掺钼二氧化钛光催化剂的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文致力于TiO_2粉末光催化剂的掺杂改性研究。采用传统的溶胶凝胶法制备了掺钼二氧化钛粉末(Mo-TiO_2 );另外,将掺钼二氧化钛粉末投入到纯TiO_2溶胶中,经烘干、煅烧后,制得高活性TiO_2 /Mo-TiO_2复合物光催化剂。使用X射线光电子能谱、X射线衍射、透射电镜、比表面积分析、紫外-可见漫反射光谱、荧光光谱等手段对催化剂进行了表征。在紫外光照射下,以甲基橙溶液的光催化降解反应为探针,研究了Mo离子浓度对样品光催化活性的影响。通过测定施加不同偏压后掺杂不同钼离子浓度的Mo-TiO_2电极的交流阻抗图,考察掺钼后二氧化钛电极的平带电势和载流子浓度的变化,研究了样品电化学性能对光催化活性的影响。研究表明:
     (1) XPS结果显示,钼离子掺杂样品表面羟基数目要比纯TiO_2多。Mo元素主要以Mo~(6+)形式存在于催化剂中,也有少量的Mo~(5+)。
     (2)掺杂离子的浓度影响TiO_2的晶相和颗粒粒径。400℃煅烧时样品均为锐钛矿相;在适量掺杂浓度下,掺入金属离子能不同程度地抑制TiO_2晶粒的长大。复合型TiO_2 /Mo-TiO_2粉末的平均粒径为12.8 nm左右,稍小于纯TiO_2。
     (3) BET结果表明,所制得的催化剂都具有孔结构。对于Mo-TiO_2催化剂,低浓度掺杂其比表面积比纯TiO_2小,高浓度掺杂其比表面积较大。复合型催化剂的比表面积与纯TiO_2相差不大。
     (4)掺钼TiO_2的光吸收带边相对于纯TiO_2有明显的红移,并且随着掺杂离子浓度的增大,红移越明显。
     (5) FS结果可以看出,随着掺杂离子浓度的增加,催化剂的荧光强度不断降低。另外,采取不同掺杂方式、掺杂浓度得到的掺钼TiO_2的荧光峰的位置基本一致。
     (6) Mo-TiO_2催化剂的光催化活性比纯TiO_2差,这是因为钼离子促进了光生载流子的复合;带有n-n异质结半导体结构的TiO_2 /Mo-TiO_2复合催化剂拥有比纯TiO_2和Mo-TiO_2催化剂更高的光催化活性。其中,Mo的掺杂摩尔分数为2%、TiO_2 :Mo-TiO_2的质量比为12:1的最佳复合催化剂,其光催化活性是纯TiO_2的1.6倍。
     (7) Mo-TiO_2电极的平带电势V_(fb)和载流子浓度ND值表明,当Mo含量较低时(≤2%),Mo-TiO_2的平带电势和载流子浓度与纯TiO_2的相差不大;但当Mo掺杂量大于2%时,平带电位正移、载流子浓度增加。
In order to enhance the photocatalytic activity of TiO_2 catalysts, Mo-doped TiO_2 photocatalysts (Mo-TiO_2 ) were prepared by the traditional sol–gel method using (NH_4)_6Mo_7O_(24) .4H_2O and tetrabutyl titanate [Ti(OC_4H_9)_4] as the raw materials. TiO_2 /Mo-TiO_2 composite photocatalysts were prepared by mixing TiO_2 sol with sol-gel derived Mo-TiO_2 powders, followed by drying and calcination. These photocatalysts were characterized by XPS, XRD, TEM, BET, UV-vis and FS spectroscopy. The samples were employed as catalysts for methyl orange photodegradation in aqueous suspensions under UV irradiation, used as a probe reaction. Nyquist and Bode diagrams of the impedance spectra were obtained for Mo-TiO_2 electrodes when different bias potential was present, the flat-band potential(Vfb) and the donor concentration(ND) of Mo-TiO_2 electrodes were investigated. The influence of the electrochemical properties of TiO_2 catalysts on the photocatalytic activities was studied. The results were showed as follows:
     (1) XPS results indicated that the surface hydroxyl content of samples Mo-TiO_2 and TiO_2 /Mo-TiO_2 was greater than that of sample undoped TiO_2 . The elements was existed in the catalysts by the mainly of Mo~(6+) and a small amout of Mo~(5+).
     (2) Doping ions content had influences on the crystal phase and crystal size of TiO_2. All TiO_2 catalysts calcined at 400℃were of anatase type. Doping metal ions inhibited the TiO_2 grain growth in varying degrees when the dopants in appropriate content. The grain size of TiO_2 /Mo-TiO_2 composites was slightly smaller than that of undoped titania, the mean crystalline sizes were about 12.8 nm.
     (3) The BET results indicated the presence of mesoporous structure for all samples. For Mo-TiO_2 samples, at low Mo-doping concentration range, the samples had less surface area compared to the undoped TiO_2 ; at high Mo-doping concentration range, the SBET of catalysts larger than the undoped TiO_2 . For composite powers, the SBET was basically the same with the undoped TiO_2 .
     (4) Compared with the pure sample, obvious absorption edge red-shifts were observed in the results of the doped samples with increasing molybdenum content.
     (5) Photoluminescence spectra exhibited great decrease in emission intensity of doped samples compared with undoped TiO_2. Moreover, although the doping modes were different, no new luminescence was occurred.
     (6) The photocatalytic activity of Mo-TiO_2 photocatalysts was worse than that of undoped TiO_2 and the photodegradation rate decreased with increase in the level of molybdenum doped (on TiO_2 ). TiO_2/Mo-TiO_2 composite photocatalysts having the n-n heterojunction, were shown to have a higher photocatalytic destruction rate than that of Mo-TiO_2 photocatalysts and undoped TiO_2 . The best TiO_2 /Mo-TiO_2 composite with the mass ratio of TiO_2 :2 at % Mo-TiO_2 equal to 12:1 demonstrates 1.6 times the photocatalytic activity of undoped TiO_2 .
     (7) For Mo-TiO_2 electrodes, at low Mo-doping concentration range(≤2%), the flat-band potential(V_(fb)) and the donor concentration(ND) were basically the same with the undoped TiO_2 ; at high Mo-doping concentration range, the flat-band potential(Vfb) shifted positively, the donor concentration(ND) were increased.
引文
[1] Hinsch A.; Kroon J.M.; Kern R., et al. New photoelectrochromic device[J]. Prog. Photovolt: Res. Apple., 2001, 9(6): 425-438
    [2] Islam A.; Sugihara H.; Hara k., et al. Sensitization of nanocrystalline TiO_2 film by ruthenium(II) diimine dithiolate complexes[J]. J. Photochem. Photobiol. A, 2001, 145(1-2): 135-141
    [3] Zhang J.; Xu Q.; Feng Z.C., et al. Importance of the relationship between surface phases and photocatalytic activity of TiO_2[J]. Angew. Chem. Int. Ed., 2008, 47(9):1766-1769
    [4] Hoffmaun M.R.; Martin S.T.; Choi W., et al. Environmental application of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96
    [5] Fox M.A.; Dulay M.T.. Heterogeneous photocatalysis[J]. Chem. Rev., 1993, 93(1): 341-357
    [6] Fujishima A.; Rao T.N.; Tryk D.A.. Titanium dioxide Photocatatysis[J]. J. PhotoChem. Photobiol. C: Photochem. Rev., 2000, 1(1): 1-21
    [7] Prashant V.K.. Photochemistry on nonreactive and reactive (semiconductor) surfaces[J]. Chem. Rev., 1993, 93(1): 267-300
    [8] Linsebigler A.L.; Guangquan L.; Yate J.T.. Photocatalysis on TiO_2 surface: principles, mechanisms, and delected results[J]. Chem. Rev., 1995, 95(3): 735-750
    [9] Zahraa O.; Dorion C.; Ould-Mame S.M., et al. Titanium dioxide deposit films for photocatalytic studies of water pollutants[J]. J. Adv. Oxid. Technol., 1999, 4(1): 40-46
    [10] Salvador P.; Garcia Gonzalez M.L.; Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile[J]. J. Phys. Chem., 1992, 96 (25): 10349-10353
    [11] Bickley R.I.; Gonzalez-Carreno T.; Lees J.S., et al. A structural investigation of titanium dioxide photocatalysts[J]. J. Solid State Chem., 1991, 92(1): 178-190
    [12] Abdullah M.. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide[J]. J. Phys. Chem., 1990, 94(17): 6820-6825
    [13]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001: 92
    [14]孙奉玉,吴鸣,李文钊,等.二氧化钛表面光学特性与光催化活性的关系[J].催化学报, 1998, 19(2): 121-124
    [15] Ward M.D.; White J.M.; Bard A.J.. Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysis. The methyl viologen-acetate system[J]. J. Am. Chem. Soc., 1983, 105(1): 27-31
    [16] Augugliaro V.; Munoz M.J.L.; Palmisano L.. Influence of pH on the degradation kinetics of nitrophenol isomers in a heterogeneous photocatalytic system[J]. Appl. Catal. A: Chem., 1993, 101(1): 7-13
    [17]蒋伟川,王琪全,俞传明.半导体光催化降解分散染料溶液的研究[J].上海环境科学, 1995, 14(5): 8-10
    [18]孙尚梅,康振晋,魏志仿. TiO_2膜太阳光催化氧化法处理毛纺染整废水[J].化工环保, 2000, 20(1): 11-14
    [19] Goswami D.Y.. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection process[J]. J. Solar Energy Eng. 1997, 119(2): 101-107
    [20]孟耀斌,黄霞,钱易.不同波段紫外光在TiO_2悬浊液中的消光特点[J].环境科学, 2001, 22(2): 46-50
    [21]陈士夫,赵梦月,陶跃武.太阳光TiO_2薄层光催化降解有机磷农药的研究[J].太阳能学报, 1995, 16(3): 234-239
    [22] Wang Y.B.; Hong C.S.. TiO_2-mediated photomineralization of 2-chlorobiphenyl: the role of O2[J]. Wat. Res., 2000, 34(10): 2791-2797
    [23]刘纯新,孔欣,周岳溪,等.光催化处理印染废水的中试研究[J].给水排水, 2003, 29(2): 35-38
    [24]张海燕,王宝辉,陈颖,等.光催化氧化处理含油污水的研究[J].化工进展, 2003, 22(1): 67-70
    [25]李来胜,祝万鹏,张彭义,等. TiO_2薄膜光催化臭氧化邻苯二酚[J].催化学报, 2003, 24(3): 163-166
    [26] Wang Y.B.; Hong C.S.. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO_2 suspensions[J]. Wat. Res., 1999, 33(9): 2031-2036
    [27] Martin S.T.; Lee A.T.; Hoffmann M.R.. Chemical mechanism of inorganic oxidants in the TiO_2/UV process: Increased rates of degradation of chlorinated hydrocarbons[J]. Environ. Sci. Technol., 1995, 29(10): 2567-2573
    [28]施利毅,李春中,房鼎业. TiCl4-O2体系高温反应制备TiO_2光催化材料的研究[J].无机材料学报, 1999, 14(5): 717-725
    [29]高小云.激光热解法制备超微粉TiO_2[J].无机材料学报, 1993, 8(1): 57-62
    [30] So W.W.; Park S.B.; Moon S.J.. The Crystalline Phase of Titania Particles Prepared at Room Temperature by a Sol–gel Method[J]. J. Mater. Sci. Lett., 1988, 17(14): 1219-1222
    [31] Vorkapic D.; Matsoukas T.. Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides[J]. J. Am. Ceram. Soc., 1998, 81(11): 2815 -2820
    [32]金学军,李大成,谢扩军,等.微波能在制备超细TiO_2中的应用[J].电子元件与材料, 1998, 17(2): 38-40
    [33]高镰,陈锦元,黄军华,等.醇盐水解法制备二氧化钛纳米粉体[J].无机材料学报, 1995, 10(4): 423-427
    [34] Vogel R.; Hoyer P.; Weller H.. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. J. Phys. Chem., 1994, 98(12): 3183-3188
    [35] Fujii H.; Inata K.; Ohtaki M., et al. Synthesis of TiO_2/CdSn anocomposite via TiO_2 coating on CdS nanoparticles by compartmentalized hydrolysis of Titania oxide[J]. J. Mater. Sci., 2001, 36(2): 527-532
    [36] Spanhel L.; Weller H.; Henglein A.. Photochemistry of semiconductor colloids. Electron injection from illuminated CdS into attached TiO_2 and ZnO particles[J]. J. Am. Chem. Soc., 1987, 109(22): 6632-6635
    [37] Gopidas K.R.; Bohorquez M.; Kamat, P. V.. Photophysical and photochemical aspects of coupled semiconductors. Charge-transfer processes in CdS-TiO_2 and CdS-AgI systems[J]. J. Phys. Chem., 1990, 94(16): 6435-6440
    [38] Fujii H.; Ohtaki M.; Eguchi K., et al. Photocatalytic activities of CdS crystallites embedded in TiO_2 gel as a stable semiconducting matrix[J]. J. Mater. Sci. Lett., 1997, 16(13): 1086-1088
    [39] Rabani J.. Sandwich colloids of zincoxide and zinc sulfide in aqueous solutions[J]. J.Phys. Chem., 1989, 93(22): 7707-7713
    [40] Do Y.R.; Lee W.; Dwight K., et al. The effect of WO3 on the photocatalytic of TiO_2[J]. J. Solid State Chem., 1994, 108(1): 198-201
    [41] Bedja I.; Kamat P.V.. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO_2 capped SnO2 nanocrystallites[J]. J. Phys. Chem., 1995, 99(22): 9182-9188
    [42] Haesselbarth A.; Eychmueller A.; Eichberger R., et al. Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids[J]. J. Phys. Chem., 1993, 97(20): 5333-5340
    [43] Vinodgopal K.; Kamat P.V.. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO_2 coupled semiconductor thin films[J]. Environ. Sci. Technol., 1995, 29(3): 841-843
    [44] Fang J.H.; Lu X.M.; Zhang X.F., et al. CdSe/TiO_2 nanocrystalline solar cells[J]. Supramolecular Sci., 1998, 5(5-6): 709-711
    [45] Serpone N.; Maruthamuthu P.; Pichat P., et al. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors[J]. J. Photochem. Photobiol. A, 1995, 85(3): 247-255
    [46]张敬畅,李青,曹维良.超临界流体干燥法制备纳米TiO_2-ZnO复合催化剂及其对苯酚降解的光催化性能[J].催化学报, 2003, 24(11): 831-834
    [47] Chen S, Zhang S, Liu W, Zhao W. Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO_2[J]. J. Hazard. Mater., 2008, 155(1-2): 320-326
    [48]唐一文,陈志钢,张丽莎,等.纳米Cu2O/TiO_2异质结薄膜电极的制备和表征[J].无机材料学报, 2006, 21(2): 453-458
    [49] Bessekhouad Y.; Robert D.; Weber J.V.. Photocatalytic activity of Cu2O/TiO_2, Bi2O3/TiO_2 and ZnMn2O4/TiO_2 heterojunctions[J]. Catal. Today, 2005, 101(3-4), 315-321
    [50]施利毅,古宏晨,李春忠,等. SnO2-TiO_2复合光催化剂的制备和性能[J].催化学报, 1999, 20(3): 338-342
    [51]成英之,张渊明,唐渝. WO3-TiO_2薄膜复合型光催化剂的制备和性能[J].催化学报, 2001, 22(2): 203-205
    [52] Huang H.J.; Li D.Z.; Lin Q., et al. Efficient degradation of benzene over LaVO4/TiO_2 nanocrystalline heterojunction photocatalyst under visible glight irradiation[J]. Environ. Sci. Technol., 2009, 43(11): 4164-4168
    [53] Xiao G.C.; Wang X.C.; Li D.Z., et al. InVO4-sensitized TiO_2 photocatalysts for efficient air purification with visible light[J]. J. Photochem. Photobiol. A, 2008, 193(2-3): 213-221
    [54] Yu H.; Chen S.; Quan X., Zhao H., et al. Fabrication of a TiO_2?BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI)[J]. Environ. Sci. Technol., 2008, 42(10): 3791-3796
    [55] Linsebigler A.; Rusu C.; Yates J.T.. Absence of platinumen hancement of a photoreaction on TiO_2-CO Photooxidation on Pt/TiO_2(110)[J]. J. Am. Chem. Soc., 1996, 118(22): 5284-5289
    [56] Lee B.Y.; Park S.Y.; Lee S.C., et al. Optical properties of Pt-TiO_2 catalyst and photocatalytic activities for benzene decomposition[J]. Chem. Mater. Sci., 2003, 20(5) :812-818
    [57]姚晓斌,马颖,姚建年. Ag和Pd及其离子对TiO_2光催化分解CH3CHO的影响[J].感光科学与光化学, 1999, 17(l) : 12-15
    [58] SelaPani A.; Mozzanega M.N.. Influence of silver deposits on the photocatalytic activity of titania[J]. J. Catal., 1997, 168: 117-120
    [59]程沧沧,李太友,李华禄.载银TiO_2光催化降解2,4一二氯苯酚水溶液的研究[J].环境科学研究, 1998, 11(6): 27-29
    [60] Choi W.; Termin A.; Hoffmann M.R.. The role of metal ion dopants in quantum-sized TiO_2: Correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem. 1994, 98(51): 13669-13679
    [61] Zhu J.F.; Chen F.; Zhang J.L., et al. Fe 3+- TiO_2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization[J]. J. Photochem. Photobiol. A, 2006, 180(1-2): 196-204
    [62] Malati M.A.; Wong W.K.. Doping TiO_2 for solar energy applications[J]. Surf. Technol., 1984, 22(4): 305-322
    [63]营盘铭,夏亚穆,李德宏,等.掺杂TiO_2纳米粉的合成、表征及催化性能研究[J].催化学报, 2001, 22(2): 161-163
    [64]李芳柏,古国榜,李新军,等. WO3/TiO_2纳米材料的制备及光催化性能[J].物理化学学报, 2000, 16(11): 997-1002
    [65] Ashi R.; Morikawa T.; Ohwaki T., etal. Visible-light photocataiysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271
    [66] Ohko Y.; Ando I.; Niwa C., et al. Degradation of bisphenol A in water by TiO_2 photocatalyst[J]. Environ. Sci. Technol., 2001, 35(11): 2365-2368
    [67] Ohko Y.; Iuchi K.I; Niwa C., et al. 17β-estradiol degradation by TiO_2 photocatalysis as a means of reducing estrogenic activity[J]. Environ. Sci. Technol., 2002, 36(19): 4175-4181
    [68] Rabindranathan S.; Devipriya S.; Yesodharan S.. Photocatalytic degradation of phosphamidon on semiconductor oxides[J]. J. Hazard. Mater., 2003, 102(2-3); 217-229
    [69] Nakashima T.; Ohko Y.; Tryk D.A., et al. Decomposition of endocrine-disrupting chemicals in water by use of TiO_2 photocatalysts immobilized on polytetrafluoroethylene mesh sheets[J]. J. Photochem. Photobiol. A, 2002, 151(1-3): 207-212.
    [70] Deng X.Y.; Yue Y.H.; Gao Z.. Gas-phase photo-oxidation of organic compounds over nanosized TiO_2 photocatalysts by various preparations[J]. Appl. Catal. B, 2002, 39(2): 135-147
    [71] Zhang J.L.; Terukazu A.; Minagawa M., et al. Investigations of TiO_2 photocatalysts for the decomposition of NO in the flow system: The role of pretreatment and reaction conditions in the photocatalytic efficiency[J]. J. Catal., 2001, 198(1): 1-8
    [72] Nakashima T.; Ohko Y.; Tryk D.A., et al. Decomposition of endocrine-disrupting chemicals in water by use of TiO_2 photocatalysts immobilized on polytetrafluoroethylene mesh sheets[J]. J. Photochem. Photobiol. A, 2002, 151(1-3): 207-212
    [73] Tryba B.; Morawski A.W.; Inagaki M.. Application of TiO_2-mounted activated carbon to the removal of phenol from water[J]. Appl. Catal. B, 2003, 41(4): 427-433
    [74] Aguado J.; Grieken R.V.; Munoz M.J., et al. Removal of cyanides in wastewater by supported TiO_2-based photocatalysts[J]. Catal. Today, 2002, 75(1-4): 95-102
    [75] Hu C.; Wang Y.Z.; Tang H.X.. Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO_2 /SiO2 photocatalyst[J]. Appl. Catal. B, 2001, 35(2): 95-105
    [76] Frank S.N.; Bard A.J.. Hetergeneous photoeatalytic oxidation of cyanide ion in aqueous solution at TiO_2 powder[J]. J. Am. Chem. Soc., 1977, 99(l): 303-304
    [77] Hidaka H.; Kawanish H.; Ishizaka A., et al. In situ patterning and overgrowth for the formation of buried GaAs/AlGaAs single quantum-well structures[J]. Appl. Phys. Lett., 1992, 60(3): 365-367
    [78] Yoneyama H.; Yamashita Y.; Tamura H.. Heterogeneous photoeatalytic reduetion of dichromate on n-type semieonductor catalysts[J]. Nature, 1979, 282(5741): 817-818
    [79] Miyake M.; Yoneyama H.; Tamura H.. An electrochemical study on reactions of quinones in methanol on an illuminat rutile catalyst[J]. Electrochim. Acta, 1977, 22(4): 319-324
    [80] Serpone N.; Borgarello E.; Barbeni M., et al. Hydrogen from hydrogen sulfide clesvage improved efficiencies via modification of semiconductor particulates[J]. Int. J. Hydrogen Energy, 1985, 10(4): 249-253
    [81]戴遐明,陈永华,李庆丰,等.半导体氧化物超细粉末对Cr(VI)的光催化还原作用研究[J].环境科学, 1996, 17(6): 34-36
    [82] Yang Y.; Li X.J.; Chen J.T., et al. Effect of doping mode on the photocatalytic activities of Mo/TiO_2 [J]. J. Photochem. Photobiol. A, 2004, 163(3): 517-522
    [83] Paola A.D.; Marci G.; Palmisano L., et al. Preparation of polycrystalline TiO_2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-Nitrophenol[J]. J. Phys. Chem. B, 2002, 106(3): 637-645
    [84] Kemp T.J.; McIntyre R.A.. Influence of transition metal-doped titanium(IV) dioxide on the photodegradation of polystyrene[J]. Polym. Degr., 2006, 91(12): 3010-3019
    [85] Tan K.Q.; Zhang H.R.; Xie C.F., et al. Visible-light absorption and photocatalytic activity in molybdenum- and nitrogen-codoped TiO_2[J]. Catal. Commun., 2010, 11(5): 331-335
    [86] Jeon M.S.; Yoon W.S.; Joo H., et al. Preparation and characterization of a nano-sizedMo/Ti mixed photocatalyst[J]. Appl. Surf. Sci., 2000, 165(2-3): 209-216
    [87] Hong W.J.; Kang M.. The super-hydrophilicities of Bi–TiO_2, V–TiO_2, and Bi–V–TiO_2 nano-sized particles and their benzene photodecompositions with H2O addition[J]. Mater. Lett., 2006, 60(9-10): 1296-1305
    [88] Al-Kandari H.; Al-Kharafi F.; Katrib A.. Isomerization reactions of n-hexane on partially reduced MoO3/TiO_2[J]. Catal. Commun., 2008, 9(5): 847-852
    [89] Klosek S.; Raftery D.. Visible light driven V-doped TiO_2 photocatalyst and its photooxidation of ethanol[J]. J. Phys. Chem. B, 2001, 105(14): 2815-2819
    [90] Du Y.k.; Gan Y.Q.; Yang P., et al. Cyclic voltammetry and contact angle measurement studies of the Mo(VI) ions doped TiO_2 thin films [J]. Mater. Chem. Phys., 2007, 103(2-3): 446-449
    [91] Qin H.L.; Gu G.B.; Liu S.. Preparation of nitrogen-doped titania with visible-light activity and its application[J]. C. R. Chimie, 2008, 11(1-2): 95-100
    [92] Yu J.G.; Yu J.C.; Leung M.K.–P., et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. J. Catal., 2003, 217(1): 69-78
    [93] Yu J.G.; Yu J.C.; Cheng B., et al. The effect of F?-doping and temperature on the structural and textural evolution of mesoporous TiO_2 powders[J]. J. Solid State Chem., 2003, 174(2): 372-380
    [94] Yu J.C.; Yu J.G.; Ho W.K., et al. Preparation of highly photocatalytic active nano-sized TiO_2 particles via ultrasonic irradiation[J]. Chem. Commun., 2001, (19): 1942-1943
    [95] Saha N.C.; Tompkins H.G.. Titanium nitride oxidation chemistry : An X-ray photoelectron spectroscopy study[J]. J. Appl. Phys., 1992, 72(7): 3072-3079
    [96] Du Y.k.; Gan Y.Q.; Yang P., et al. Improvement in the heat-induced hydrophilicity of TiO_2 thin films by doping Mo(VI) ions[J]. Thin Solid Films, 2005, 491(1-2): 133-136
    [97] Kubacka A.; Colon G.; Fernandez-Garcia M.. Cationic (V, Mo, Nb, W) doping of TiO_2–anatase: A real alternative for visible light-driven photocatalysts[J]. Catal. Today, 2009, 143(3-4): 286-292
    [98] Dieterle M.; Weinberg G.; Mestl G.. Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3?x by DR UV/VIS, Ramanspectroscopy and X-ray diffraction[J]. Phys. Chem. Chem. Phys., 2002, 4(5): 812-821
    [99] Abazovic N.D.; Mirenghi L.; Jankovic I.A., et al. Synthesis and characterization of rutile TiO_2 nanopowders doped with iron ions[J]. Nanoscale Res. Lett., 2009, 4(6): 518-525
    [100] Nagaveni K.; Hegde M.S.; Madras G.. Structure and photocatalytic activity of Ti1-xMxO2±δ(M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method[J]. J. Phys. Chem. B, 2004, 108(52): 20204-20212
    [101] Tang H.; Berger H.; Schmid P.E., et al. Photoluminescence in TiO_2 anatase single crystals[J]. Solid State Commum., 1993, 87(9): 847-850
    [102] Rahman M.M.; Krishna K.M.; Soga T., et al. Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO_2 thin films[J]. J. Phys. Chem. Soilds, 1999, 60(2): 201-210
    [103] Zhou J.k.; Zhang Y.X.; Zhao X.S., et al. Photodegradation of benzoic acid over metal-doped TiO_2[J]. Ind. Eng. Chem. Res., 2006, 45(10): 3503-3511
    [104] Litter M.I.; Navfo J.A.. Photocatalytic properties of iron-doped titania semiconductors[J]. J. Photochem. Photobiol. A, 1996, 98(3): 171-181
    [105]罗永春,蔡秀娟,阎汝煦,等. PuNi3和Ce2Ni7型贮氢合金电极容量衰减的交流阻抗谱分析[J].兰州理工大学学报, 2007, 33(4): 13-17
    [106]姜月顺,李铁津.光化学[M].北京:化学工业出版社, 2004: 301
    [107]王添辉,李越湘,彭绍琴,等.铂修饰的稀土掺杂TiO_2的光催化制氢活性[J].化学学报, 2005, 63(9): 797-801
    [108] Schmuki P.; Bohni H.; Bardwell J.A.. In situ characterization of anodic silicon oxide films by AC impedance measurements[J]. J. Electrochem. Soc., 1995, 142(5), 1705-1712
    [109] Rothenberger G.; Fitzmaurice D.; Graetzel M.. Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films[J]. J. Phys. Chem., 1992, 96(14): 5983-5986
    [110] Redmond G.; Fitzmaurice D.. Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents[J]. J. Phys. Chem., 1993, 97(7): 1426-1430
    [111] Fitzmaurice D.. Using spectroscopy to probe the band energetics of transparent nanocrystalline semiconductor films[J]. Sol. Energy Mater. Sol. Cells, 1994, 32(3): 289-305
    [112] Butler M.A.. Photoelectrolysis and physical properties of the semiconducting electrode WO2[J]. J. Appl. Phys., 1977, 48(5): 1914-1920
    [113] Licht S.; Peramunage D.. Flat band variation of n-cadmium chalcogenides in aqueous cyanide[J]. J. Phys. Chem., 1996, 100(21): 9082-9087
    [114] Hukovic M.M.; Babic R.; Marinovic A.. Sepctrochemical characterization of benzotriazole on copper[J]. Electrochem. Soc., 1998, 145(12): 4045-4051
    [115]郭源,李永军.外在因素对TiO_2膜电极/溶液界面CPE行为的影响[J].物理化学学报, 2001, 17(4): 374-375
    [116] Randeniya L.K.; Bendavid A.; Martin P.J., et al. Photoelectrochemical and structural properties of TiO_2 and N-doped TiO_2 thin films synthesized using pulsed direct current plasma-activated chemical vapor deposition[J]. J. Phys. Chem. C, 2007, 111(49): 18334-18340
    [117] Krol R.V.; Goossens A.; Schoonman J.. Mott-schottky analysis of nanometer-scale thin-film anatase TiO_2[J]. J. Electrochem. Soc., 1997, 144 (5): 1723-1727
    [118] Devi L.G.; Kumar S.G.; Murthy B.N., et al. Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO_2 lattice and its photo catalytic activity under solar illumination[J]. Catal. Commun., 2009, 10(6): 794-798
    [119]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].北京:国防工业出版社, 1989: 231
    [120]温福宇,杨金辉,宗旭,等.太阳能光催化制氢研究进展[J].化学进展, 2009, 21(11): 2285-2302
    [121]虞丽生.半导体异质结物理[M].北京:科学出版社, 2006: 29-245
    [122]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展, 2009, 21(2-3): 406-419
    [123] Kumar R.C.. On the solution of poisson equation for an isotype heterojunction under zero-current condition[J]. Solid State Electron., 1968, 11(5): 543-551
    [124] Cserveny S.I.. Potential distribution and capacitance of abrupt heterojunctions[J]. Int. J.Electron., 1968, 25(1): 65-80
    [125] Duonghong D.; Ramsden J.; Graetzel M.. Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems[J]. J. Am. Chem. Soc., 1982, 104(11): 2977-2985
    [126] Ichimura M.. Calculation of band offsets at the CdS/SnS heterojunction[J]. Sol. Energ. Mat. Sol. C., 2009, 93(3): 375-378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700