松香基双子表面活性剂合成及纳米材料制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以松香为原料制备了四种双子表面活性剂,并初步探讨了以松香衍生物基表面活性剂作为模板制备纳米、介孔材料的方法与性能。论文主要分为两部分。
     第一部分为松香衍生物基双子表面活性剂的制备及分析,取得的研究结果如下:
     (1)以松香酸、环氧氯丙烷、四甲基乙二胺为原料,合成了四甲基乙二胺基-二松香基双子表面活性剂Ⅰ,FTIR确证其结构:经单因素实验确定合成目标产物的较佳条件为:摩尔比2.2:1,反应温度85℃,反应时间20h,制备的产物得率为76.70%,纯度为96.10%;
     (2)通过化学合成的方法,分别以松香和脱氢松香为原料,并以四甲基丙二胺为联接基:制备了四甲基丙二胺-二松香基双子表面活性剂Ⅱ,得率为70.5%,纯度为95.5%;四甲基丙二胺基-二脱氢松香基双子表面活性剂Ⅲ,得率为71.0%;纯度为95.9%:
     (3)以松香酸和脱氢松香为原料,通过酰氯化、酰胺化、成盐的化学方法合成了乙二胺-二松香酰甘氨酸双子表面活性剂Ⅳ和乙二胺-二脱氢松香酰甘氨酸双子表面活性剂,采用FTIR和1HNMR确证了目标产物的结构;
     (4)表面活性分析结果表明:Ⅰ、Ⅱ、Ⅲ、Ⅳ的CMC值分别为1.42×104mol/L、4×10-4mol/L、6×10-4和5×10-4mol/L,对应的Ycmc分别为36.69mN·m-1、37.35mN·m-1、36.63mN·m-1、34.208mN/m;计算pC20值分别为4.15、4.43、4.45和3.81:乳化时间分别为:16min、20min、25min和2.5h; Ⅰ、Ⅱ、Ⅲ与阴离子相溶性好,Ⅳ与阴阳离子的相溶性皆好。
     第二部分为纳米(介孔)材料的制备及分析,取得的研究结果如下:
     (1)以钛酸四丁酯为原料,以乙二胺-二脱氢松香酰甘氨酸双子表面活性剂为模板,通过水热合成的方法制备了三种纳米二氧化钛:Tio(未加表面活性剂)、Tio.5(加入0.5g表面活性剂)、Ti1.o(加入1.0g表面活性剂);XRD、SEM、TEM分析结果表明:Ti0、Ti0.5、Ti1.0皆为锐钛矿型结构,Ti10的分散性强于Ti0和Ti0.5,且无团聚现象,其粒径约为8.81nm;通过光催化降解RhB实验结果表明:Ti1.0的光催化活性优于Ti0、Ti0.5,且在3h时Ti1.0对RhB的光催化降解率为99.7%,几乎降解完全。
     (2)两种二氧化硅的制备:①以双子表面活性剂Ⅳ为模板,正硅酸乙酯为原料,采用溶胶-凝胶法制备了二氧化硅材料,经TEM及XRD分析结果表明二氧化硅为纳米颗粒构成的多孔材料,为无定形结构;经氮气吸附-脱附实验分析其比表面积和累积孔体积分别为116.83m2/g、0.45cm3/g,平均孔径约为15.31nm。②以双子表面活性剂Ⅱ为模板,正硅酸乙酯为原料,采用微乳液法制备了介孔二氧化硅材料,经TEM及XRD分析结果表明二氧化硅为纳米颗粒构成的介孔材料,为无定形结构;经氮气吸附-脱附分析其比表面积和累积孔体积分别为928.10m2/g、1.04cm3/g,平均孔径约为4.49nm。
     (3)两种碳酸钙的制备:①以碳酸钠和氯化钙为原料,以磺化脱氢松香酸二钠盐为模板,以油酸为有机质制备了疏水性碳酸钙。经TEM分析得到碳酸钙颗粒为纳米棒状结构,其平均粒径约为64.4nm;XRD分析可知碳酸钙晶型为方解石型。经FTIR分析表明有机酸已成功接上,与水的接触角约为117.49°;②以磺化脱氢松香酸单钠盐为模板,以油酸为有机质制备了疏水性碳酸钙,经SEM及TEM分析其为空心球形结构,球形粒径约为2-3μm,空心直径小于为1μm;XRD分析其为球霰石型与方解石型混合晶型,摩尔含量分别为81.1%和8.9%;经FTIR及TG分析,表明有机质油酸已经成功对碳酸钙表面进行了修饰,其与水的接触角测定值约为95°,两种碳酸钙皆达到了疏水性的特点。
In this paper, we have prepared four types of Gemini surfactant using rosin as raw materials, and discussed preliminarily the methods and properties of nanometer and mesoporous materials which were prepared by using rosin derivatives based surfactants as templates. This thesis is mainly divided into two parts.
     The first part concerned the preparation and analysis of the rosin derivative Gemini surfactants and the results are as follows:
     (1)We prepared tetramethylethylenediamine-bis rosin based Gemini surfactant I using rosin, epichlorohydrin and bisethane as raw materials and then identified its chemical structure with FTIR analysis. The optimal condition of synthesizing objective product can be determined by single-factor experiments and it can be described as follows:molar ratio is2.2:1, temperature is85℃and time is20h. The product owns the yield of76.70%and purity of96.10%.
     (2)We utilized rosin and dehydrogenated rosin respectively to react with N,N,N',N'-Tetramethyl-1,3-propanediamine which was used as connection group and prepared the N,N,N',N'-Tetramethyl-1,3-propanediamine-bis rosin based Gemini surfactant Ⅱ with the yield of70.5%and purity of95.5%and N,N,N',N'-Tetramethyl-1,3-propanediamine-bis dehydroabietyl Gemini surfactant Ⅲ with the yield of71.0%and purity of95.9%, respectively.
     (3)We synthesized ethylenediamine-bis abietinylglycine Gemini surfactant IV and ethylenediamine-bis dehydroabietyl Gemini surfactant by the use of acyl chloride, amidation and salifying chemical synthesis methods with rosin and dehydroabietic acid as raw material, respectively. Then, the chemical structure of the objective products was confirmed by FTIR and1H-NMR analysis.
     (4)The surface activity analysis results of the four Gemini surfactants shows that the CMC of Ⅰ,Ⅱ,Ⅲ and Ⅳ are1.42×10-4,4×10-4,6×10-4and5×10-4mol/L, the γcmc are36.69mN·m-1,37.35mN·m-1,36.63mN·m-1and34.208mN m-1, the pc20are4.15,4.43,4.45and3.81and the emulsification time are16min,20min,25min and2.5h, respectively. Ⅰ,Ⅱ and Ⅲ have good miscibility with anion, while Ⅳ has good miscibility with anion and cation.
     The second part is about the preparation and analysis of nanometer (mesoporous) materials and the results are as follows:
     (1) We prepared three types of nanometer TiO2particles:Tio(without surfactant), Ti0.5(adding0.5g surfactant) and Ti1.0(adding1.0g surfactant) using tetrabutyl titanate as raw materials and ethylenediamine-bis dehydroabietyl Gemini surfactant as templates via hydrothermal synthesis method. The XRD, SEM and TEM results analysis shows that three are all anatase structure, the dispersing effect of Ti1.0particles is better than Ti0and Ti0.5and there is no obvious aggregation among them, and the size of which is about8.81nm. The result of the photocatalytic degradation RhB shows that the photocatalytic activity of Ti1.0is better than Tio and Ti0.5and the degradation rate is99.7%for3hours' reaction, almost decomposed completely.
     (2) Preparation of two kinds of SiO2particles:①Nanosized SiO2was prepared using Gemini surfactant Ⅳ as template and tetraethyl silicate as raw material via sol-gel method. Analyzed by TEM and XRD, SiO2is kind of porous material constituting by nanometer particles and which corresponds to amorphous structure. Through the nitrogen adsorption-desorption experiment, we can get that the specific surface area, cumulative pore volume and average pore diameter of SiO2is116.83m2/g,0.45cm3/g and15.31nm, respectively.②Preparation of mesoporous SiO2material with Gemini surfactant Ⅱ as templates and tetraethyl silicate as raw material by microemulsion method. It is a kind of mesoporous material and corresponds to amorphous structure, and which is made up with nanometer particles analyzed by TEM and XRD. Through the nitrogen adsorption-desorption experiment, we can get that the specific surface area, cumulative pore volume and average pore diameter of SiO2is928.10m2/g,1.04cm3/g and4.49nm, respectively.
     (3) Preparation of two kinds of calcium carbonate particles:①We prepared hydrophobic calcium carbonate particles using disodium sulfodehydroabietate served as templates, sodium carbonate and calcium chloride as raw material and oleic acid as organic matter. Through the analysis of TEM results, we can see that the calcium carbonate is a kind of nanorod structure whose average particle diameter is64.4nm. XRD result analysis shows that it is calcite structure. Besides, FTIR analysis proves that the calcium carbonate particles have been successful modified by organic acid and whose water contact angle is117.49°.②Preparation of hydrophobic calcium carbonate using sulfodehydroabietic acid based monosodium as template and oleic acid as organic matter. Through the analysis of SEM and TEM results shows that the product is hollow sphere made up with nanometer particles, the spherical diameter ranges from2to3μm and the hollow size is less than1μm. The XRD result analysis shows that it is the mixed crystal of aragonite and calcite and the mole content are81.1%and8.9%, respectively. FTIR and TG results analysis proves that the calcium carbonate particles have been successful modified by organic acid oleic acid and whose water contact angle is95°. Two kinds of calcium carbonate particles have reached to hydrophobic property.
引文
[1]张卫丽,李淑英.表面活性剂的应用和发展[J].全面腐蚀控制,2005,19(6):42-44
    [2]赵海香,表面活性剂研究进展[J].张家口农专学报,2000,16(3):43-45
    [3]赵国玺,朱瑶.表面活性剂作用原理[M].北京,中国轻工业出版社,2003
    [4]姜宇嵘,栾吉梅,刘平芹等bola型表面活性剂[J],精细与专用化学品,2006,14(24):14-19
    [5]陈立云,方桂珍,王献玲等Bola型表面活性剂磺化脱氢松香酸二钠盐的表面化学性质[J],林产化学与工业,2008,28(1):103-107
    [6]Fuoss R M,Edelson DJ.Bolaform electrolytes.di-(β-trimethylammonium ethyl)succinate dubromide and related compounds[J]..J Am Chem Soc,(1951),73,269-273
    [7]Frederick C B, Verona N J, Washing Composition.US:2524218,(1950)Frdeerikcc Bewsrorth
    [8]Meneger F M,LittauCA.Gemini surfactants:synthesis and properties[J].J Am Chem Soc, 1991,113:1451-1454
    [9]NJ.Chrishie,赵择卿.织物加工中表面活性剂的应用[J].国外纺织技术,1983(1):16-21
    [10]张蒂根.生物表面活性剂的研究进展[J].江西科学,1992,10(4):251-257
    [11]廖永,张韬,范宏娅.烷基多糖苷表面活性剂的研究进展[J].广东化,2004(5):30-33
    [12]宋臻善,熊犍.糖基表面活性剂研究进展[J].现代食品科技,2006,22(1):156-159
    [13]左晶,王学川.生物表面活性剂的应用[J].化学工业与工程技术,2005,26(2):23-26
    [14]王月花,马杰,蔡晓红等译.表面活性剂的应用[J].精细石油化工文摘,1999,13,(6):20-27
    [15]王海鹰,柴立元,吕春绪.可聚合表面活性剂的应用研究[J].现代化工,2007,27(12):67-74
    [16]张国印,伍晓林,廖广志等.三次采油用烷基苯磺酸盐类表面活性剂研究[J].大庆石油地质与开发,2001,20(2):26-28
    [17]杨燕,刘永兵,蒲万芬等.双子表面活性剂的研究进展[J].2005,12(6):67-70
    [18]Buton C A.et al. J. org.chem.1971,36(16)2346-2350
    [19]Zhu Yun-peng, Masuyarna Araki, Okahara Mitsuo.PreParation and surface-active properties of a amphiPathic compounds with two sulfate grouops and two lipophilic alkyl chains[J].J Am Oil Chem,1990,67(7),459-463.
    [20]Zhu Yun-peng, Masuyarna Araki, Okahara Mitsuo.PreParation and surface-active properties of new amphiPathic compounds with two phosphate groups and long-chain alkyl groups[J].J Am Oil Chem Soc,(1991),68(4),268-271.
    [21]Zhu Yun-peng, Masuyarna Araki,Kirto Yoh-ichi,et al.PreParation and properties of double-or tripleo-chain surfactants with two sulfonate groups derived from N-acyldiethanolamines[J].J Am Oil Chem Soc,(1991),68(7),539-543
    [22]赵剑曦.新一代表面活性剂Geminis[J]化学进展,1999.11(4).348-357
    [23]赵剑曦.低聚表面活性剂——两亲分子表面活性的突破[J].日用化学与工业,2004,(4):20-22
    [24]池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能(1)——从长链烷基二甲基胺及其盐酸盐和环氧氯丙烷合成双烷基双季铵盐阳离子[J].日用化学工业,2001,31(4):36-38
    [25]Pestman J M,TerPatra K R,Stuart M C A.Nonionic bolaamphophiles and gemini surgactants based on carbohydrates[J].Langmuir,(1997),13,6857-6860
    [26]刘世伟(译).新产品世界,1993,(7),57-59
    [27]高志农,魏俊超,吕波.不对称Gemini表面活性剂研究进展[J].2006,28(7),403-407
    [28]吴军.新一代表面活性剂——双子表面活性剂的研究进展[J].常州工程职业技术学院学报,2006,(1):36-50
    [29]张青山,郭炳南,张辉淼.双子表面活性剂研究进展和应用[J].化学进展,2004,16(3):343-348
    [30]王嘉图、王碧清、席先锋等.双子表面活性剂的研究和开发[J].精细化工原料及中间体,2005,(5):7-9
    [31]吴英绵,丁颖.表面活性剂在化妆品中的应用石家庄职业技术学院学报[J].2007,19(6):17-20
    [32]黄惠琴.表面活性剂的应用与发展趋势[J].现代化工,2001,21(5):6-8
    [33]水玲玲,郑利强,刘少杰,等.双子表面活性剂的研究进展[J].日用化学与工业2001,2:28-31
    [34]Huo. Qisheng, Leon. Rosa. Mesostructure design with gemini surfacetants:super formation in a threedimensional hexagonal array [J].Science,1995 (268):1324-1327.
    [35]张卫丽,李淑英.表面活性剂的应用和发展[J].2005,19(6):42-44
    [36]何铁林.水处理化学品手册[M].北京:北京工业出版社,2000
    [37]宋臻善,熊犍.糖基表面活性剂研究进展[J].现代食品科技,2005,22(1):156-159
    [38]王锦堂.我国工业用水新杀菌剂的结构特点与合成方法[J].2001,21(10):9-12
    [39]付冀峰,杨建新,徐宝财.二聚表面活性剂的制备、性质与应用[J].2001,18(1):14-17
    [40]Chen. Kangmin David. Separation of ergot alkaloids by micellar elec2trokinetic capillary chromatiography using cationic Gemini surfactants [J].Journal of Chromatiography A 1998(822):281-290.
    [41]付冀峰,徐宝财,朱承根.二聚表面活性剂的性质及其应用[J].日用化学工业,2001,5(31):41-43
    [42]曹祺风,宋文生,朱长春等.松香改性研究概述[J].广州化工,2007,35(5):10-13
    [43]任天瑞,李永红.松香化学及其应用[M].北京:化学工业出版社,2006,18,236-242:1791
    [44]安鑫南.林产化学工艺学[M].北京:中国林业出版社,2002,33-48
    [45]张国运.松香系列表面活性剂的合成和应用[J].2004,34(2):105-107
    [46]居明,李晓宣.松香改性表面活性剂的研究进展[J].化工进展2001,21(4):247-249
    [47]张国运.松香系列表面活性剂的合成和应用[J].日用化学工业,2004,34(2):105-108
    [48]武文洁,赵小华.松香类表面活性剂的合成及其应用[J].皮革化工,2006,23(2):31-35
    [49]韩建军.松香系表面活性剂研究综述[J].科技信息,2007(22):18
    [50]魏晓惠,廖世珍,曹德榕等.松香基双季铵盐阳离子表面活性剂的合成与性能[J].精细化工,2003,20(9):557-559
    [51]魏晓惠,曹德榕,董少峰.丙烯酸改性松香双季胺盐阳离子表面活性剂的结构与性能[J].广州化学,2003,28(3):1-5
    [52]陈立云,方桂珍,刘凯等.磺化脱氢松香基双季铵盐阳离子表面活性剂的结构表征及性能[J].林产化学与工业,2007,27(4):66-70
    [53]王延,宋湛谦,梁梦兰.N-脱氢枞基-N,N-二甲基季铵盐类阳离子表明活性剂的合成及性质,日用化学工业,1997(4):16-18
    [54]杨滨丽,染玉斌.以松香为原料合成表面活性剂的种类、用途及发展趋势[J].林业科技情报,2001,33(2):89-90
    [55]张立德.超微粉体制备与应用[M].中国石化出版社,2001
    [56]杨剑,腾凤恩.纳米材料综述[J].材料导报,1997,11(2):6-10
    [57]张志棍,崔作霖.纳米技术与纳米材料[M].北京:国防工业出版社,2000
    [58]吴庆生,郑能武.分子自组装与纳米材料的制备[J].化学世界,1995,5:233-235
    [59]石士考.纳米材料的特性及其应用[J].大学化学,2001,16(2):39-42
    [60]张喜梅,陈玲,李琳,等.纳米材料制备研究现状及其发展方向[J].现代化工,2000,20(7):13-16
    [61]张立德.纳米材料[M].北京:化学工业出版社,2000.
    [62]李新勇,李树本.纳米半导体研究进展[J].化学进展,1996,9(3):231-239.
    [63]巩雄,郭永,杨宏秀,等.纳米材料及其光学特性,[J].化学通报,1998,(3):19-21
    [64]J.Hu, T.W. Odom, C. M.Lieber. Chemistry and physics in One Dimension:Synthesis and Properties of Nnaowires and Nanotubes[J]. Aee. Chem. Res.,1999,32(5):435-439,
    [65]M.J.Zheng, L.D.Zhang, G.H.Li. et al. Ordered indium-oxide nanowire arrays and their Photo luminescence properties[J].Appl, Phys. Lett.,2001.79(6)839-841
    [66]Y.J.WU, H.Q.Yan and P.D. Yang. Semieonduetor Nnaowire Array:Potnetial Substrates for Photoeatalysis and Photovoltaics[J].ToPies in Catalysis,2002,19(2):197-202
    [67]S.Mnaalis, K. Bbaeoek, J. Massie, et al. Submieron studies of reeodrnig media using thin-film magnetic scnnaing porbes[J]. Appl. Phys.Lett.1995,66(19):2585-2589.
    [68]T.Kalkbrenner, U.Hkanason, V.Snadoghdar. Tomogrpahie Plasmon Speeortscopy of a Single Gold Nnaoparticle[J].Nnao Lett.,2004,4(12):2309-2314
    [69]D.Caruntu, B.L.Cushing, G.Caruntu, C.O'Connor. Attachment of Gold Nnaograins onio Colloidal Magnetite Nanocrystals[J]. J.Chem. Mater.,2005,17(13):3398-3402
    [70]L.Yu, H.Yang, X.Ai, et al. Structural and Electrochemical Characterization of Nanocrystalline Li[Li0.12Ni0.32Mn0.56]O2 Synthesized by a Polymer-Pyrolysis Route[J].J.Phys.Chem.B.,2005,109(3):1148-1154.
    [71]S.H.Joo, S.J.Choi, O.I.Kwak,et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J].Nature,2001,412:169-172
    [72]G.Che, B.B.Lakshmi, E.R.Fisher, et al. Carbon nanotubule membranes for Electrochemical energy storage and Production[J].Nature,1998,393:346-349
    [73]洪广言,李红军等.超微粉末的合成及应用[J].无机材料学报.1987(2):22-25
    [74]洪广言,李红云.热分解法制备稀土氧化物超微粉末[J].无机化学学报.1991(2):77-81
    [75]王丽萍,洪广言.无机—有机纳米复合材料[J].功能材料.1998(4):23-26
    [76]景晓燕,洪广言.醇盐法制备稀土化合物超微粉末[J].应用化学.1990(2):47-58
    [77]Kuyama J, Inui H, Imaoka S et al. Nanometer-Sized Crystals Formed by The Mechanical Alloying in the Ag-Fe System[J]. Jpn J Appl Phys.1991 (5):864
    [78]Qian Y T, Chen Q W, Chen Z Y et al. Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation strarting from metallic[J]. J Mater Chem.1993 (2):203-205
    [79]谢毅,王文中,钱逸泰等.非水体系法制备纳米磷化锢[J].科学通报,1996(41):44-46
    [80]徐华蕊,李凤生等.沉淀法制备纳米级粒子的研究[J].化工进展.1996(5):19-23
    [81]于向阳,梁文,杜永娟,程继健.二氧化钦光催化材料的应用进展[J].材料导报,2000,(14)2:38-40
    [82]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002
    [83]王晓萍,于云,高濂,等.TiO2薄膜的液相沉积法制备及其性能表征[J].无机材料学报,2000(6):573-576
    [84]刘平,周廷云,林华香等TiO2/SnO2复合光催化剂的耦合效应[J].物理化学学报,2001,17(3):265-269
    [85]林玉龙,魏雨,贾振斌.纳米二氧化钛的液相合成[J].微纳电子技术,2003,3:14-19
    [86]李静,张培新,周晓明等.纳米二氧化钛制备技术进展及表征[J].材料导报,2004,18:70-72
    [87]孟季如,赵磊,梁国正等.无机非金属纳米微粒的制备方法[J].化工新型材料,2000,4:19-23
    [88]高春华,TiO2纳米粉体的制备工艺研究进展[J],电子元件与材料,2002,21(9):24-27
    [89]Maira A J,Yeung K L,Lee C Y,et al.Size effects in gas phasephoto-oxidation of trichhoroethylene using nanometersized TiO2catalysts[J].J Cataly,2000,192:185
    [90]Hirobumi Shibata,Hisashi Mihara,Tatsuya Mukai,Taku Ogura,Hiroki Kohno,Takahiro Ohkubo,Hideki Sakai,and Masahiko Abe,Preparation and Formation Mechanism of Mesoporous Titania Particles Having Crystalline Wall[J].Chem.Mater.,2006,18:2256-2260
    [91]魏绍东,溶胶-凝胶法制备纳米TiO2技术的研究进展[J],材料导报,2004,1(82):50-53
    [92]Maurizio Addamo,Vincenzo Augugliaro,Agatino Di Paola,Elisa Garcla-Lopez,Vittorio Loddo,Giuseppe Marcl,Raffaele Molinari,Leonardo Palmisano,and Mario Schiavello Preparation,Characterization,and Photoactivity of PolycrystallineNanostructured TiO2 Catalysts[J]J.Phys.Chem.B 2004,108:3303-3310
    [93]G..Oskam,A.Nellore,R.L.Penn,and P.C.Searson,The Growth Kineticsof TiO2 Nanoparticles from Titanium(Ⅳ)Alkoxide at High Water/Titanium Ratio[J].J.Phys.Chem.B, 2003,107:1734-1738
    [94]丁海燕,王玉萍,彭盘英,负载二氧化钛催化剂的制备与性能[J].南京师大学学报(自然科学版)2004,27(1):63-67
    [95]Xiaobo Chen and Samuel S.Mao Synthesis of Titanium Dioxide(TiO2) Nanomaterials[J]. J.Nanosci. Nanotechnol,2006,6(4):906-925
    [96]David Casey J., John Haggerty S.Laser-induced vapour-phase synthesis of titanium dioxide[J].Journal of Materials Science,1987,22:4307-4312
    [97]Kamal Akhtar M. and Sotiris E. Pratsinis.Dopants in vapor-phase synthesis of titania powders[J].1992,75(12):3408-3416
    [98]高晓云,陈伟雄,胡定一等.激光热解法制备TiO2超微粉[[J].无机材料学报,1993, 8(1):57-62
    [99]Lee W, Gao Y M., Dwight K., et al. Preparation and characterization of titanium(VI)oxide photocatalysts[J].Materials Research Bulletin,1992,27:685-692
    [100]姬泓巍,徐环,辛惠蓁,等.纳米碳酸钙材料的工业合成与应用[J].2002,32(4):634-640
    [101]姜鲁华,杜芳林,张志,等.纳米碳酸钙的制备及应用进展[J].中国粉体技术,2002,8(1):28-32
    [102]Domka L. Use of domestic chalks and precipitated calcium carbonate for varish and paint production[J].Przem Chem,1995,74(10):378-384
    [103]唐迎春,周莹.纳米碳酸钙的工业化进程[J].纯碱工业,2002,(6):20-23
    [104]徐国峰,王洁欣,沈志刚,陈建峰.单分散纳米碳酸钙的制备和表征[J].北京化工大学学报,2009,5(36):27-30
    [105]丁士育,金鑫.高分散性纳米碳酸钙的制备及表面改性研究[J].化工进展,2004,12(24):1327-1330
    [106]胡庆福,宋丽英,刘宝树.高纯纳米碳酸钙制备研究[J].非金属矿,2003(2)26:42-44
    [107]张密林,丁立国,景晓燕等.纳米二氧化硅的制备、改性与应用研究进展[J].应用科技,2004,31(6):64-66
    [108]刘景春,韩建成.跨世纪高科技材料一员---纳米Si02[J].涂料工业,1998,(1):34-35
    [109]苏学军,郑典模.纳米Si02的应用研究进展[J].江西化工,2002,(1):6-10
    [110]IUPAC manual of symbols and termeinology[M]. Pure Appl.Chem.,1972,31:578-680
    [111]Ying J Y. Mechnert C P. Wong M S Synthesis and applications of supramolecular-templated mesoporous matenals Angew Chem Int Ed.1999,38:56-77
    [112]Yang P D, Wirnsberger G, Huang H C, et al. Mirrorless lasing from mesostructured waveguides pattermed by soft lithography[J]. Science.2000,287:465-467
    [113]Wirnsberger G, Scott B J, Stucky G D Ph Sensing with mesoporous thin films[J]. Chem Comm,2001,l:119-120
    [114]Gratzel M Mesoporous oxide junctions and nanostructured solar cells[J]. Current Opinion in Colloid & Interface Science,1999,4:314-321
    [115]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J],化学通报,1999,44(18):1905-1920
    [116]W. Zhang. T. R. Pauly, T. J. Pinnavaia. Tailoring the Framework and Textural Mesoporesof HMS Molecular Sieves through an Electrically Neutral (SOIO) Assembly Pathway[J]. Chem. Mater.1997,9:2491-2498
    [117]C. G. Wu, T. Bein. Microwave Synthesis of Molecular Sieve MCM-41 [J]. J. Chem. Soc, Chem. Commun.,1996:925-926
    [118]W. Lin, J. Chen, Y. Sun, et al.Bimodal Mesopore Distribution in a Silica Prepared by Calcining a Wet Surfactant-cocnaining Silicate gel[J]. J. Chem Soc, Chem Commun., 1995:2367-2368
    [119]Q. Huo, D. f. Margolese, G. D. Stucky. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials[J].Chem. Mater.,1996,8(5):1147-1160
    [120]P. Yang, D. Zhao, D. I. Margolese, et al. Generalized Syntheses of Large Pore Mesoporous Metal Oxides with Semicrystalline Frameworks [J]. Nature,1998,396: 152-155
    [121]Sanchez, C., Soler-Illia, G. J. A. A., et al.Designcd Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks[J]. Chem. Mater..2001:13(10): 3061-3083
    [122]Beck J S, Vartuli J C, Roth W J, et al. A new firmly of mesoporous molecular sieves prepared with hquid crystal templates[J]. J Am Chem Soc.,1992,114:10834-10843
    [123]Kresge C T. Leonowicz M E, Roth W J, et al. Ordered mesoporous molevular sieves synthesized by a hquid-crystal template mechanisin[J]. Nture,1992,359:710-712
    [124]Beck J S, Vartuli J C, Roth W J et al. A new family of mesoporous molecular-sieves prepared with liquid crystal templates. J Am Chem Soc,1992,114:10834-10843
    [125]Huo Q, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater,1994, 6(8):1176-1191
    [126]Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem Rev,1997,97,2373-2419
    [127]Alfredsson V, Anderson M W, Ohsuna T, et al. Cubosome description of the inorganic mesoporous structure MCM-48. Chem Mater,1997,9:2066-2070; (b)Anderson M W.Simplified description of MCM-48. Zeolites,1997,19(4):220-227
    [128]Kim J M, Kim S K,Ryoo R. Synthesis of MCM-48 Single Crystals. Chem Commun, 1998:259-260
    [129]Inagali S, Fukushima Y, Kuroda K. Synthesis of highly or dered mesoporous materials from a layered polysilicate. J Chem Soc Chem Commun,1993:680-682
    [130]Huo Q S, Margolese D I, Stucky G D, et al. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater,1996,8(5):1147-1160
    [131]Che S, Sakamoto Y, Terasali O, et al. Control of crystal morphology of SBA-1 mesoporous silica. Chem Mater,2001,13(7):2237-2239
    [132]Huo Q, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants: Supercage formation in a three-dimensional hexagonal array. Science,1995,268: 1324-1327
    [133]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998,279:548-552
    [134]Zhao D, Huo Q, Feng J, et al. Tri-, tetra-, and octablock copolymer and nonionic surfactant syntheses of high ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc,1998,120:6024-6036
    [135]Ryoo R, Kim J M, Shin C H, Lee J Y. Synthesis and Hydrothermal Stability of a Disordered Mesoporous Molecular Sieve. Stud Surf Sci Catal.,1997,105:45-47
    [136]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science,1995,267(10):865-867
    [137]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of meso porous molecular sieves by nonionic polyethylene oxide surfactants. Science,1995,269:1242-1244
    [138]曹同玉,戴兵,戴俊燕.单分散大粒径聚合物微球的合成及应用[J].高分子通报,1995,9:171-183
    [139]胡旭.新型松香衍生物双子表面活性剂的合成与性能[D].东北林业大学硕士论文,2007
    [140]王培义,徐宝财,王军.表面活性剂—合成、性能、应用[M].北京,化学工业出版社,2007,61-69,135-138,200-201
    [141]汪蓉蓉,王宇,刘倩,等.松香改性阳离子表面活性剂的合成,精细化工中简体,2007,37(2):56-59
    [142]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996.80-83.
    [143]水玲玲,郑利强,赵剑曦,等.双子表面活性剂体系的界面活性研究[J].精细化工,2001,18(2):67-82
    [144]季钱盐Gemini表面活性剂杀菌活性及其与分子结构的关联.应用化学,2003,20(12):1208-1210
    [145]杨涛,李文娟,周从山.芘荧光探针光谱法测定CTAB临界胶束浓度[J].石化技术与应用,2007,25(1):93-95
    [146]梁梦兰,叶建峰,松香衍生物的季铵盐阳离子表面活性剂的合成与性能测定[J],化学世界,2000,(3):138-141.
    [147]郭祥峰,贾丽华,阳离子表面活性剂及应用[M],北京,化学工业出版社,2002.67-86:134-136.
    [148]蒋福宾,曾华辉,杨正业,等.松香基双季铵盐阳离子表面活性剂的合成与性能,精细化工,2007,24(11):1074-1079
    [149]赵世民,表面活性剂——原理、合成、测定及应用,中国石化出版社,2005,140-156
    [150]张光华,解攀,刘静,等.松香型阳离子乳化剂的制备及性能[J].化工进展,2008,27(10):1628-1636
    [151]成蕴秀.松香酰氨基酸系表面活性剂的合成及性能研究[D],南京林业大学研究生硕士学位论文
    [152]王昭,毛峰,黄祥平,等.二氧化钛纳米棒自组装纤维的水热一步合成及其光催化性能[J].材料科学与工程学报.2009,27:96-120
    [153]陈小泉,古国榜.以钛氧有机物为前驱物制备具有高光催化活性的纳米二氧化钛晶体[J].催化学报.2002,23(4):312-316
    [154]孙奉玉,吴鸣,李文钊.二氧化钛的尺寸与光催化活性的关系[J].催化学报.1998,19(3):229-233
    [155]王晓静,刘超,胡中华,等.多孔二氧化钛微球的制备、表征及其光催化性能[J].催化学报.2008,29(4):392-396
    [156]杨儒,李敏,张敬畅,等.锐钛矿型纳米Ti02粉体的精细结构及其光催化降解苯酚的沼性[J].催化学报.2003,24(8):629-634
    [157]赵翔,林浩祥,崔凯,等.水-乙醚二元溶剂体系中制备放射虫状介孔氧化硅[J].高等学(?)化学学报,2007,28(3):419-421
    [158]任引哲,齐利民,马季铭.利用室温固态反应制备球霰石型CaCO3粒子,高等学校化学,2003.24(8):1492-1494
    [159]郝海燕,沙爱龙,吴婧,等.3种制备碳酸钙粉体方法的红外比较研究[J].河南师范大学学报,2011,39(1):131-133
    [160]J. Chen, L. Xiang.Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology,2009,189,(1):64-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700