甲烷部分氧化制含氧化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷为天然气的主要成分,目前天然气作为化工原料的应用主要通过间接的方式实现,即将其制成合成气后再转化为合成氨和甲醇等。本文探索的是一种直接利用天然气的方法,主要目的是研制出一种高效催化剂体系,将甲烷在相对温和的条件下直接氧化成便于安全运输的含氧化合物。该体系以活性炭负载杂多酸为催化剂,空气中的氧为氧化剂,醋酸为反应溶剂,构建一个气液固三相催化剂体系,该反应体系能有效解决气固反应体系中含氧化合物的选择性低和气液反应体系中液相介质对设备的腐蚀性强等问题。实验研究了活性炭负载不同种类和不同含量的杂多酸或其它物质制得的催化剂的催化性能,建立一个相对理想的催化体系——活性炭同时负载磷钼酸和钒酸钠,且在液相中添加一定量的醋酸钴。在该催化体系的作用下,甲烷的转化率较高。随后的实验对该催化体系进行了优化,优化后的催化体系能较为明显的提高反应中甲烷的转化率,最优催化体系为:活性炭同时负载磷钼酸和钒酸钠,其中磷钼酸负载量为30%,磷钼酸与钒酸钠的摩尔比为1:3,同时液相中添加一定量的醋酸钴,其浓度为1.68×10"2mol/L。最后实验还分别研究了温度、压力、溶液配比和气体流量等工艺条件的变化对甲烷转化率的影响,结果表明:溶液的配比对甲烷的转化率有显著的影响,温度、压力以及气体流量的变化对实验结果也有一定影响。当反应工艺条件得到优化后,甲烷的转化率能达到6.67%,说明该催化体系具有深入研究的价值。
Natural gas, which main component is methane, is one of the most important raw materials. It is used to synthesize methanol or ammonia through an indirect way of which the syngas is produced firstly. This paper explores a direct way of using natural gas and develops a high-effective catalyst system that can directly change methane into oxygenated hydrocarbons under mild reaction conditions. The oxygenated hydrocarbons are liquid under normal pressure and temperature and their chemical properties are stable, so they can be transported conveniently. The experiment has utilized three-phase system and semi-continuous operation into the reaction for the first time. The gas phase is continuous and the liquid and solid phases are both intermittent. The active carbon is used to load heteropoly acids as the carrier and air is used as the oxidant. This reaction system solves the problem existed in gas-solid or gas-liquid reaction system such as the high cost of the equipments in those systems and the low selection of oxygenated hydrocarbons. The catalytic properties of active carbon loading different heteropoly acid and other substances have been studied in this paper and a more appropriate catalytic systems is established based on the experiment results.
     The solid phase is the active carbon loading H3O40PMo12 and Na3VO4 and liquid phase contains some amount of the Co(Ac)2 in the new system. In those catalytic systems, the conversion of methane reaches higher level. Meanwhile the catalytic systems have been optimized, and a higher conversion is achieved. In the catalytic systems, the charge number of H3O40PMo12 reach 30%, and the mole ratio of H304oPMo12 and Na3VO4 is 1:3, the suitable molarity of Co(Ac)2 is 1.68xlO-2mol/L. Finally, the experiment studies the impact of the changes of pressure, temperature and other impact factors to the methane oxidation reaction. The results show that the ratio of the solution has significant influence on the conversion of methane.The pressure, the temperature and the gas flow also have some effect on the conversion. When the reaction process conditions are optimized, methane conversion can achieve 6.67%, so the catalytic systems have further research value.
引文
[1]高云玲,丁钟,彭孝军,等.甲烷一步氧化制甲醇新技术进展[J].天然气化工,2003,28:50-55.
    [2]王奂玲,丁勇,索继栓.甲烷光催化氧化制甲醇研究进展[J].分子催化,2004,18(5):388-399.
    [3]K.Aoki, M. Ohmae, T. Nanba, et al. Direct conversion of methane into methanol over MoO3/SiO2 catalyst in an excess amount of water vapor [J]. Catalysis Today., 1998,45:29-33.
    [4]Tomomi Sugino, Ayako Kido, Naoto Azuma, et al. Partial Oxidation of Methane on Silica-Supported Silicomolybdic Acid Catalysts in an Excess Amount of Water Vapor [J]. Journal of Catalysis.,2000,190:118-127.
    [5]Stuart H. Taylor, Justin S J. Hargreaves, Graham J. Hutchings, et al. The partial oxidation of methane to methanol:An approach to catalyst design [J]. Catalysis Today 1998,42:217-224.
    [6]Graham J. Hutchings, Stuart H.Taylor. Designing oxidation catalysts [J]. Catalysis Today. 1999,49:105-113.
    [7]Christopher A. Cooper, Charles R. Hammond, Graham J. Hutchings, et al. A combined experimental and theoretical approach to the study of methane activation over oxide catalysts [J]. Catalysis Today.,2001,71:3-10.
    [8]P.P. Knops-Gerrits, W.A. Goddard Ⅲ. Methane partial oxidation in iron zeolites:theory versus experiment [J]. Journal of Molecular Catalysis A:Chemical.,2001,166:135-145.
    [9]Beata Michalkiewicz. Partial oxidation of methane to formaldehyde and methanolusing molecular oxygen over Fe-ZSM-5 [J]. Applied Catalysis A: General., 2004,277:147-153.
    [10]Xiaoxing Wang, Ye Wang, Qinghu Tang, et al. MCM-41-supported iron phosphate catalyst for partial oxidationof methane to oxygenates with oxygen and nitrous oxide [J]. Journal of Catalysis.,2003,217:457-467.
    [11]Lin Chena, Xing Wang Zhang, Liang Huang, et al. Partial oxidation of methane with air for methanol production in a post-plasma catalytic system [J]. Chemical Engineering and Processing.,2009,48:1333-1340.
    [12]Qijian Zhang, Dehua He, Zhangsheng Han, et al. Controlled partial oxidation of methane to methanol/formaldehyde over Mo-V-Cr-Bi-Si oxide catalysts [J]. Fuel., 2002,81:1599-1603.
    [13]张昕,贺德华,张启俭,等.Mo/La-Co-O催化剂上甲烷选择氧化制甲醇反应[J].催化 学报,2003,24(4):305-311
    [14]杨晓强,董国利,贺德华.负载WOx的Co-Fe-Mo-O催化剂催化甲烷氧化反应[J].石油化工,2005,34(12):1134-1139.
    [15]杨晓强,董国利,贺德华.填充惰性材料对甲烷部分氧化反应的影响[J].天然气化工,2006,31:1-6.
    [16]Qijian Zhang, Dehua He, QimingZhu. Direct partial oxidation of methane to methanol: Reaction zones and role of catalyst location [J]. Journal of Natural Gas Chemistry., 2008,17:24-28.
    [17]J.A. Barbero, M.A. Banares, M.A. Pena, et al. Partial oxidation of methane into C1-oxygenates:role of homogeneous reactions and catalyst surface area [J]. Catalysis Today.,2001,71:11-19.
    [18]Antonius Indarto, Jae-Wook Choi, Hwaung Lee, et al. Partial Oxidation of Methane with Sol-Gel Fe/Hf/YSZ Catalyst in Dielectric Barrier Discharge:Catalyst Activation by Plasma [J]. JOURNAL OF RARE EARTHS.,2006,24:513-518.
    [19]Antonius Indarto, Dae Ryook Yang, Jelliarko Palgunadi, et al. Partial oxidation of methane with Cu-Zn-Al catalyst in a dielectric barrier discharge [J]. Chemical Engineering and Processing.,2008,47:780-786.
    [20]Ouarda Benlounes, Sadia Mansouri, Ch'erifa Rabia, et al. Direct oxidation of methane to oxygenates over heteropolyanions [J]. Journal of Natural Gas Chemistry., 2008,17:309-312.
    [21]Yonghong Teng, Hiroaki Sakurai, Kenji Tabata, et al. Methanol formation from methane partial oxidation in CH4-O2-NO gaseous phase at atmospheric pressure [J]. Applied Catalysis A:General.,2000,190:283-289.
    [22]Tetsuya Takemoto, Kenji Tabata, Yonghong Teng, et al. The effects of reaction pressures on the production of methanol through the selective oxidation of methane in CH4-O2-NOx (x=1 or 2) [J]. Applied Catalysis A:General.,2001,205:51-59.
    [23]David W. Larkin, Lance L. Lobban, Richard G. Mallinson. The direct partial oxidation of methane to organic oxygenates using a dielectric barrier discharge reactor as a catalytic reactor analog [J]. Catalysis Today.,2001,71:199-210.
    [24]Qijian Zhang, Dehua He, Jinlu Li, Boqing Xu, et al. Comparatively high yield methanol production from gas phase partial oxidation of methane [J]. Applied Catalysis A: General.,2002,224:201-207.
    [25]张听,贺德华,张启俭,等.甲烷气相均相选择氧化合成甲醇[J].石油化工,2003,32(3):195-199.
    [26]Takafumi Sato, Masaru Watanabe, Richard L. Smith Jr, et al. Analysis of the density effect on partial oxidation of methane in supercritical water [J]. J. of Supercritical Fluids.,2004,28:69-77.
    [27]Tomohiro Nozaki, Akinori Hattori, Ken Okazaki. Partial oxidation of methane using a microscale non-equilibrium plasma reactor [J]. Catalysis Today.,2004,98:607-616.
    [28]Beata Michalkiewicz, Kazimierz Kalucki, Jacek G. So'snicki. Catalytic system containing metallic palladium in the processof methane partial oxidation [J]. Journal of Catalysis.,2003,215:14-19.
    [29]张秀成,曹凯,陈立宇,等.V205催化剂液相选择性氧化甲烷合成甲醇[J].石油化工2004,33(9):813-815.
    [30]陈立宇,杨伯伦,张秀成,等.V205催化的甲烷液相部分氧化反应[J].催化学报,2005,26(11):1027-1030.
    [31]陈立宇,杨伯伦,张秀成,等.甲烷液相部分氧化合成甲醇过程研究[J].高等化学工程学报,2005,19(1):54-58.
    [32]Gareth R. Williams, Stan T. Kolaczkowski, Pawel Plucinski. Catalyst instabilities during the liquid phase partial oxidation of methane [J]. Catalysis Today., 2003,81:631-640.
    [33]Wensheng Chen, Joseph A. Kocal, Timothy A. Brandvold, et al. Manganese oxide catalyzed methane partial oxidation in trifluoroacetic acid: Catalysis and kinetic analysis [J]. Catalysis Today.,2009,140:157-161
    [34]Munir D. Khokhar, Ram S. Shukla, Raksh V. Jasra. Selective oxidation of methane by molecular oxygen catalyzed by a bridged binuclear ruthenium complex at moderate pressures and ambient temperature [J]. Journal of Molecular Catalysis A: Chemical., 2009,299:108-116.
    [35]张小平,陈立宇,张秀成,等.磷钨酸催化剂部分氧化甲烷合成甲醇的探索性实验研究[J].天然气化工,2006,31:44-48.
    [36]尉迟力,沈润南,夏春谷,等.外源生长因子对甲烷单加氧酶活性和稳定的影响[J]分子催化,1997,11(2):89-94.
    [37]沈润南,尉迟力,李树本,等.甲烷单加氧酶的催化机理[J].催化学报,1997,18(4):310-314.
    [38]尉迟力,夏仕文,沈润南,等.甲烷生物催化氧化制甲醇—甲基球菌3021中甲烷单加氧酶催化性能的研究[J].分子催化,1997,11(5):349-353.
    [39]尉迟力,夏仕文,李树本,等.甲烷生物催化氧化制甲醇[J].催化学报,1997,18(6):503-507.
    [40]任通,索继拴,张小明,等.甲烷单加氧酶化学模拟的初步研究[J].分子催化,2002,16(1):9-14.
    [41]刘婷婷,辛嘉英,徐毅,等.甲基弯菌IMV 3011整细胞催化甲烷氧化合成甲醇的研究[J].分子催化,2002,16(6):455-459.
    [42]崔俊儒,辛嘉英,牛建中,等.二氧化碳存在下甲烷氧化细菌催化甲烷生物合成甲醇[J].催化学报,2004,25(6):471-474.
    [43]桑丽霞,钟顺和.光促甲烷直接转化为甲醇的研究进展[J].化学通报,2002,12:805-810.
    [44]陈希慧,李树本.含水的多孔TiO2光催化分子氧氧化甲烷的初步研究[J].分子催化,2000,14(4):243-244.
    [45]高峰,钟顺和.杂多化合物的性质对激光促进甲烷部分氧化反应性能的影响[J].分子催化,2000,14(5):321-326.
    [48]高峰,钟顺和.激光促进磷酸盐表面甲烷直接氧化合成甲醇的研究[J].燃料化学学报,2000,28(5):401-406.
    [47]高峰,钟顺和.CaF2负载H3PMo12O40表面上激光促进甲烷部分氧化反应性能的研究[J].高等化学学报,2001,22(5):833-835.
    [46]高峰,钟顺和.激光促进H3PW12O40表面甲烷部分氧化反应[J].催化学报,2000,21(6):574-578.
    [49]高峰,钟顺和.非晶态Fe0.5Al0.5PO4表面上激光促进甲烷直接氧化合成甲醇的研究[J]化学物理学报,2000,13(5):611-616.
    [50]桑丽霞,钟顺和,肖秀芬,等.MoO3-TiO2/SiO2上光促表面催化甲烷和水合成甲醇和氢气[J].高等化学学报,2004,25(6):1115-1119.
    [51]桑丽霞,钟顺和,谭建华.WO3-TiO2/SiO2的制备、表征及光催化甲烷和水的反应性能[J].分子催化,2004,18(6):462-466.
    [52]桑丽霞,钟顺和.掺Cu对MoO3-TiO2/SiO2上光促甲烷和水表面反应的影响[J].催化学报,2004,25(3):182-188.
    [53]桑丽霞,钟顺和,钟亮.(MoO3,ZnO)-TiO2/SiO2上光催化甲烷和水的反应性能[J].应用化学,2005,22(3):331-333
    [54]桑丽霞,钟顺和.光促甲烷和水合成甲醇和氢催化剂的研究[J].燃料化学学报,2006,34(3):332-336.
    [55]立本英机,安部郁夫编.活性炭的应用技术[M].东南大学出版社,2002
    [56]H.凯利,巴德编.活性炭及其工业应用[M].中国环境科学出版社,1990
    [57]日本炭素材料会编.活性炭基础与应用[M].中国林业出版社,1984
    [58]王瑞玉,李忠,郑华艳,谢克昌.不同载体负载的Cu2(OH)3Cl催化剂对甲醇氧化羰基化的催化性能[J].催化学报,2009,30(10):1068-1072.
    [59]于政锡,徐建本,郑起.活性炭载体对醋酸乙烯合成催化剂活性的影响[J].石油化工,2006,35(12):1140-1144.
    [60]Fortuny A, Fontb J, Fabregat A. Wet air oxidation of phenol Using active carbon as catalyst [J]. Applied Catalysis B:Environmental,1998,19(3-4):165-173
    [61]杜迎春,郭金宝.负载杂多酸催化剂的表征及催化合成乙酸正丁酯的研究[J].石油炼 制与化工,2007,38(8):15-18
    [62]井淑波,张恒彬,朱万春.Keggin结构和Dawson结构磷钼酸及磷钼钒酸的氧化还原特性[J].吉林大学学报:理学版,2003,41(4):.534-537
    [63]Hanumant, Gurav. Synthesis of ethyl acetate by esterification of acetic acid withethanol over a heteropolyacid on montmorillonite K10 [J].天然气化学杂志:英文版,2010,19(2):161-164.
    [64]许林,胡长文.杂多酸型催化剂的研究进展[J].石油化工,1997,26(009):632-638.
    [65]吴越,叶兴凯.杂多酸的固载化-关于制备负载型酸催化剂的一般原理[J].分子催化,1996,10(004):299-319.
    [66]陈体清, 《仪器分析》,上海科学技术文献出版社,P244
    [67]裴素朋,岳斌.负载型P-Mo-V/SBA-15催化剂上的甲烷选择氧化反应[J].化学学报,2008,66(008):902-908.
    [68]王恩波,胡长文.Dawson结构钼砷杂多酸(盐)的合成与性质研究[J].化学学报,1990,48(008):790-796.
    [69]刘庆辉.新型杂多酸金属配合物的表征及催化性能[J].石油化工,2010,39(001):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700