铁电存储器用钛酸铋材料的第一性原理计算及电导机制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电存储器以其非挥发性(即使在电源突然断开的时候芯片仍能保存存储在其中的信息)、高写入速度、低功率消耗、低的操作电压、高重复读写能力以及优异的抗辐射等优越的性能,成为存储器领域最具发展潜力的产品。而铁电材料的选择是其实现商业化应用的关键。在铁电材料中,使用最多的是钙钛矿结构铁电如Pb(Zr_xTi_(1-x))O_3(PZT)和铋层状结构铁电如SrBi_2Ta_2O_9(SBT),但是PZT材料,它含有有毒元素铅,对环境有污染,且抗疲劳性较差;SBT材料,虽然抗疲劳性好,但是制备温度过高,很难与大规模集成器件集成。因此,寻找适合铁电存储器用的新型铁电材料成为研究热点之一。
     近年来,掺杂的钛酸铋材料因其无铅特性,大自发极化,低处理温度,高居里温度,以及优异的抗疲劳特性受到了人们的广泛关注。实验上,人们提出了A位掺杂、B位掺杂,以及A,B位共掺杂的方法,来提高BIT的铁电性能,并取得了一定的成效。但其掺杂的内部的机理却并不明朗。
     在BIT器件的应用过程中,实验上观测到器件的漏电流比较大,成为限制它应用的一个主要因素。人们对于BIT的漏电流属性在实验和理论方面都做了研究。实验上,A,B位共掺杂的方法,被认为是改善其漏电流属性的有效方法之一。在理论方面,研究结果表明,漏电流与Bi~(3+)离子的挥发及氧空穴有关,并且材料中存在的杂质也被认为是产生漏电流的原因之一。人们也相应地提出很多的理论模型去解释实验上观测到的实验现象,但是其真正的内在机制还是存在争议。而当器件的漏电流过大时,就会影响到极化翻转的测量,严重时甚至会导致铁电存储器件的短路,导致存储失败。因此弄清BIT的电导机制,改善漏电流属性尤为重要。
     本论文采用基于密度泛函理论的第一性原理方法,结合赝势投影平面波(PP-PAW)方法,针对BIT铁电体铋层状钙钛矿结构的总能和电子结构等物理性质系统地进行了理论研究,并取得了以下主要成果:
     1)总能和电子结构的计算结果表明,BIT铁电相的稳定性主要源自于Bi_2O_2层和Bi_2Ti_3O_(10)钙钛矿层的畸变以及它们之间相互耦合作用释放出来的弛豫能;BIT产生铁电性质的主要原因是源自于B位的Ti离子和O离子之间存在强烈的杂化;而A位的Bi和O之间存在的较弱的共价杂化则进一步促进了铁电相的稳定。
     2)由电荷密度和AIM理论计算的迁移电荷结果表明,BIT的结构畸变和铁电性质的主要诱导因素来源于B位Ti离子和O之间以及Bi和O之间的共价杂化作用;而B位Ti离子和O之间的共价杂化是产生畸变的主导因素。
     3)将第一性原理计算得到的铁电相BIT的能带结构,与MIGS理论相结合,我们计算得到了BIT与Pt电极相接触时产生的肖特基势垒的高度,其值为1.26 eV,如此大的势垒足以抑制从金属向BIT导带的发射肖特基电流,这也就意味着在BIT的电导机制中,界面限制肖特基发射机制是不占主导地位的。
     4)在实验方面,我们对提取的实验数据用界面限制肖特基发射机制公式来进行拟合,证明了我们的计算结果的正确性。而肖特基发射机制是一种最接近本征的电导机制,也说明了BIT中漏电流可以通过掺杂或改善实验条件来减小。
Nonvolatile random access memories (NvRAMs) have been regarded as the most promising memories due to its nonvolatile nature (in which the stored data will not been lost even if power is interrupted), high speed, low power consumption, low operation voltage, high repeatability and excellent radiation hardness. The key for commercial applications is the choice of ferroelectric material. Among various ferroelectric materials, ferroelectric material with perovskite Pb(Zr_xTi_(1-x))O_3 (PZT) and Bi-layered structures SrBi_2Ta_2O_9 (SBT) are promising materials for NvRAMs. However, PZT contains toxic elements lead, which causes environmental pollution, and it also shows a reduction of polarization with polarity switching (fatigue). SBT, although it shows excellent endurance against polarity switching, its synthetic temperature is too high for standard LSI-device fabrication processes. Therefore, researchers are eager to find some more suitable materials.
     Recently, rare-earth doped Bi_4Ti_3O_(12) (BIT) has attracted considerable attention for potential utilization because of its lead-free nature, large spontaneous polarization, low processing temperature, high Curie temperature, and excellent fatigue-free behavior. Experimentally, A site, B site and A,B sites substitution are proposed and used to improve the ferroelectric properties of BIT, and have made some achievement, but the internal mechanism of doping is not clear.
     In BIT device applications, leakage current often interferes and leads to device failure. Therefore, the leakage properties of BIT films have been widely investigated in the experimental and theoretical aspects. Experimentally, A,B sites substitution is considered as the most effective method to reduce the leakage current. Theoretically, some studies revealed that the leakage current is related with the volatility of Bi3+ ions and oxygen vacancies. Impurities atoms were also considered to contribute to the leakage current. A number of mechanisms were also proposed to explain the leakage behavior observed in experiment. However, the actual conduction mechanism is still controversial. The leakage current interferes with the polarization switching and makes BIT unsuitable for the ferroelectric devices when the leakage current is large. So, it is very important to make the conduction mechanism clear.
     In this paper, we have systematically studied the basic physical properties such as the electronic properties, and chemical bonding properties by pseudopotential project plane wave (PP-PAW) method based on the density functional theory. The main results are as follows.
     1)The results of total energy and density of states reveals that the stability of ferroelectric phase of BIT is determined by the distortions of the Bi2Ti3O10 block and the Bi_2O_2 layer as well as the relaxation energy, which is released by the mutual coupling between distortions of the Bi_2Ti_3O_(12) block and the Bi_2O_2 layer. The ferroelectric property of BIT is largely determined by the strong Ti-O hybridizations, which is strengthened by the weak hybridization of Bi (A-site) and O.
     2)The results of the charge density and the AIM theory reveals that the ferroelectric properties and lattice distortions originates from the hybridization between Ti and O and Bi and O in BIT ,and the hybridization of Ti and O is dominant.
     3)The band structure and density of states of ferroelectric bismuth titanate is calculated in the framework of density functional theory. Combined with the metal induced gap state model, we calculated the Schottky barrier height of BIT on Pt electrode as high as 1.26 eV, which denotes that the Schottky effect may not be the dominant conduction mechanism in BIT.
     4)Compared with the analysis of experimental data, we conclude that the leakage current behavior of BIT films is dominated by bulk limited conduction mechanisms and can be reduced by doping or better processing conditions.
引文
[1] A. Mansingh. Fabrication and applications of piezo-and ferroelectric films [J]. Ferroelectrics, 1990, 102: 69-84.
    [2] B. H. Park, B. S. Kang, S.D. Bu, T. W. Noh, J. Lee, W. Jo. Lanthanum-substituted bismuth titanate for use in non-volatile memories [J]. Nature 1999, 401:682-684.
    [3]孙慷,张福学.压电学(上册) [M].北京:国防工业出版社, 1984: 6-408.
    [4]钟维烈.铁电物理学[M].北京:科学出版社, 1998: 1-148.
    [5]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社, 2000:305-325.
    [6] R. E. Cohen. Origin of ferroelectricity in perovskite oxides [J]. Nature 1992;358:136.
    [7] R. Resta, M. Posternak, and A. Baldereschi. Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3 [J]. Phys. Rev. Lett. 1993, 70 (7): 1010-1013.
    [8] R. Machado, M. G. Stachiotti, R. L. Migoni, and A. Huanosta Tera. First-principles determination of ferroelectric instabilities in Aurivillius compounds [J]. Phys. Rev. B, 2004, 70 (21): 214112.
    [9] M. G. Stachiotti, C. O. Rodriguez, C. Ambrosch-Draxl, and N. E. Christensen. Electronic structure and ferroelectricity in SrBi2Ta2O9 [J]. Phys. Rev. B, 2000, 61 (21): 14434-14439.
    [10] A. I. Kingon, S. K. Streiffer. Ferroelectric films and devices [J]. Current Opinion in Solid State and Materials Science, 1999, 4: 39-44.
    [11] H. Ishiwara, M. Okuyama, Y. Arimoto. Ferroelectric random access memories: fundamentals and applications [M].Germany Berlin: Springer, 2004: 271-284.
    [12] T. Mihara, H. Watanabe, C. Araujo. Polarization fatigue characteristics of sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors [J]. Jpn. J. Appi. Phys, 1994, 33: 3996-4002.
    [13] R. Ramesh, J. Lee, T. Sands, V. G. Keramidas, O. Auciello. Oriented ferroelectric La‐ Sr‐ Co‐ O/Pb‐ La‐ Zr‐ Ti‐ O/La‐ Sr‐ Co‐ O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer[J]. Appl. Phys. Lett. 1994, 64: 2511-2513.
    [14] J. Yin, Z. G. Liu, Z. C. Wu. Completely <111> -textured growth and enhanced ferroelectric properties of Pb(Ta0.05Zr0.48Ti0.47)O3 films on Pt/TiO2/SiO2/Si (001) using SrRuO3 buffer layer [J]. Appl. Phys. Lett.1999, 75: 3396-3398.
    [15] C. M. Foster, G. R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, J. Amano. Single-crystal Pb(ZrxTi1-x)O3 thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties [J]. J. Appl. Phys. 1997, 81: 2349-2357.
    [16] B. Yang, S. Aggarwal, A. M. Dhote, T. K. Song, R. Ramesh, J. S. Lee. La0.5Sr0.5CoO3/Pb (Nb0.04Zr0.28Ti0.68)O3/La0.5Sr0.5CoO3 thin film heterostructures on Si using TiN/Pt conducting barrier[J]. Appl. Phys. Lett.1997, 71: 356-358.
    [17] R. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschnig, D. L. Hart, J. M. Tarascon. Epitaxial cuprate superconductor/ferroelectric heterostructures [J]. Science, 1991, 252: 944-946.
    [18] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, J. F. Scott. Fatigue-free ferroelectric capacitors with platinum electrodes [J]. Nature, 1995, 374: 627-629.
    [19] J. F. Scott, F. M. Ross, C. A. Paz de Araujo. Structure and device characteristics of SrBi 2Ta2O9-based nonvolatile random-access memories [J]. MRS Bulletin. 1996, 21: 33-39.
    [20] G. D. Hu, I. H. Wilson, J. B. Xu, W. Y. Cheung, S. P. Wong, H. K. Wong. Structure control and characterization of SrBi2Ta2O9 thin films by a modified annealing method [J]. Appl. Phys. Lett.1999, 74: 1221-1223.
    [21] R. E. Melgarejo, M. S. Tomar, S. D. Bhaskar, P. S. dobal, R. S. Katiyar, Large ferroelectric response in Bi4-xNdxTi3O12 films prepared by sol-gel process [J]. Appl. Phys. Lett. 2002, 81: 2611-2613.
    [22] M. S. Tomar, R. E. Melgarejo, A. Hidalgo, S. B. Mazumder, R. S. Katiyar. Structural and ferroelectric studies of Bi3.44La0.56Ti3O12 films [J]. Appl. Phys. Lett. 2003, 83: 341-343.
    [23] N. V. Giridharan, S. Madeswaran, R. Jayavel. Growth of c-axis-oriented Bi3.15Nd0.85Ti3O12 thin films for ferroelectric memory applications [J]. Journal of Crystal Growth. 2005, 275: e965-e969.
    [24] X. S. Gao, J. Wang. Thickness dependences of ferroelectric and dielectric properties in (Bi3.15Nd0.85) Ti3O12 thin films [J]. J. Appl. Phys. 2006, 99: 074103.
    [25] R. Resta. Ab initio simulation of the properties of ferroelectric materials [J]. Modelling Simul. Mater. Sci. Eng., 2003, 11: R69-R96.
    [26] B. Aurivillius. Mixed bismuth oxides with layer lattices [J]. Ark. Kemi. 1949, 1: 463-480.
    [27] E. C. Subbarao. A family of ferroelectric bismuth compounds [J]. J. Phys. Chem. Solid, 1962, 23 (6): 665-676.
    [28] Z. Lazarevi?, B. D. Stojanovi?, J. A. Varela. An approach to analyzing synthesis, structure and properties of bismuth titanate ceramics [J]. Science of Sintering, 2005, 37: 199-216.
    [29] N. Setter, D. Damjanovic, L. Eng, G. Fox et al. Ferroelectric thin films: Review of materials, properties, and applications[J]. J. Appl. Phys. 2006, 100: 051606.
    [30] F. Yang, M. H. Tang, Y. C. Zhou, F. Liu, Y. Ma, X. J. Zheng, J. X. Tang, H. Y. Xu, W. F. Zhao, Z. H. Sun, Fatigue mechanism of the ferroelectric perovskite thin films [J]. Appl. Phys. Lett. 2008, 92, 022908-022910.
    [31] Y. Noguchi, M. Soga, M. Takahashi, M. Miyayama. Oxygen Stability and Leakage Current Mechanism in Ferroelectric La-Substituted Bi4Ti3O12 Single Crystals [J]. Jpn. J. Appl. Phys. 2005, 44: 6998-7002.
    [32] T. Watanabe, A. Saiki, K. Saito, H. Funakubo. Film thickness dependence of ferroelectric properties of c-axis-oriented epitaxial Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition [J]. J. Appl. Phys. 2001, 89: 3934-3938.
    [33] H. Irie, H. Saito, S. Ohkoshi, K. Hashimoto. Enhanced ferroelectric properties of nitrogen-doped Bi4Ti3O12 thin films [J]. Advanced Materials. 2005, 17: 491– 494.
    [34] T. Hashimoto, H. Moriwake. Oxygen vacancy formation energy and its effect on spontaneous polarization in Bi4Ti3O12: A first-principles theoretical study [J]. Phys. Rev. B. 2008, 78: 92106.
    [35] U. Chon, H. M. Jang, M. G. Kim, C. H. Chang. Layered perovskites with giant spontaneous polarizations for nonvolatile memories [J]. Physical review letters 2002, 89: 87601.
    [36] E. K. Choi, S. S. Kim, J. K. Kim, J. C. Bae, W. J. Kim, Y. I. Lee, T. K. Song. Effects of Donor Ion Doping on the Orientation and Ferroelectric Properties of Bismuth Titanate Thin Films [J]. Jpn. J. Appl. Phys. 2004, 43: 237.
    [37] H. Uchida, I. Okada, H. Matsuda, T. Iijima, T. Watanabe, H. Funakubo. Fabrication ofion-cosubstituted bismuth titanate thin films by chemical solution deposition method [J]. Integrated Ferroelectrics. 2003, 52: 41 - 54.
    [38] A. R. Chaudhuri, S. B. Krupanidhi. dc leakage behavior in vanadium-doped bismuth titanate thin films [J]. J. Appl. Phys. 2005, 98: 094112.
    [39] M. Dawber, K. M. Rabe, J. F. Scott. Physics of thin-film ferroelectric oxides [J]. Rev. Mod. Phys. 2005, 77: 1083–1130.
    [40] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente [J]. Zeitschrift für Physik A Hadrons and Nuclei. 1928, 48: 73-79.
    [41]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社, 1998.
    [42] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140(4): A1133-A1138.
    [43] J. A. Pople, D. L. Beveridge, P. A. Dobosh. Molecular orbital theory of the electronic structure of organic compounds. II. Spin densities in paramagnetic species [J]. J. Am. Chem. Soc., 1968, 90 (16): 4201–4209.
    [44] W. A. Goddard Iii, L. B. Harding, The description of chemical bonding from ab initio calculations [J]. Ann. Rev. Phys. Chem. 1978, 29: 363-396.
    [45] P. Hohenberg, W. Kohn. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136(3): B864-B871.
    [46] N. H. March. The Thomas-Fermi approximation in quantum physics [J]. Advan. Phys, 1957 6: 1-101.
    [47] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B, 1992, 46: 6671-6687.
    [48] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
    [49] J. C. Slater. A simplification of the hartree-fock method [J]. Phys. Rev., 1951, 81: 385-390.
    [50] J. C. Slater, T. M. Wilson, and J. H. Wood. Comparison of several exchange potentials for electrons in the Cu2+ ion [J]. Phys. Rev., 1969, 179: 28-38.
    [51] E. Wigner. On the interaction of electrons in metals [J]. Phys. Rev., 1934, 46: 1002-1011.
    [52] D. M. Ceperley, B. J. Alder. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett., 1980, 45: 566-569.
    [53] J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45: 13244-13249.
    [54] D. R. Hamann, M. Schlüter, and C. Chiang. Norm-Conserving Pseudopotentials [J]. Phys. Rev. Lett., 43: 1494-1497.
    [55] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990, 41: 7892-7895.
    [56] P. E. Bl?chl. Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50: 17953- 17959.
    [57] G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169-11186.
    [58] G. Kresse, J. Furthmüller. Efficient of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mat. Sci., 1996, 6: 15-50.
    [59] C. Y. Yau, R. Palan, K. Tran, R. C. Buchanana. Raman study of Bi site-occupancy effect on orientation and polarization in Bi4Ti3O12 thin films[J]. Appl. Phys. Lett. 2004, 85: 4714-4716.
    [60] A. D. Rae, J. G. Thompson, R. L. Withers. Structure refinement of commensurately modulated bismuth strontium tantalate, Bi2SrTa2O9[J]. Acta Cryst. 1992. B48, 418-428.
    [61] G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B, 1999, 59: 1758-1775.
    [62] C. H. Hervoches, P. Lightfoot. A variable-temperature powder neutron diffraction study of ferroelectric Bi4Ti3O12 [J]. Chem. Mater. 1999, 11: 3359-3364.
    [63] F. Goubin, Y. Montardi, P. Deniard, X. Rocquefelte, R. Brec, S. Jobic. Optical properties of CeBO3 and CeB3O6 compounds: first-principles calculations and experimental results[J]. Journal of Solid State Chemistry, 2004, 177: 89-100.
    [64] L. Pintilie, I. Pintilie, T. Botila. Photoelectric properties of sandwich Au/Bi4Ti3O12/Si/Al heterostructures [J]. Sci. Technol. 1999, 14: 928.
    [65] R. E. Cohen and H. Krakauer. Lattice dynamics and origin of ferroelectricity in BaTiO3: Linearized-augmented-plane-wave total-energy calculations [J]. Phys. Rev. B, 1990, 42 (10): 6416-6423.
    [66] M. Q. Cai, Z. Yin, M. S. Zhang, Y. Z. Li. First-principles study of ferroelectric and nonlinear optical property in bismuth titanate [J]. Chemical Physics Letters, 2005, 401: 405-409.
    [67] J. Zhang, Z. Yin, M. S. Zhang. Electronic band structure of ferroelectric SrBi2Ta2O9 [J]. Appl. Phys. Lett. 2002, 81: 4778-4780.
    [68] W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, D. A. Payne. Pb displacements in Pb (Zr,Ti)O3 perovskites [J]. Phys. Rev. B, 1996, 53: 3080-3087.
    [69] P. Extance, S. R. Elliott. Pressure dependence of the electrical conductivity of amorphous red phosphorus[J]. Philosophical Magazine Part B, 1981, 43: 469-483.
    [70] R. F. W. Bader. Atoms in Molecules-A Quantum Theory [M]. Oxford: Clarendon Press, 1990.
    [71] R. F. W. Bader, A bond path: A universal indicator of bonded interactions [J]. J. Phys. Chem. A, 1998, 102: 7314-7323.
    [72] R. F. W. Bader, P. L. A. Popelier and T. A. Keith. Theoretical definition of a functional group and the molecular orbital paradigm [J]. Angewandte Chemie, Intl. Ed. Eng., 2003, 33: 620-631.
    [73] R. F. W. Bader, R. J. Gillespie, and P. J. MacDougall.. A physical basis for the VSEPR model of molecular geometry [J]. J. Am. Chem. Soc., 1988, 110: 7329.
    [74] R. F. W. Bader. Principle of stationary action and the definition of a proper open system [J]. Phys. Rev. B, 1994, 49: 13348-13356.
    [75] A. Shrinagar, A. Garg, R. Prasad, S. Auluck. Phase stability in ferroelectric bismuth titanate: a first-principles study[J]. Acta Cryst. 2008. A64, 368-375.
    [76] Y. Noguchi, T. Goto, M. Miyayama, A. Hoshikawa, T. Kamiyama. Ferroelectric distortion and electronic structure in Bi4Ti3O12 [J]. Journal of Electroceramics, 2008, 21: 49-54.
    [77] Y. Lu, D. T. Hoelzer, W. A. Schulze, B. Tuttle, B. G. Potter. Grain-oriented ferroelectric bismuth titanate thin film prepared from acetate precursor [J]. Materials Science and Engineering B, 1996, 39: 41-47.
    [78] J. Robertson, C. W. Chen. Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalite [J]. Appl. Phys. Lett. 1999, 74: 1168-1170.
    [79] S. J. Clark, J. Robertson. Band gap and Schottky barrier heights of multiferroic BiFeO3 [J]. Appl. Phys. Lett. 2007, 90: 132903-132905.
    [80] J. Robertson. Band offsets of wide-band-gap oxides and implications for future electronic devices [J]. J. Vac. Sci. Technol. B, 2000, 18: 1785-1791.
    [81] S. M. Sze. Semiconductor devices: physics and technology[M]. New York, NY: Wiley, 2002.
    [82] M. Sedlar, M. Sayer. Structural and electrical properties of ferroelectric bismuth titanate thin films prepared by the sol gel method [J]. Ceramics International, 1996, 22: 241-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700