有机废水的催化降解基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机废水由于其强毒性、难降解、分解易产生致癌物,被视为当今急待治理的废水之一。近年来,迅速发展起来的催化降解技术,在有机废水处理上展现出良好应用前景。本文对廉价粉煤灰、改性空心微珠催化降解有机废水进行了较为全面的研究,为有机废水治理提供了新方法和新途径。
     本论文开展了以下三个方面的工作:(1)研究了微波作用下粉煤灰催化H_2O_2降解甲基橙模拟废水动力学行为,并对甲基橙降解机理进行了分析。(2)针对实际有机废水---1,2,4-氧体废水和垃圾渗滤液,研究了微波作用下粉煤灰催化H_2O_2降解实际有机废水的行为和能力。(3)以改性空心微珠为催化剂,在探讨Fe/Ni比、微波、离子液体对改性影响的基础上,研究了其催化降解甲基橙溶液的性能和动力学行为。
     粉煤灰用量、H_2O_2用量、初始pH对甲基橙溶液降解效果的影响与Fenton氧化法的影响趋势大致相同;微波作用可提高处理效率,减少试剂用量。对于100mL1000mg/L的甲基橙溶液,在pH为2、粉煤灰用量1g、30%H_2O_2用量1mL、微波作用时间4min、微波功率800W、温度100℃时,脱色率达99.8%,COD去除率达80%。粉煤灰可回收再利用2~3次,从而减少粉煤灰大量堆积造成的二次污染。粉煤灰吸附甲基橙的行为满足Langmuir方程1/qt=4.139+0.007 3/Ce。微波作用下粉煤灰催化H_2O_2氧化过程更符合Fenton反应机理的一级反应动力学模型lnCt=-0.772 1t+7.016,反应速率常数为0.772 1/min。
     微波作用下粉煤灰催化H_2O_2处理实际废水是有效的。在降解高浓度1,2,4-酸氧体废水中,对于100mL废水,粉煤灰用量6g、30%H_2O_213mL、微波辐射时间5min、微波功率800W、温度80℃时,COD去除率可达80.3%。在应用该方法对垃圾渗滤液的处理中,当粉煤灰量为20g/L、pH为2、搅拌5min后过滤分离;100mL滤液加入2mL30%H_2O_2,设定微波温度80℃、功率600W,在微波中作用20min后,COD的去除率可达69.81%。
     通过对改性空心微珠降解性能的研究表明,离子液体存在下改性的Fe/Ni比为1:3的空心微珠,在处理1 000mg/L甲基橙溶液时,对甲基橙的去除率为94.52%。甲基橙的催化降解较好的遵循了Langmuir-Hinshelwood动力学模型1/r_0=(1709.1/C_0)+6.237 5,催化反应速率常数k为9.62mg/(L·h),吸附常数K为3.65×10~(-3)L/mg。
Persistent organic pollutants (POPs) are regarded as high toxic, refractory and carcinogen, which become a headache to the public. Hence, to purify the POPs with new technologies is in need. In the present, catalytic degradation for POPs shows good application potential. The present work is focused on the catalytic degradation process with cheap fly ash and modified cenosphere.
     The work done includes: (1) Kinetic behavior and mechanism for degeadation of methyl orange solution with microwave assisted H_2O_2 of fly ash, (2) application of this process to purify industrial waste water from manufacutring of 1-diazo-2-naphthol-4-sulphonic acid and landfill leachate from municipal. Feasibility and behavior of degradation of true waste water was studied with Microwave-fly ash-H_2O_2 system, (3) degradation performance and dynamic model for methyl orange solution with modified cenospheres by microwave-ionic liquid system.
     Some interesting results are obtained from the experimental investigation. The varation trend of degradation of methyl orange solution with Fenton reagent is similar to that of Fenton-like reagent of fly ash-H_2O_2. Microwave irridation can reduce the consumption of regent and improve the degradation performance. the decolorization and COD removal ratios were 99.8% and 80%, respectively, for the 100mL 1000mg/L MO solution, under the operation conditions of pH 2, fly ash 1.0 g, 30% H_2O_2 1.0 mL, microwave power 800 W for 4 min at 100℃. Fly ash deactivation was found after 2-3 times reuse and it contriutes to reduce much sludge, which can inhibit secondary pollution. The adsorption behavior of fly ash meets Langmuir isotherm equation 1/qt=4.139+0.007 3/Ce. But the catalyst process of microwave-fly ash-H_2O_2 system agrees with Fenton reaction mechanism well, namely first order reaction kinetics mode lnCt=-0.772 1t+7.016, and the reaction rate constant is 0.772 1/min.
     It is feasible to degrade industrial wastewater from manufacturing of 1-diazo-2- naphthol -4-sulphonic acid in microwave-fly ash-H_2O_2 system. COD removal ratios was 80.3% under the condition of 6% of fly ash, 13% H_2O_2 (mass percent 30%), at 800 W and 80℃for 5 min. While in landfill leachate treatment, COD removal ratios was 69.81% at pH 2 and 2% fly ash at 600 W and 80℃for 20 min.
     For the modified cenosphere catalyst with ionic liquid at Fe/Ni ratio 1:3, decolorization removal ratio was 94.52% for methyl orange solution at 1000 mg/L. The catalytic degradation of methyl orange solution follows Langmuir-Hinshelwood model 1/r_0=(1 709.1/C_0)+6.237 5, the reaction rate constant k is 9.62 mg/(L·h), and adsorption constant K is 3.65×10~(-3)L/mg.
引文
[1]王金梅著.水污染控制技术[M].北京:化学工业出版社,2004.
    [2]贺延龄,陈爱侠著.环境微生物学[M].北京:中国轻工业出版社,2001.
    [3]熊蓉春,雷晓东,魏刚,等.纳米TiO2与纳滤膜在水处理中的应用[J] .给水排水,2002,28(6):37-40.
    [4]乌锡康著.有机化工废水治理技术[M].北京:化学工业出版社,2001.
    [5] Fenton H.J.H..Oxidation of tartaric acid in presence of iron[J].Journal of Chemical Society ,1894,65:899-910.
    [6] Eisenhauer H R.Oxidation of phenolic wastewater [J].J WPCF,1964,36:1116-1128.
    [7]吴慧芳,黄文宜,吴平,等.难降解有机废水的高级氧化技术[J].南京工业大学学报,2003,25(3):83-86.
    [8] Will I.B.S.,Moraes J.E.F.,Teixeira A.C.S.C.,et al. Photo-Fenton degradation of wastewater containing organic compounds in solar reactors[J]. Separation and Purification Technology,2004,34:51-57.
    [9] Neyens E.,Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique [J]. Journal of Hazardous Materials,2003, B98:33-50..
    [10]刘冬莲,黄艳斌.·OH的形成机理及在水处理中的应用[J].环境科学与技术,2003,26(1):44-46.
    [11]孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [12] Abdullah F H,Rauf M A,Ashraf S S. Kinetics and Optimization of Photolytic Decoloration of Carmine by UV/H2O2[J].Dyes and Pigments,2007,72:349-352.
    [13] Kang S F,Liao C H,Chen M C. Pre-oxidation and coagulation of textile wastewater by the Fenton process [J]. Chemosphere,2002,46 (6):923 -928.
    [14]杨开林,陶长元,孙大贵,等.邻苯二甲酸酯降解状况研究进展[J].重庆工商大学学报(自然科学版) ,2006,23(2):128-131.
    [15] Modirshahla N,Behajady M A,Ghanbary F. Decolorization and mineralization of C.I. Acid Yellow 23 by Fenton and photo-Fenton processes [J].Dyes and Pigments,2007,73(1): 305-310.
    [16]陶长元,刘作华,李晓红,等.超声波促进Fenton法脱色甲基橙溶液的研究[J].环境科学,2005,26 (5):111-114.
    [17]刘作华,陶长元,刘仁龙,等.微波-Fenton法处理垃圾渗滤液的研究[J].压电与声光,2007,29(3):344-346,349.
    [18] Sanz J., Lombrana J. I.,De Luis A.M,et al. Microwave and Fenton’s reagent oxidation of wastewater[J]. Environ. Chem. Lett.,2003,1:45-50.
    [19] Gromboni C F,Kamogawa M Y,Ferreira A G, et al. Microwave-assisted photofenton decomposition of chlorfenvinphos and cypermethrin in residual water (no prelo) [J]. Journal of Photochemistry and Photobiology A-Chemistry,2007,1:32-37.
    [20] Carlos M S,Eduardo E,Juan C,et al. Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process [J] . Electrochemistry Communications,2007,9:19-24.
    [21] Hykrdova L,Jirkovsky. Fe(III) photoinduced and Q-TiO2 photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism[J] . Journal of Photochemistry and Photobiology A:Chemistry,2002,151:181-193.
    [22] Tambosi J L,Michele D D,Schirmer W N,et al. Treatment of paper and pulp wastewater and removal of odorous compounds by a Fenton-like process at the pilot scale[J].Journal of Chemical Technology and Biotechnology,2006,81(8):1426-1432.
    [23] Namkung K C,Burgess A E,Bremner D H.A Fenton-like Oxidation Process Using Corrosion of Iron Metal Sheet Surfaces in the Presence of Hydrogen Peroxide: A Batch Process Study Using Model Pollutants[J]. Environmental Technology,2005,26(3):341-352.
    [24]于怀东,项念,杨扬,等.锰离子对Fenton反应的影响[J].武汉大学学报(理学版),2006,52 (4):453-456.
    [25]任凤莲,吴南,司士辉.水杨基荧光酮荧光法测定钴Ⅱ-过氧化氢体系产生的羟自由基[J].分析化学,2001,29(1):60-62.
    [26] Verma P,Baldrian P,Nerud F. Decolorization of structurally different dyes using cobalt(II)/ascorbic acid/peroxide system[J].Chemosphere,2003,50:975-979.
    [27]宋天顺,徐夫元,王峰,等.Cu(Ⅱ)-H2O2催化氧化降解甲基橙[J].水处理技术,2007,33 (3):22-24.
    [28] Prousek J,Palackova E. Utilization of Fenton Reaction for the Degradation of Dyes under Acidic and Neutral pH Conditions [J].Fibres and textiles,2004,11(4):129-132.
    [29] Zimmermann F J. New waste disposal process [J].Chem. Eng., 1958, 65(8):117-121.
    [30]吴忠标著.环境催化原理及应用[M].北京:化学工业出版社,2006.
    [31]张秋波.酚水及煤气废水的湿式氧化处理[J].环境科学学报,1987,7(3):305-312.
    [32]张仲燕.利用超细γ-Al2O3/CuO催化剂催化降解染料废水的研究[J].重庆环境科学, 2000, 22 (03) : 43-45.
    [33] Leitenburg C de, Zamar F,Zamar F.A novel and simple route to catalysts with a high oxygen storage capacity: the direct room-temperature synthesis of CeO2-ZrO2 SolidSolutions[J].Journal of the Chemical Society Chemical Communications,1995,21:2181-2193.
    [34] Barbier J.Total oxidation of acetic acid in aqueous solution over noble metal catalysts [J].J Catal,1998,177:378-385.
    [35] Gallezot P.Catalytic wet air oxidation of acetic acidon carbon2supported ruthenium catalyst [J].J Cata,1997,168:104-109.
    [36] Catherine G,Patrice J,Andre K.Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2 Comparative mechanistic and linetic investigations [J].Journal of Photochemistry and Photobiology A: Chemistry,2000,130:35-47.
    [37] Glaze W H,W Kang,Chapin D H.The chemistry of water treatment processes involving ozone Hydrogen Peroxide and Ultravioter Radiation[J].Ozone Sci. Eng,1987,9(4):335-342.
    [38] Carey J H.Photodechlorination of PCB’s in presence of titanium dioxide in aqueous suspensions [J].Bull of Environ Contam Toxicol,1976,16(06):697-701.
    [39]金星龙,朱琨,房彦军,等.高分子金属卟啉光催化氧化处理废水[J].催化学报,2001,22(2):189-192.
    [40]郑敏,宋心远.印染废水光催化氧化作用机理解析[J].染整技术,2002,24(1):42-45,51.
    [41] Diebold U.The surface science of titanium dioxide[J].Surface Science Reports,2003,48:53-229.
    [42] Kitano M,Matsuoka M,Ueshima M,et al.Recent developments in titanium oxide-based photocatalysts[J].Applied Catalysis A,2007,325:1-14.
    [43]刘开建,邵艳霞,郗英欣.TiO2修饰玻璃微珠作为光催化剂的研究[J].化工新型材料,2003,31(12):40-43.
    [44]张新荣,杨平.溶胶-凝胶法制备TiO2·SiO2 / beads及其光催化性能的研究[J].太阳能学报,2002,23(2):150-153.
    [45]张新荣,杨平,赵梦月.附载型复合光催化剂TiO2·Al2O3/beads降解有机磷农药[J].环境科学研究,2001,14(2):36-40.
    [46]张强.纳米TiO2固定化技术[J].环境科学与技术,2003,26(3):54-56.
    [47]郗英欣,邵艳霞,刘开建,等.纳米TiO2纤维修饰玻璃漂珠分解甲基橙的研究[J].河北化工,2004,(1):31-33.
    [48]刘守新,孙承林.光催化剂TiO2改性的研究进展[J].东北林业大学学报,2003,31(1) :53-56.
    [49]兰尧中,汪玲,陈庭金,等.掺Ag复合纳米TiO2光催化性能[J].太阳能学报,2005,26(5):680-683.
    [50]郑小明,周仁贤著.环境保护中的催化治理技术[M].北京:化学工业出版社,2003.
    [51] Matthews R W.Photooxidative degradation of coloured organics in water using supported catalysts TiO2 on sand [J].Water Res.,1991,25(10):1169-1176.
    [52]沈玉香,周祚万.T-ZnOw光催化降解甲基橙的动力学研究[J].功能材料,2007,38 (5):819-821,828.
    [53]刘自力,汪鹏华.丙酮光敏强化MoO3催化降解甲基橙的研究[J].广州大学学报(自然科学版),2006,5(6):37-40.
    [54] Tennakone K.Photocatalytic method for removal of mercury from contaminated water [J].Applied Catalysis B: Environmental,1995,5(4):343-349.
    [55] Mytych P,Stasicka Z.Mechanism of photochemical reduction of chromium(Ⅵ) by alcohols and its environmental aspects [J].Journal of Photochemistry and Photobiology A: Chemistry,2003,160(30):163-170.
    [56]张喆,邓南圣.Fe(Ⅲ)-OH体系光化学还原水溶液中的Cr(Ⅵ)[J].水处理技术,2003,29(4):215-217,221.
    [57]曹更玉,陈士夫.H2O2、金属离子等对Cr(Ⅵ)离子光催化还原及对敌敌畏农药光催化氧化的影响[J] .感光科学与光化学,2002,20(6) :435-440.
    [58] Roberts A L,Totten L A,et al.Reductive elimination of chlorinated ethylenes by zero-valent metals [J].Environmental Science & Technology,1996,30(8) :2654-2668.
    [59] Melitas N . Understanding Soluble Arsenate Removal Kinetics by Zero-valent Iron Media[J].Enviro. Sci. & Technol.,2002,36 (9):2 074-2 081.
    [60] Slater G F.Isotopic fractionation during reductive dechlorination of trichloroethene by zero-valent iron: influence of surface treatment[J].Chemosphere,2002,49(3):589-596.
    [61]刘振中,邓慧萍,詹健.零价铁在水处理技术中的研究现状及发展趋势[J] .工业水处理,2007,27(10):13-16.
    [62]徐文英.催化铁内电解处理难降解废水的方法[P].CN1382649A,2002.
    [63] Alok D. B.,Rajeev C. C.,Chandrashekhar V. R.,et al.Effect of surface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation [J]. Environ. Sci. Technol,2007,41(21):7437-7443.
    [64]吴德礼,王红武,马鲁铭.Ag/Fe催化还原体系处理水体中氯代烃的研究[J].环境科学,2006,27(9):1802-1807.
    [65]裴婕,贾颖萍,房成岳.Pd/Fe与Fe0催化还原降解酸性紫红B的动力学比较[J].大连大学学报,2004,25(2):60-61,69.
    [66] Feng J.,Lim T. T.Pathways and kinetics of carbon tetrachloride reductions by nano-scale Fe and Fe/Ni particles: Comparison with commercial micro-scale Fe and Zn[J].Chemosphere,2005,59:1267-1277.
    [67]魏红,李克斌,徐志嫱.Ni/Fe二元金属对对氯苯酚废水的催化降解作用[J].西北农林科技大学学报(自然科学版) ,2007,35(10):121-126,132.
    [68]陈繁忠,傅家谟,盛国英,等.电催化氧化法降解水中有机物的研究进展[J].中国给水排水,1999,15(3):24-26.
    [69]程欣,吴胜举,张宁宁.一种环境友好型处理染料废水方法-超声催化二氧化钛深度处理法[J].化工文摘,2007,1:53-54.
    [70]王鹏著.环境微波化学技术[M].北京:化学工业出版社,2003.
    [71] Chih-Ju G. J,Tai H.S..Application of Granulated Activated Carbon Packed-Bed Reactor in Microwave Radiation Field to Treat BTX[J].Chemosphere,1998,37(4):685-698.
    [72]邹宗柏,傅大放,张璐.用微波照射消除磺基水杨酸污染物[J].环境污染与防治,1999,21(1) :22-24.
    [73] Luigi C ,Raffaela C ,Maria P S,et al.Microwaves Assisted Photodegradation of Pollutants[C]. Part of the SPIE Conference on Environmental Monitoring and Remediation Technologies.Boston. Massachusetts,1998:105-113.
    [74]姜思朋,王鹏,张国宇,等.微波诱导氧化法处理BF-BR染料废水[J].中国给水排水,2004,20(4):13-15.
    [75]刘国光等.粉煤灰吸附性能的研究[J].环境科学研究,1994,7(5):62-65.
    [76]周珊,谢志勇,王代芝,等.粉煤灰处理含氟废水的实验研究[J].湖北师范学院学报(自然科学版),2003,23(4):68-70.
    [77]黄巍.利用粉煤灰处理含磷废水的研究[J].四川环境,2002,21(1):69-71.
    [78]张竹青.粉煤灰对有机活性染料脱色效果的研究[J].吉林农业大学学报,2003,25(4):416-418,424.
    [79]王金梅,王庆生,刘长占,等.粉煤灰的改性及吸附作用的研究[J].工业用水与废水,2005, 36(1):44-47.
    [80] Shao bin Wang,Y. Boyjoo,A.Choueib.A comparative study of dye removal using fly ash treated by different methods[J].Chemosphere,2005,60:1401-1407.
    [81]罗道成,刘俊峰.粉煤灰-H2O2催化氧化水中对氨基苯酚的试验研究[J].环境污染治理技术与设备,2005,6(12):61-64.
    [82]蔡昌凤,徐建平,唐国文,等.煤矿电厂粉煤灰光催化特性的研究[J].煤炭学报,2006,31(2):227-231.
    [83] Faouzi M.,Canizares P.,Gadri A.,et al. Advanced oxidation processes for the treatment ofwastes polluted with azoic dyes[J].Electrochimica Acta,2006,52:325-331.
    [84] Jelka D ,Janez L .Comparison of Catalyzed and Noncatalyzed Oxidation of Azo Dye and Effect on Biodegradability[J]. Environ. Sci. Technol,1998,32:1294-1302.
    [85] Swades K. Chaudhuril,Babita Sur.Oxidative decolorization of reactive dye solution using fly ash as catalyst[J].Journal of Environmental Engineering,2000,126:583-594.
    [86] Tao C Y,Liu Z H,Du J,et al. Microwave induced discoloration of methyl orange solution with fly ash[J].J. Cent. South Univ. Technol,2006,13:176-178.
    [87]占新民,王建龙,吴立波,等.沉淀—树脂吸附法处理对氨基偶氮盐酸盐生产废水的研究[J] .环境工程,1998,16(3):7-10.
    [88]刁文中.偶氮分散用活性白土的处理[J].染料工业.1984,(4):30-32,27.
    [89] Saparik I .Collect.Czech.Chen[J].VOMMUN,1995,60(9):1448-1456.
    [90] Verkhanovskii V G,Nikiforov A F ,Pushkarev V V.Khim.Tekhnol.vody.1982,4(1):29-32.
    [91] Ting H L,Matsuurat,Sourirajon S.Effect of Membrane Material Sand Average Pore Sizes on Reverse Osmosis Separation of Dyes [J].Ind Eng Chem Prod Ros Dev,1983,22:77-85.
    [92]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术,1997,17(5):7-1.
    [93]杜军,秦操,刘作华,等.进料温度对PVDF膜处理含酚废水的影响[P].2001年膜技术应用国际会议论文集,北京:245-249.
    [94]侯运生,鹿笃实,范俊欣.纳滤法除盐研究[J].膜科学与技术,1998,18(4):30-34.
    [95]苏玉萍,奚旦立.活性染料为主的印染废水混凝脱色试验研究[J].污染防治技术,1999,12(2):74-76.
    [96]胡文容,钱梦路,高廷耀.超声强压臭氧氧化偶氮染料的脱色效能[J].中国给排水,1999,15(11):1-4.
    [97]顾平,刘奎,杨造燕.Fenton试剂处理活性黑KBR染料废水研究[J].中国给排水,1997,13(6):16-18.
    [98]孙平,陈景文.部分水溶性偶氮染料的光催化降解研究[J].环境化学,1999,18(3):254 -257.
    [99]管玉江,杨卫身.复极性固定床电解反应器对活性染料的降解[J].环境化学,1999,18(3):270-273.
    [100]杨玉身,周集体,杨风林.微电解法降解染料的研究[J].上海环境科学,1996,15(7):30-35.
    [101] Brown D.The Degradation of Dyestuffs:Part I,Primary Biodegradation under Anaerobic Conditions[J].Chemospere,1983,12(3):397-404.
    [102]杨惠芳.水污染防治及城市污水资源化技术[M].北京:科学出版社,1993.
    [103]刘厚田,杜晓明,刘金齐等.藻菌系统降解偶氮染料的机理研究[J].环境科学学报,1993,13(3):332-338.
    [104]刘金齐等.小球藻对偶氮化合物的生物降解[J].水生生物学报,1992,16(2):133-143.
    [105] Katayama T.Betsupu Tcruhiko Japan.Kokai 9117798.
    [106] Fukunaga N ,Horikoshi.Koki Japan.Kokai,1999,56(45):594-598.
    [107] Oga W T,Yatone C .Bull.Environ.Contam.Toxical,1990,44(4):561-566.
    [108]楼紫阳,赵由才,张全著.渗滤液处理处置技术及工程实例[M].北京:化学工业出版社,2007.
    [109] Paxeus N.Organic compounds in municipal landfill leachate[J].Water Science and Technology, 2000, 42(7): 323-333.
    [110]薛军.处理城市垃圾填埋场渗滤液的新工艺[J].中国环保产业, 2001.
    [111] Welander U..Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process[J].Waste Research,1998,32(5):1564-1570.
    [112]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社, 1998.
    [113] Pohland F. G..In Situ Anaerobic Treatment of Leachate in Landfill Bioreactors[J].Water Science and Technology,1999,40(8):203-210.
    [114]李征.UASB-MBAC工艺处理城市垃圾填埋场渗滤液试验研究[D].天津大学硕士论文,2002,10.
    [115]隋智慧.物理化学法处理垃圾填埋场渗滤液的研究进展[J].环境污染治理技术与设备, 2002,3(4):43-46.
    [116]沈耀良.厌氧折流板反应器处理垃圾渗滤混合废水[J].中国给水排水,1999,15(5):10-12.
    [117]张晖.Fenton法处理垃圾渗滤液[J].中国给水排水,2001,17(3):1-3.
    [118]王鹏.垃圾渗滤液中难降解有机物的Fenton混凝处理[J].应用化学,2001,18(5):408-411.
    [119]袁维芳.反渗透法处理城市垃圾填埋场渗滤液[J].水处理技术,1997,23(6):333-336.
    [120] Li C C .Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate[J]. Water Research vol,1995,29:671-678.
    [121] Martin C D .Performance of a Constructed Wetland Leachate Treatment System at the Chun chula Landfill, Mobile County, Alabama[J].Water Science and Technology,1999,40(3):67-74.
    [122] Pohland F. G. .In Situ Anaerobic Treatment of Leachate in Landfill Bioreactors[J].Water Science and Technology,1999,40(8):203-210.
    [123] Geenens D. .Combined ozone-actived sludge treatment of landfill leachate[J].Water Scienceand Technology,1999,44(2-3):359-365.
    [124]李松田,吴春笃,闫永胜,等.空心微珠表面改性在水处理中的应用[J].环境科学与技术,2007,30(5):105-107.
    [125] Abinash A,Paul G,Tratnyek.Reduction of Nitro Aromatic compounds by zero-valent iron metal [J].Environ Sci Technol,1996,30 (1):153-160.
    [126] Liu Y.,Majetich S. A.,Tilton R. D.,et al.TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties [J].Environ. Sci. Technol,2005,39:1338-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700