静电纺丝法制备钐掺杂二氧化钛/炭纳米纤维光催化剂及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛(TiO2)因其比表面积大、稳定性好、无毒性和光催化效率高等优点在有机污染物处理方面得到了极大的重视。但是,目前在TiO2光催化的应用上存在两个难题:一是纯纳米TiO2粉末的光催化效率有限;二是纳米TiO2粉末在溶液中易团聚流失,不易回收。这两个因素在很大程度上限制了TiO2光催化剂在工业上的应用,而将纳米TiO2进行掺杂改性和负载化则可有效地解决上述两个问题。
     静电纺丝法作为一种制备有机/无机杂化微纳米纤维的简便快捷方法而得到了迅速发展。本论文采用溶胶-凝胶法和静电纺丝法相结合,制备了钐离子掺杂的二氧化钛前驱体/聚丙烯腈纳米纤维[Sm-TiO(OAc)2/PAN],并通过后续的牵伸预氧化、氨化处理和高温焙烧过程,得到了掺杂钐的二氧化钛/炭纳米纤维(Sm-TiO2/CNFs)光催化剂。采用TEM、FESEM、XRD、FT-IR, EDX和XPS等测试手段对所制备的纳米纤维的形貌结构、晶相结构和化学组成进行了表征,并以甲基橙溶液为目标降解物,考察了Sm-TiO2/CNFs的光催化活性。研究结果表明,电纺Sm-TiO(OAc)2/PAN纳米纤维的表面凹凸不平,直径约700nm。经过250℃牵伸预氧化后,纤维取向度提高,表面变得光滑且由于物理和化学收缩纤维直径缩小至500-600nm。经过氨化处理和600℃焙烧后,预氧化纤维直径进一步收缩至250-350nm,25wt.%左右的锐钛矿型Sm-TiO2纳米颗粒均匀地分布在CNFs表面或内部,Sm-TiO2的平均晶粒尺寸为10nm左右。同样的紫外光照下,Sm-TiO2/CNFs比TiO2/CNFs的光催化活性要高,这是由于Sm3+的掺杂抑制了电子-空穴对的复合,使Sm-TiO2/CNFs表面的吸附氧增多,由此生成了更多的强氧化型自由基将甲基橙分子分解掉。
Titanium dioxide (TiO2) has attracted a great deal of attention in organic pollutants treatment because of its large specific surface area, stable chemical properties, nontoxicity and excellent photocatalytic activity. However, there are two problems in the application of TiO2 photocatalyst:First, the photocatalytic efficiency of pure nano-TiO2 powder is quite finite. Second, the nanoparticles are easy reuniting and flowing away in liquid solution, and also difficult to reclaim. These two factors inhibit the industrial application of nano-TiO2 photocatalyst significantly. Many researches have proved that doping modification and immobilization of TiO2 onto the supports with large surface areas are two effective means to solve the problems above.
     Electrospinning is a simple and effective technique for preparation of organic/inorganic hybrid nanofibres with large surface areas. In this paper, Sm-doped titanium oxoacetate/polyacrylonitrile [Sm-TiO(OAc)2/PAN] nanofibers were fabricated by electrospinning method. The Sm-doped TiO2/carbon nanofibers (Sm-TiO2/CNFs) photocatalyst was obtained through the subsequent heat stretching and preoxidation, ammonia treatment, and calcination of electrospun Sm-TiO(OAc)2/PAN nanofibers. Variations in morphology, crystal structure, and chemical composition of nanofibers were characterized with TEM, FESEM, XRD, FT-IR, EDX and XPS, respectively. The photocatalytic activity of Sm-TiO2/CNFs was characterized by photocatalytic degradation of methyl orange (MO) in aqueous solution under the UV irradiation. The results show that the surface of electrospun Sm-TiO (OAc)2/PAN nanofibers is rough and the nanofiber diameter is about 700nm. After 250℃heat stretching and preoxidation, the nanofibers possess highly orientation and become smoother, the average diameter of nanofibers decreases to 500-600nm due to physical and chemical shrinkage. After ammonia treatment and 600℃calcination, the average diameter of preoxidized nanofibers drop further to 250-350nm, and the surfaces of CNFs are interspersed with about 25wt% of anatase Sm-TiO2 nanoparticles, of which the average grain size is about 10nm. The photocatalytic activity of Sm-TiO2/CNFs is higher than that of TiO2/CNFs under the same UV irradiation conditions because doping Sm3+ may inhibit the recombination of electron-hole pair and increase the content of adsorbed oxygen, resulting in the generatinon of more powerful oxidizing free radical to degrade methyl orange.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38
    [2]Choi H, Sofranko A C, Dionysiou D D. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure:synthesis, characterization, and multifunction [J]. Advanced Functional Materials,2006,16(8):1067-1074
    [3]In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts [J]. Journal of the American Chemical Society,2007,129(45):13790-13791
    [4]罗东卫,程永清,秦华宇,等.改性纳米TiO2光催化剂的研究进展及表征方法[J].钛工业进展,2009,26(1):11-15
    [5]Linsebigler A L, Lu G G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chemical Reviews,1995,95(3):735-758
    [6]肖奇,邱冠周,胡岳华,等.纳米TiO2制备及其应用新进展[J].材料导报,2000,14(8)35
    [7]王有乐,张庆芳,马炜.光催化剂TiO2改性技术的研究进展[J].环境科学与技术,2002,25(1):40
    [8]Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase:relationships between surface morphology and chemical behaviour[J]. Applied Catalysis A:General,2000,200(2): 275-285
    [9]Serpone N, Texier I, Emeline A V, et al. Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent holscavengers[J]. J Photochem Photobiol:A,2000,136(3):145-152
    [10]Formo E, Lee E, Dean Campbell D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications[J]. Nano Letters,2008,8(2):668-672.
    [11]Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition:characterization and photonic efficiency of Pt,Au and Pd deposited on TiO2 catalyst[J]. Water Research,2004,38(13):3001-3008
    [12]石建稳,郑经堂.纳米TiO2光催化剂可见光化的研究进展[J].化工进展,2005,24(8):841-843
    [13]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(13):269-271
    [14]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Applied Catalysis B:Environmental,2003, 42:403-409
    [15]Teng D H, Yu Y H, Liu H Y, et al. Facile fabrication of heterostructured TiO2-xNx/CNFs as an efficient visible-light responsive photocatalyst[J]. Catalysis Communications,2009,10(5):442-446.
    [16]Zhang Y H, Xiong G X, Yao N, et al. Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol-gel method[J]. Catalysis Today,2001,68(1-3):89-95
    [17]Yang H M, Shi R, Zhang K, et al. Synthesis of WO3/TiO2 nanocomposites via sol-gel method[J]. Journal of Alloys and Compounds,2005,398(2):200-202
    [18]Choi W, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge-carrier recombination dynamics[J]. The Journal of Physical Chemistry A,1994,98(51):13669-13679
    [19]吴树新,马智,秦永宁,等.掺杂纳米TiO2光催化性能的研究[J].物理化学报,2004,20(2):138-143
    [20]孙明,魏锡文,胡小华.铁掺杂TiO2纳米纳米粉的制备、表征及其光催化活性[J].材料导报,2007,21:153-155
    [21]Jing L Q, Sun X J, Xin B F, et al. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity[J]. Journal of Solid State Chemistry,2004,177(10): 3375-3382
    [22]崔玉民,范少华,张颖.铈掺杂TiO2光催化降解甲基橙的研究[J].稀有金属,2006,30(4):469-474
    [23]陈俊涛,李新军,杨莹,等.稀土元素掺杂对TiO2薄膜光催化性能的影响[J].中国稀土学报,2003,21:67-68
    [24]周武艺,唐绍裘,张世英,等.制备不同稀土掺杂的纳米氧化钛光催化剂及其光催化活性[J].硅酸盐学报,2004,32(10):1203-1208
    [25]Zhang S C, Zheng Z J, Wang J H, et al. Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature[J]. Chemosphere,2006,65:2282-2288
    [26]Xu D P, Feng L J, Lei A. Characterizations of lanthanum trivalent ions/TiO2 nanopowders catalysis prepared by plasma spray[J]. Journal of Colloid and Interface Science,2009,329:395-403
    [27]Xu Y H, Zeng Z X. The preparation,characterization,and photocatalytic activities of Ce-TiO2/ SiO2[J]. Journal of Molecular Catalysis A:Chemical,2008,279:77-81
    [28]Tong T Z, Zhang J L, Tian B Z, et al. Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity[J]. Journal of Colloid and Interface Science,2007,315:382-388
    [29]Gao X, Jiang Y, Zhong Y, et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials,2010,174:734-739
    [30]Liu T X, Li X Z, Li F B. Enhanced photocatalytic activity of Ce3+-TiO2 hydrosols in aqueous and gaseous phases[J]. Chemical Engineering Journal,2010,157:475-482
    [31]韩晶,吕树臣,高红.掺杂钐的纳米二氧化钛粉体的制备和发光性质[J].哈尔滨师范大学自然科学学报,2006,22(1):47-50
    [32]梁春华,吴峰.钐离子掺杂二氧化钛光催化降解甲基橙研究[J].环境保护科学,2008,34(2):45-47.
    [33]Xiao Q, Si Z C, Zhang J. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline[J]. Journal of Hazardous Materials,2008,150:62-67
    [34]Huang D G, Liao S J, Zhou W B, et al. Synthesis of samarium-and nitrogen-co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol[J]. Journal of Physics and Chemistry of Solids,2009,70:853-859
    [35]廖东亮,肖新颜,张会平,等.溶胶-凝胶法制备纳米二氧化钛的工艺研究[J].化学工业与工程,2003,20(5):256-260
    [36]Li Y J, Ma M Y, Sun S G, et al. Preparation and photocatalytic activity of TiO2-carbon surface composites by supercritical pretreatment and sol-gel process[J]. Catalysis Communications,2008, 9:1583-1587
    [37]Celik E, Keskin I, Kayatekin I, et al. Al2O3-TiO2 thin films on glass substrate by sol-gel technique[J]. Materials Characterization,2007,58:349-357
    [38]Yap P S, Lim T T, Lim M, et al. Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption-photocatalytic degradation of aqueous bisphenol-A using solar light[J]. Catalysis Today,2010, in presence
    [39]Byun D, Jin Y, Kim B, et al. Photocatalytic TiO2 deposition by chemical vapor deposition[J]. Journal of Hazardous Materials,2000,73(2):199-206
    [40]Zhang X W, Lei L C. Effect of preparation methods on the structure and catalytic performance of TiO2/AC photocatalysts[J]. Journal of Hazardous Materials,2008,153:827-833
    [41]Yazawa T, Machida F, Kubo, et al. Photocatalytic activity of transparent porous glass supported TiO2[J]. Ceramics Internation,2009,35:3321-3325
    [42]Sayilkan F, Asilturk M, Kiraz N, et al. Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate[J]. Journal of Hazardous Materials,2009,162:1309-1316
    [43]Mai F D, Lee W L, Chang J L, et al. Fabrication of porous TiO2 film on Ti foil by hydrothermal process and mechanisms with ethyl violet dye[J]. Journal of Hazardous Materials,2010,177: 864-875
    [44]席北斗,刘纯新,孔欣,等.负载型催化剂光催化氧化五氯苯酚钠的效果[J].环境科学,2001,22(1):41-44
    [45]Yuan R S, Guan R B, Shen W Z, et al. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers [J]. Journal of Colloid and Interface Science,2005, 282(1):87-91
    [46]Tao Y, Wu C Y, David W M. Microwave-Assisted preparation of TiO2/activated carbon composite photocatalyst for removal of methanol in humid air streams [J]. Industrial & Engineering Chemistry Research,2006,45(14):5110-5116
    [47]卢晓平,戴文新,王绪绪.Ti02胶粒在铝合金表面的电泳沉积及所制薄膜的光催化性能研究[J].无机化学学报,2004,20(6):734-739
    [48]Peiro A M, Brillas E, Peral J, et al. Electrochemically assisted deposition of titanium dioxide on aluminium cathodes [J]. Journal of Materials Chemistry,2002,12(9):2769-2773.
    [49]Shigehito D, Yoshifumi A, Osmau H, et al. Titanium(IV) Oxide Thin Films Prepared From Aqueous Solution[J]. Chemistry Letters,1996,6 (5):433-434
    [50]Kikuchi H, Kitano M, Takeuchi M, et al. Extending the photoresponse of TiO2 to the visible light region:photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method [J]. The Journal of Physical Chemistry B,2006,110(11): 5537-5541
    [51]Park H, Choi W. Photocatalytic reactivities of Nafion-coated TiO2 for the degradation of charged organic compounds under UV or visible light [J]. The Journal of Physical Chemistry B,2005, 109(23):11667-11674
    [52]Li Y X, Guo M, Zhang M, et al. Hydrothermal synthesis and characterization of TiO2 nanorod glass substrates[J]. Materials Research Bulletin,2009,44:1232-1237
    [53]Yu H G, Lee S C,Yu J G, et al. Photocatalytic activity of dispersed TiO2 particles deposited glass fibers[J]. Journal of Molecular Catalysis A:Chemical,2006,246:206-211
    [54]Kuo C N, Chen H F, Lin J N, et al. Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air[J]. Catalysis Today,2007,122:270-276
    [55]Chiou C S, Shie J L, Chang C Y, et al. Degradation of di-n-butyl phthalate using photoreactor packed with TiO2 immobilized on glass beads[J]. Journal of Hazardous Materials B,2006,137: 1123-1129
    [56]Chen S F, Liu X Q, Liu Y Z, et al. The preparation of nitrogen-doped TiO2-xNx photocatalyst coated on hollow glass microbeads[J]. Applied Surface Science,2007,253:3077-3082
    [57]肖义,党利琴,安丽珍,等.中孔石墨碳负载Ti02复合材料光催化降解罗丹明B和苯酚[J].催化学报,2008,29(1):31-36
    [58]Chen J, Eberlein L, Langford C. Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148: 183-189
    [59]Li G, Zhao X S, Ray M. Advanced oxidation of orange II using TiO2 supported on porous adsorbents:The role of PH, H2O2 and O3[J]. Separation and Purification Technology,2007, 55:91-97
    [60]Marugan J, Hufschmidt D, Sagawe G, et al. Optical density and photonic efficiency of silica-supported TiO2 photocatalysts[J]. Water Research,2006,40:833-839
    [61]Zhang L, Zhu Y F, He Y, et al. Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel[J]. Applied Catalysis B:Environmental,2003,40:287-292
    [62]Li Z H, Qiu N X, Yang G M. Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes[J]. Journal of Membrane Science,2009,326:533-538
    [63]Li L S, Zhu W P, Zhang P Y, et al. Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet[J]. Water Research, 2003,37:3646-3651
    [64]黄惠莉,黄妙良,蔡阿娜,等.TiO2光催化薄膜在陶瓷器具上抗菌效果的研究[J].应用化学,2002,19(1):48-52
    [65]Plesch G, Gorar M, Vogt U, et al. Reticulated macroporous ceramic foam supported TiO2 for photocatalytic applications[J]. Materials Letters,2009,63:461-463
    [66]Loddo V, Marci G, Palmisano L, et al. Preparation and characterization of Al2O3 supported TiO2 catalysts employed for 4-nitrophenol photodegradation in aqueous medium[J]. Materials Chemistry and Physics,1998,53:217-224
    [67]Nikaido M, Furuya S, Kakui T, et al. Photocatalytic behavior of TiO2 nanaparticles supported on porous aluminosilicate surface modified by cationic surfactant[J]. Advanced Powder Technology, 2009,20:598-604
    [68]Barka N, Assabbane A, Nounah A, et al. Photocatalytic degradation of indigo carmine aqueous solution by TiO2-coated non-woven fibres[J]. Journal of Hazardous Materials,2008,152:1054-1059
    [69]Paschoalino M, Kiwi J, Jardim W. Gas-phase photocatalytic decontamination using polymer supported TiO2 [J]. Applied Catalysis B:Environmental,2006,68:68-73
    [70]陈前林,吴建青,王龙现.TiO2光催化抗菌陶瓷的制备[J].功能材料,2009,40(7):1166-1171
    [7l]信欣,汤亚飞.活性炭负载TiO2光降解水中敌敌畏的研究[J].工业用水与废水,2004,35(1):30-32
    [72]Ao C H, Lee S C, Yu J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2:effects on the presences of NO,SO2 and VOCs [J]. Applied Catalysis B:Environmental,2004,54(1):41-50
    [73]王作辉,田守卫,刘阳思,等.纳米TiO2薄膜的制备及自清洁性能研究[J].Ti钛工业进展,2007, 24(2):37-40
    [74]Zhang X T, Sato O, Taguchi M, et al. Self-cleaning particle coating with antireflection properties [J]. Chemistry of Materials,2005,17(3):696-700
    [75]Formhals A. Process and apparatus for preparing artificial threads [P]. US Patent,1975504,1934.
    [76]Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanoomposites [J]. Composites Science and Technology,2003,63(15): 2223-2253
    [77]薛聪,胡影影,黄争鸣.静电纺丝原理研究进展[J].高分子通报,2009,6:38-46
    [78]王磊,张立群,田明.静电纺丝聚合物纤维的研究进展[J].现代化工,2009,29(2):28-31
    [79]Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42:261-272
    [80]覃小红,王新威,胡祖明,等.静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径关系的研究[J].东华大学学报(自然科学版),2005,31(6):16-22
    [81]Sutasinpromprae J, Jitjaicham S, Nithitanakul M, et al. Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers [J]. Polymer International,2006,55(8):825-833
    [82]Im J S, Kim M, Lee Y S.Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation[J].Materials Letters,2008,62:3652-3655
    [83]Lee S J, Cho N I, Lee D Y. Effect of collector grounding on directionality of electrospun titania
    fibers[J]. Journal of the European Ceramic Society,2007,27:3651-3654
    [84]Yang Y, Wang H Y, Li W. Electrospun mesoporous W6+-TiO2 thin films for efficient visible-light photocatalysis[J]. Materials Letters,2009,63:331-333
    [85]陈超,余阳,薛罡,等.静电纺丝制备TiO2/PAN纳米纤维毡及其性能研究[J].环境科学与管理,2009,34(2):105·109
    [86]Yoshida M, Prasad P N. Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides [J]. Chemistry of Materials,1996,8(1):235-241
    [87]Ji L W, Zhang X W. Ultrafine polyacrylonitrile/silica composite fibers via electrospinning[J]. Materials Letters,2008,62:2161-2164
    [88]Saif M, Abdel-Mottaleb M S A. Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm:Preparation, characterization and potential applications [J]. Inorganica Chimica Acta,2007,360:2863-2874
    [89]Hong Y L, Li D M, Zheng J, et al. Sol-gel growth of titania from electrospun polyacrylonitrile nanofibres [J]. Nanotechnology,2006,17(8):1986-1993
    [90]Arana J, Pena Alonso A, Dona Rodriguez J M, et al. FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts[J]. Applied Catalysis B:Environmental,2009, 89:203-213
    [91]Kuroda Y, Mori T, Yagi K, et al. Preparation of visible-light-responsive TiO2-xNx photocatalyst by a sol-gel method:analysis of the active center on TiO2 that reacts with NH3[J]. Langmuir,2005, 21(17):8026-8034
    [92]Mittal J, Konno H, Inagaki M, et al. Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers [J]. Carbon,1998,36(9):1327-1330
    [93]余家国,赵修建,赵青南,等.TiO2光催化薄膜的XPS研究[J].材料研究学报,2000,14(2):203-209
    [94]Hou X G, Huang M D, Wu X L, et al. Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol-gel method [J]. Chemical Engineering Journal,2009,146:42-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700