(2): 200.
    [54]王军,王拯,胡方梅.掺杂铁TiO2纳米微粒的制备及光催化性能[J].工业用水与废水, 2008, 39(2): 79-82.
    [55]冯良荣,吕绍洁,邱发礼.稀土元素掺杂对纳米TiO2光催化剂性能的影响[J].复旦大学学报(自然科学版), 2003, 42(3): 413-417.
    [56] Shu Yin, Yohei Aita.Synthesis of Excellent Visible-light Responsive TiOxNy Photocatalyst by Ahomogeneous Precipitation-solvothermal Process[J].J.Mater Chem.,2005, 15: 674-682.
    [57] Khan S U M, Al-Shahry M, Ingler JrW B. Efficient photo chemicalwater splitting by a chemically modified m-TiO2 [J]. Science, 2002, 297: 2243-2245.
    [58]曾春燕,任爱玲,赵文霞.提高纳米TiO2光催化活性的研究进展[J].河北工业科技, 2009, 26(1): 65-68.
    [59] Fu X Z, Zeltner W A, Anderson M A. Appl. Catal. B, 1995, 6: 209-224.
    [60]尤先锋,陈锋,张金龙等.银促进的TiO2光催化降解甲基橙[J].催化学报, 2006, 27(3): 270-274.
    [61] Wang C, Liu C, Chen L, et al. J. Colloid. Interface Sci., 1997,191: 464-470.
    [62]张彭义,余刚,蒋展鹏.半导体光催化技术研究进展[J].环境科学进展, 1997, 5(3): 1-10.
    [63]黄荔,全水清.纳米TiO2光催化材料改性研究进展[J].江西科学, 2008, 26(6): 997-1000.
    [64] ChoY M, Choi W Y, Lee C H, Hyeon T, Lee H I. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 [J]. Environ. Sci. Technol.,2001, 35(5): 966-970.
    [65]王振领,李敏,刘天学等. [J].陕西师范大学学报(自然科学版), 2002, 3 (30): 87-89
    [66]马保军,赵中一,林克英. TiO2光催化剂固定化技术及光催化反应器研究[J].环境科学与技术, 2003, 26: 87-89.
    [67]彭晓春,陈新庚,黄鹄等.n-TiO2光催化机理及其在环境保护中的应用研究进展[J].环境污染治理技术与设备, 2002, 3(3):1-6.
    [68]曹亚安,黄英,陈咏梅等. TiO2纳米粒子膜的制备、表面态性质和光催化活性[J].催化学报, 1999, 20(3): 353-355.
    [69]贺飞,唐怀军,赵文宽等.纳米TiO2光催化剂负载技术研究[J].环境污染治理技术与设备, 2001, 2(2): 47-58.
    [70]姜海波,李春忠,丛德滋等.气相燃烧合成二氧化钛纳米颗粒[J].中国粉体技术, 2001, 7(2):28-32.
    [71]向芸,杨世源,梁晓峰等.液相合成纳米TiO2的进展[J].硅酸盐通报, 2006, 25(3): 96-100.
    [72] KUO D H, TZENG K H. Growth and properties of titania and aluminum titanate thin films obtained by r.f. magnetron sputtering [J]. Thin Solid Films, 2002, 420:497-502.
    [73] Ollis D F. Contaminant degradation in water, Heterogeneous photocatalysis degrades halogenated hydrocarbon contaminants [J]. Environ. Sci. Technol.1985, 19:480.
    [74] Matthews R W. Photocatalytic Oxidation of Organic Contaminants in Water: An Aid to Environmental Preservation[J], Pure&Appl.Chem.1992,64:1285-1290.
    [75] Legrini O, Oliveros E, Braum A M. Photochemical Processes for Water Treatment [J]. Chem.Rev.1993, 93: 671-699.
    [76] Wang D H, Liang R S, Cheng H M, Ma J M, Wang Y Q, Zhang D H. Metal ion dopants dependence of optical absorbance in TiO2 nanoclusters[J]. Acta Scentiarum naturalium universitatis pekinensis, 2002,38(5):673-676.
    [77] D.Liu, P.V.Kamat, Electrochemical rectification in CdSe + TiO2 coupled semiconductor films, J.Electroanal. Chem. Interfacial Electrochem.1993, 347 : 451-456.
    [78] Shen Y C, Cheng H M, Ma J, Collo M, Surf, A. Co-sensitization of microporous TiO2 electrodes with dye molecules and quantum-sized semiconductor particles[J]. Physicochemi. Eng. Aspe, 2000, 175: 135-140.
    [79] Wang Y Q, Cheng H M, Hao Y Z, et al. The Preparation, Characterization, Photoeletrohemical and Photocatalytic Properties of Lanthanide Metal-Ion-Doped TiO2 Nanoparticles [J], Mol.Catal. A, 2000, 151, 205-216.
    [80] Cho Y M, Choi W Y, Lee C H, Hyeon T, Lee H I. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 [J]. Environ Sci Technol, 2001, 35(5): 966-970.
    [81] Bae E Y, Choi W Y. Highly enhanced photoreduetive degradation of perchlerinated compounds on dye-Sensitized metal/TiO2 under visible light [J]. Environ Sci Technol, 2003, 37(1): 147-152.
    [82]孙宝.纳米ZnO-TiO2复合粉体的制备新工艺研究[D].北京:北京化工大学硕士研究生学位论文. 2003:3.
    [83]张敬畅,李青,曹维良.超临界流体干燥法制备纳米TiO2-ZnO复合催化剂及其对苯酚降解的光催化性能[J].催化学报, 2003,24(11): 831-834.
    [84]张春勇,郑纯智,张国华.微波辐射法研制复合半导体光催化材料TiO2/ZnO[J].化学工程师, 2007, (2): 20-23.
    [85]蒋晓原,丁光辉,楼莉萍,李供省,陈英旭,郑小明. CuO/TiO2和CuO-ZrO2/TiO2催化剂对NO + CO反应性能的影响[J].复旦学报(自然科学版),2003, 42(3): 457-462.
    [86]郭先芝,黄静,王彦美,王淑荣,张保龙,吴世华.以TiO2多孔微球为载体的CuO /TiO2催化剂的制备、表征及CO氧化催化性能[J].高等学校化学学报, 2008, 29: 1220-1223.
    [87]张启龙,杨辉,王焕平. CuO-TiO2复合纳米粉制备及其原位掺杂Al2O3微波介质陶瓷[J].浙江大学学报(工学版), 2006, 40(8): 1450-1453.
    [88]吉芳英,邱雁,徐璇,袁云松. CuO/TiO2-H2O2可见光催化亚甲基蓝脱色效果及影响因素研究[J].环境工程学报, 2008, 2(6): 743-747.
    [89]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001:88-90.
    [90]孙旋,刘红,赵慧忠,南昊.纳米ZnO-TiO2复合光催化剂的制备与表征[J].武汉科技大学学报(自然科学版), 2007, 30(6): 595-598.
    [91]吉芳英,邱雁,徐璇,袁云松. CuO/TiO2-H2O2可见光催化亚甲基蓝脱色效果及影响因素研究[J].环境工程学报, 2008, 2(6): 743-747.
    [92]吉芳英,邱雁,徐璇,袁云松.亚甲基蓝的CuO/TiO2-H2O2光催化脱色效果及影响因素[J].环境化学, 2008, 27(3): 288-291.
    [93]何莉,尹志轩,范剑平,郭倩,郭云,许春晓,刘琳燕. CuO/TiO2- H2O2自然光催化降解印染废水的影响因素[J].污染防治技术, 2009, 22(1): 8-11.
    [94]吉芳英,徐璇,范子红,邱雁,袁云松. CuO/TiO2-H2O2光催化体系中亚甲基蓝脱色机理[J].重庆大学学报, 2009, 32(6): 705-710.
    [95]艾仕云,鲜跃仲,陈俊水.纳米CuO/TiO2的光催化降解及其应用[J].华东师范大学学报(自然科学版) , 2003, 3 (1) : 62-67.
    [96]孙平,陈景文,全燮.部分水溶性偶氮染料的光催化降解研究[J].环境化学, 1999, 18(3): 254-257.
    [97] Fanta G F, Robert C B, Doane W M, et al. Graft Copolymers of Starch and Poly Preparation and Testing as Flocculating Agents [J]. Appl. Polym. Sci, 1971, 15:2651-2660.
    [98]张西旺,王怡中.无机氧化剂在光催化氧化技术中的应用[J].化学通报, 2005, 11:807-866.
    [99] M Anheden , D Y Goswami , G J Svedberg .Solar Energy Eng .,1996, 118:2-10.
    [100] D D Dionysiou , M T Suidan , E Bekou et al. Appl. Catal. B, 2000, 26:153-157.
    [101]邓培昌.卤素元素掺杂TiO2的制备及光催化性能研究[D].青岛:中国海洋大学博士毕业论文. 2009:6.
    [102] Satoko H, Yasuaki K, Isao Y et al., Development of Hydrophilic Outside Mirror Coated with Titania Photocatalyst [J] . JSAE Review, 2000, 21 (1) : 97-102.
    [103]夏金虹.二氧化钛粉体光催化降解印染废水的研究[J] .应用化工, 2008, 34 (8): x.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700