E2F1对MDM2-p53负反馈通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MDM2蛋白水平被过表达的E2F所抑制,但是机制并不清楚。我们发现,在U2OS细胞里E2F1能够抑制MDM2启动子活性进而抑制MDM2蛋白水平。尽管我们发现E2F1在MDM2启动子上有高度保守的结合序列,并且E2F1能够与部分高度保守的序列结合,但是E2F1抑制MDM2启动子活性并不是通过这种启动子上的直接结合来介导的。只有在P53存在的情况下E2F1才能抑制MDM2启动子活性。在P53野生型细胞U2OS中抑制P53的表达,能够降低E2F1对MDM2启动子的抑制能力。在P53缺失型细胞H1299中,只有表达P53后E2F1才能够抑制MDM2启动子的活性。在DNA损伤刺激下P53和E2F1都被上调,我们用siRNA抑制内源E2F1表达后发现,DNA损伤刺激下上调的E2F1能够抑制MDM2启动子的活性,进而促进P53的稳定。对MDM2的抑制能够促进E2F1诱导的细胞凋亡。我们的实验结果提示了E2F1通过抑制P53对MDM2的上调来调控MDM2-P53负反馈通路的途径。
     缺氧刺激能激活P53并诱导细胞凋亡,但是P53在缺氧条件下和其它DNA损伤刺激下的激活模式不相同,缺氧条件下P53丧失了转录激活的能力。我们发现MYH9和P53结合,这种结合被缺氧环境破坏。MYH9的马达结构域和P53在细胞核中结合,这种结合受到P53的磷酸化状况的调控。原核表达的P53蛋白对缺氧和正常氧浓度下的细胞裂解液中的MYH9表现出相同的亲和力,CIAP去磷酸化P53后P53重新获得了在缺氧条件下结合MYH9的能力。siRNA-MYH9抑制内源MYH9蛋白水平后P53的多个转录激活靶基因的转录活性都有下调。由于MYH9在缺氧条件下丧失与p53的结合能力,而p53在缺氧条件下丧失转录激活能力,这说明MYH9可能是P53的一个共转录激活因子,并且它的活性被缺氧条件所抑制。
MDM2 expression is down-regulated upon E2F1 over-expression, but the mechanism is not well defined. In the current study, we found that E2F1 inhibits MDM2 expression by suppressing its promoter activity. Although E2F1 binds to the MDM2 promoter, the inhibitory effect of E2F1 on the MDM2 promoter does not require the direct binding. We demonstrate that E2F1 inhibits MDM2 promoter activity in a p53-dependent manner. Knockdown of p53 in U2OS cells impairs the inhibitory effect of E2F1 on the MDM2 promoter. Consistent with this observation, E2F1 does not inhibit MDM2 promoter activity in p53-deficient H1299 cells, and the inhibition is restored when p53 is expressed exogenously. Both E2F1 and p53 are upregulated after DNA damage stimulation. We show that such stimulation induces E2F1 to inhibit MDM2 promoter activity and promote p53 accumulation. Furthermore, inhibition of MDM2 by E2F1 promotes E2F1 induced apoptosis. These data suggest that E2F1 regulates the MDM2-p53 pathway by inhibiting p53 induced up-regulation of MDM2.
     Hypoxia stimulation can activate P53 and induce apoptosis, but P53 activation pattern is different from other DNA damage stimulation, P53 lost its transactivation capability. In our study we found that P53 binds with MYH9 and this binding is disrupted by hypoxia treatment. MYH9 motor domain binds with P53 in nuclear and this binding is regulated by P53 photosphorylation level. Prokaryotic expressed P53 protein shows no difference binding activity with MYH9 treated normoxia or hypoxia. CIAP de-photosphorylate P53 and gain P53 capbility in binding with MYH9 after hypoxia treatment. After knocking down MYH9 with siRNA-MYH9 in HCT116 p53+/+ cells P53 lost its transactivation activiy on some of its target genes. As P53 lost its binding activity with MYH9 under hypoxia treatment and also its transactivation capability, we perform MYH9 as a new P53 co-activator and its activity is repressed by hypoxia treatment.
引文
Alarcon, R., C. Koumenis, et al. (1999). "Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation." Cancer Res 59(24): 6046-6051.
    Ambrosini, G., E. B. Sambol, et al. (2007). "Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1." Oncogene 26(24): 3473-3481.
    An, W. G., M. Kanekal, et al. (1998). "Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha." Nature 392(6674): 405-408.
    Ashcroft, M., M. H. Kubbutat, et al. (1999). "Regulation of p53 function and stability by phosphorylation." Mol Cell Biol 19(3): 1751-1758.
    Baker, S. J., E. R. Fearon, et al. (1989). "Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas." Science 244(4901): 217-221.
    Banin, S., L. Moyal, et al. (1998). "Enhanced phosphorylation of p53 by ATM in response to DNA damage." Science 281(5383): 1674-1677.
    Barak, Y., T. Juven, et al. (1993). "mdm2 expression is induced by wild type p53 activity." Embo J 12(2): 461-468.
    Basanez, G., J. Zhang, et al. (2001). "Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes." J Biol Chem 276(33): 31083-31091.
    Berg, J. S., B. C. Powell, et al. (2001). "A millennial myosin census." Mol Biol Cell 12(4): 780-794.
    Berkovich, E. and D. Ginsberg (2003). "ATM is a target for positive regulation by E2F-1." Oncogene 22(2): 161-167.
    Bernardi, P., K. M. Broekemeier, et al. (1994). "Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane." J Bioenerg Biomembr 26(5): 509-517.
    Bettinger, B. T., D. M. Gilbert, et al. (2004). "Actin up in the nucleus." Nat Rev Mol Cell Biol 5(5): 410-415.
    Bieda, M., X. Xu, et al. (2006). "Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome." Genome Res 16(5): 595-605.
    Blattner, C., A. Sparks, et al. (1999). "Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53." Mol Cell Biol 19(5): 3704-3713.
    Bode, A. M. and Z. Dong (2004). "Post-translational modification of p53 in tumorigenesis." Nat Rev Cancer 4(10): 793-805.
    Braithwaite, A. W., G. Del Sal, et al. (2006). "Some p53-binding proteins that can function as arbiters of life and death." Cell Death Differ 13(6): 984-993.
    Brooks, C. L. and W. Gu (2006). "p53 ubiquitination: Mdm2 and beyond." Mol Cell 21(3): 307-315.
    Bruns, P. (1868). "Die Heilwirkung des Erysipels auf Geschwulste." Beitr Klin Chir 3: 443-446.
    Bull, E. K., S. Chakrabarty, et al. (1998). "mdm2-P2 transcript levels predict the functional activity of the p53 tumor suppressor in primary leukemic cells." Oncogene 16(17): 2249-2257.
    Bunz, F., A. Dutriaux, et al. (1998). "Requirement for p53 and p21 to sustain G2 arrest after DNA damage." Science 282(5393): 1497-1501.
    Canman, C. E., D. S. Lim, et al. (1998). "Activation of the ATM kinase by ionizing radiation and phosphorylation of p53." Science 281(5383): 1677-1679.
    Canobbio, I., P. Noris, et al. (2005). "Altered cytoskeleton organization in platelets from patients with MYH9-related disease." J Thromb Haemost 3(5): 1026-1035.
    Carmona-Gutierrez, D., T. Eisenberg, et al. (2010). "Apoptosis in yeast: triggers, pathways, subroutines." Cell Death Differ 17(5): 763-773.
    Cecconi, F., G. Alvarez-Bolado, et al. (1998). "Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development." Cell 94(6): 727-737.
    Chehab, N. H., A. Malikzay, et al. (1999). "Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage." Proc Natl Acad Sci U S A 96(24): 13777-13782.
    Chen, D., E. Padiernos, et al. (2005). "Apoptosis-stimulating protein of p53-2 (ASPP2/53BP2L) is an E2F target gene." Cell Death Differ 12(4): 358-368.
    Chen, H. Z., S. Y. Tsai, et al. (2009). "Emerging roles of E2Fs in cancer: an exit from cell cycle control." Nat Rev Cancer 9(11): 785-797.
    Cheng, T. H. and S. N. Cohen (2007). "Human MDM2 isoforms translated differentially on constitutive versus p53-regulated transcripts have distinct functions in the p53/MDM2 and TSG101/MDM2 feedback control loops." Mol Cell Biol 27(1): 111-119.
    Chipuk, J. E. and D. R. Green (2003). "p53's believe it or not: lessons on transcription-independent death." J Clin Immunol 23(5): 355-361.
    Chipuk, J. E., T. Kuwana, et al. (2004). "Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis." Science 303(5660): 1010-1014.
    Chipuk, J. E., T. Moldoveanu, et al. (2010). "The BCL-2 family reunion." Mol Cell 37(3): 299-310.
    Chittenden, T., C. Flemington, et al. (1995). "A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions." Embo J 14(22): 5589-5596.
    Craig, A. L., L. Burch, et al. (1999). "Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers." Biochem J 342 ( Pt 1): 133-141.
    Croxton, R., Y. Ma, et al. (2002). "Differences in DNA binding properties between E2F1 and E2F4 specify repression of the Mcl-1 promoter." Oncogene 21(10): 1563-1570.
    Croxton, R., Y. Ma, et al. (2002). "Direct repression of the Mcl-1 promoter by E2F1." Oncogene 21(9): 1359-1369.
    Daugas, E., S. A. Susin, et al. (2000). "Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis." Faseb J 14(5): 729-739.
    Desagher, S., A. Osen-Sand, et al. (1999). "Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis." J Cell Biol 144(5): 891-901.
    Di Lello, P., L. M. Jenkins, et al. (2006). "Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53." Mol Cell 22(6): 731-740.
    Dornan, D. and T. R. Hupp (2001). "Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300." EMBO Rep 2(2): 139-144.
    Dumaz, N. and D. W. Meek (1999). "Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2." Embo J 18(24): 7002-7010.
    Eischen, C. M., G. Packham, et al. (2001). "Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1." Oncogene 20(48): 6983-6993.
    el-Deiry, W. S., S. E. Kern, et al. (1992). "Definition of a consensus binding site for p53." Nat Genet 1(1): 45-49.
    el-Deiry, W. S., T. Tokino, et al. (1993). "WAF1, a potential mediator of p53 tumor suppression." Cell 75(4): 817-825.
    Espinosa, J. M. and B. M. Emerson (2001). "Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment." Mol Cell 8(1): 57-69.
    Even-Ram, S., A. D. Doyle, et al. (2007). "Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk." Nat Cell Biol 9(3): 299-309.
    Fang, S., J. P. Jensen, et al. (2000). "Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53." J Biol Chem 275(12): 8945-8951.
    Feng, Z., H. Zhang, et al. (2005). "The coordinate regulation of the p53 and mTOR pathways in cells." Proc Natl Acad Sci U S A 102(23): 8204-8209.
    Fogal, V., J. K. Hsieh, et al. (2005). "Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315." EMBO J 24(15): 2768-2782.
    Fogal, V., N. N. Kartasheva, et al. (2005). "ASPP1 and ASPP2 are new transcriptional targets of E2F." Cell Death Differ 12(4): 369-376.
    Galbiati, L., R. Mendoza-Maldonado, et al. (2005). "Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination." Cell Cycle 4(7): 930-939.
    Ginsberg, D. (2002). "E2F1 pathways to apoptosis." FEBS Lett 529(1): 122-125.
    Gostissa, M., A. Hengstermann, et al. (1999). "Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1." Embo J 18(22): 6462-6471.
    Gross, A., J. M. McDonnell, et al. (1999). "BCL-2 family members and the mitochondria in apoptosis." Genes Dev 13(15): 1899-1911.
    Gu, W. and R. G. Roeder (1997). "Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain." Cell 90(4): 595-606.
    Gu, W., X. L. Shi, et al. (1997). "Synergistic activation of transcription by CBP and p53." Nature 387(6635): 819-823.
    Halestrap, A. P. and C. Brennerb (2003). "The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death." Curr Med Chem 10(16): 1507-1525.
    Hammond, E. M., M. J. Dorie, et al. (2003). "ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation." J Biol Chem 278(14): 12207-12213.
    Hammond, E. M. and A. J. Giaccia (2005). "The role of p53 in hypoxia-induced apoptosis." Biochem Biophys Res Commun 331(3): 718-725.
    Haupt, Y., R. Maya, et al. (1997). "Mdm2 promotes the rapid degradation of p53." Nature 387(6630): 296-299.
    Hengstermann, A., N. J. Whitaker, et al. (1998). "Characterization of sequence elements involved in p53 stability regulation reveals cell type dependence for p53 degradation." Oncogene 17(22): 2933-2941.
    Hermeking, H., C. Lengauer, et al. (1997). "14-3-3 sigma is a p53-regulated inhibitor of G2/M progression." Mol Cell 1(1): 3-11.
    Hofmann, W. A., L. Stojiljkovic, et al. (2004). "Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II." Nat Cell Biol 6(11): 1094-1101.
    Holmberg, C., K. Helin, et al. (1998). "E2F-1-induced p53-independent apoptosis in transgenic mice." Oncogene 17(2): 143-155.
    Honda, R., H. Tanaka, et al. (1997). "Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressorp53." FEBS Lett 420(1): 25-27.
    Honda, R. and H. Yasuda (1999). "Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53." Embo J 18(1): 22-27.
    Hooper, M. L. (1994). "The role of the p53 and Rb-1 genes in cancer, development and apoptosis." J Cell Sci Suppl 18: 13-17.
    Hsieh, J.-K., S. Fredersdorf, et al. (1997). "E2Fl-induced apoptosis requires DNA binding but not transactivat on and IS inhibited by the retinoblastoma protein through direct interaction." genes Dev 11: 1840-1852.
    Hsieh, J. K., S. Fredersdorf, et al. (1997). "E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction." Genes Dev 11(14): 1840-1852.
    Hsieh, J. K., D. Yap, et al. (2002). "Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage." Mol Cell Biol 22(1): 78-93.
    Iakova, P., S. S. Awad, et al. (2003). "Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest." Cell 113(4): 495-506.
    Ianari, A., R. Gallo, et al. (2004). "Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage." J Biol Chem 279(29): 30830-30835.
    Inoue, T., R. K. Geyer, et al. (2001). "Downregulation of MDM2 stabilizes p53 by inhibiting p53 ubiquitination in response to specific alkylating agents." FEBS Lett 490(3): 196-201.
    Ito, A., C. H. Lai, et al. (2001). "p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2." Embo J 20(6): 1331-1340.
    Jeffers, J. R., E. Parganas, et al. (2003). "Puma is an essential mediator of p53-dependent and -independent apoptotic pathways." Cancer Cell 4(4): 321-328.
    Jin, C. and J. C. Reed (2002). "Yeast and apoptosis." Nat Rev Mol Cell Biol 3(6): 453-459.
    Jin, V. X., A. Rabinovich, et al. (2006). "A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data--a case study using E2F1." Genome Res 16(12): 1585-1595.
    Joerger, A. C. and A. R. Fersht (2008). "Structural biology of the tumor suppressor p53." Annu Rev Biochem 77: 557-582.
    Johnson, D. G., J. K. Schwarz, et al. (1993). "Expression of transcription factor E2F1 induces quiescent cells to enter S phase." Nature 365(6444): 349-352.
    Jones, R. G., D. R. Plas, et al. (2005). "AMP-activated protein kinase induces a p53-dependent metabolic checkpoint." Mol Cell 18(3): 283-293.
    Jones, S. N., A. E. Roe, et al. (1995). "Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53." Nature 378(6553): 206-208.
    Jurgensmeier, J. M., S. Krajewski, et al. (1997). "Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe." Mol Biol Cell 8(2): 325-339.
    Jurgensmeier, J. M., Z. Xie, et al. (1998). "Bax directly induces release of cytochrome c from isolated mitochondria." Proc Natl Acad Sci U S A 95(9): 4997-5002.
    Kamer, I., R. Sarig, et al. (2005). "Proapoptotic BID is an ATM effector in the DNA-damage response." Cell 122(4): 593-603.
    Kastan, M. B. and S. J. Kuerbitz (1993). "Control of G1 arrest after DNA damage." Environ Health Perspect 101 Suppl 5: 55-58.
    Kastan, M. B., Q. Zhan, et al. (1992). "A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia." Cell 71(4): 587-597.
    Katayama, H., K. Sasai, et al. (2004). "Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53." Nat Genet 36(1): 55-62.
    Kelekar, A. and C. B. Thompson (1998). "Bcl-2-family proteins: the role of the BH3 domain in apoptosis." Trends Cell Biol 8(8): 324-330.
    Keller, D., X. Zeng, et al. (1999). "The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53." Biochem Biophys Res Commun 261(2): 464-471.
    Kerr, J. F., A. H. Wyllie, et al. (1972). "Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics." Br J Cancer 26(4): 239-257.
    Kitagawa, M., S. H. Lee, et al. (2008). "Skp2 suppresses p53-dependent apoptosis by inhibiting p300." Mol Cell 29(2): 217-231.
    Knudson, C. M., K. S. Tung, et al. (1995). "Bax-deficient mice with lymphoid hyperplasia and male germ cell death." Science 270(5233): 96-99.
    Komori, H., M. Enomoto, et al. (2005). "Distinct E2F-mediated transcriptional program regulates p14ARF gene expression." EMBO J 24(21): 3724-3736.
    Korsmeyer, S. J., J. R. Shutter, et al. (1993). "Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death." Semin Cancer Biol 4(6): 327-332.
    Koumenis, C., R. Alarcon, et al. (2001). "Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation." Mol Cell Biol 21(4): 1297-1310.
    Kowalik, T. F., J. DeGregori, et al. (1998). "E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2." Cell Growth Differ 9(2): 113-118.
    Kubbutat, M. H., S. N. Jones, et al. (1997). "Regulation of p53 stability by Mdm2." Nature 387(6630): 299-303.
    Kussie, P. H., S. Gorina, et al. (1996). "Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain." Science 274(5289): 948-953.
    Lambert, P. F., F. Kashanchi, et al. (1998). "Phosphorylation of p53 serine 15 increases interaction with CBP." J Biol Chem 273(49): 33048-33053.
    Lane, D. P. (1992). "Cancer. p53, guardian of the genome." Nature 358(6381): 15-16.
    Langley, E., M. Pearson, et al. (2002). "Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence." Embo J 21(10): 2383-2396.
    Letai, A., M. C. Bassik, et al. (2002). "Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics." Cancer Cell 2(3): 183-192.
    Leung, J. Y., G. L. Ehmann, et al. (2008). "A role for Myc in facilitating transcription activation by E2F1." Oncogene 27(30): 4172-4179.
    Levine, A. J. (1997). "p53, the cellular gatekeeper for growth and division." Cell 88(3): 323-331.
    Lim, C. A., F. Yao, et al. (2007). "Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation." Mol Cell 27(4): 622-635.
    Lindstrom, M. S. and K. G. Wiman (2003). "Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts." Oncogene 22(32): 4993-5005.
    Liu, L., D. M. Scolnick, et al. (1999). "p53 sites acetylated in vitro by PCAF and p300 are acetylated invivo in response to DNA damage." Mol Cell Biol 19(2): 1202-1209.
    Liu, T., C. Laurell, et al. (2007). "Hypoxia induces p53-dependent transactivation and Fas/CD95-dependent apoptosis." Cell Death Differ 14(3): 411-421.
    Liu X, Kim C, et al. (1996). " Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c. ." Cell.: 86: 147-157.
    Llanos, S., P. A. Clark, et al. (2001). "Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus." Nat Cell Biol 3(5): 445-452.
    Lomax, M. and M. Fried (2001). "Polyoma virus disrupts ARF signaling to p53." Oncogene 20(36): 4951-4960.
    Lomonosova, E. and G. Chinnadurai (2008). "BH3-only proteins in apoptosis and beyond: an overview." Oncogene 27 Suppl 1: S2-19.
    Lorenzo, H. K., S. A. Susin, et al. (1999). "Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death." Cell Death Differ 6(6): 516-524.
    Loughran, O. and N. B. La Thangue (2000). "Apoptotic and growth-promoting activity of E2F modulated by MDM2." Mol Cell Biol 20(6): 2186-2197.
    Lowe, S. W. and C. J. Sherr (2003). "Tumor suppression by Ink4a-Arf: progress and puzzles." Curr Opin Genet Dev 13(1): 77-83.
    Lu, H. and A. J. Levine (1995). "Human TAFII31 protein is a transcriptional coactivator of the p53 protein." Proc Natl Acad Sci U S A 92(11): 5154-5158.
    Luo, J., A. Y. Nikolaev, et al. (2001). "Negative control of p53 by Sir2alpha promotes cell survival under stress." Cell 107(2): 137-148.
    Luo, J., F. Su, et al. (2000). "Deacetylation of p53 modulates its effect on cell growth and apoptosis." Nature 408(6810): 377-381.
    Luo, X., I. Budihardjo, et al. (1998). "Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors." Cell 94(4): 481-490.
    Maltzman, W. and L. Czyzyk (1984). "UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells." Mol Cell Biol 4(9): 1689-1694.
    Mantovani, F., F. Tocco, et al. (2007). "The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP." Nat Struct Mol Biol 14(10): 912-920.
    Marine, J. C. and A. G. Jochemsen (2005). "Mdmx as an essential regulator of p53 activity." Biochem Biophys Res Commun 331(3): 750-760.
    Marsden, V. S., P. G. Ekert, et al. (2004). "Bcl-2-regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase-9." J Cell Biol 165(6): 775-780.
    Marsden, V. S., L. O'Connor, et al. (2002). "Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome." Nature 419(6907): 634-637.
    Martin, K., D. Trouche, et al. (1995). "Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein." Nature 375(6533): 691-694.
    Marzo, I., C. Brenner, et al. (1998). "Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis." Science 281(5385): 2027-2031.
    Mermall, V., P. L. Post, et al. (1998). "Unconventional myosins in cell movement, membrane traffic, and signal transduction." Science 279(5350): 527-533.
    Michael, D. and M. Oren (2003). "The p53-Mdm2 module and the ubiquitin system." Semin CancerBiol 13(1): 49-58.
    Michalak, E., A. Villunger, et al. (2005). "Death squads enlisted by the tumour suppressor p53." Biochem Biophys Res Commun 331(3): 786-798.
    Midgley, C. A., J. M. Desterro, et al. (2000). "An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo." Oncogene 19(19): 2312-2323.
    Mihara, M., S. Erster, et al. (2003). "p53 has a direct apoptogenic role at the mitochondria." Mol Cell 11(3): 577-590.
    Miyashita, T. and J. C. Reed (1995). "Tumor suppressor p53 is a direct transcriptional activator of the human bax gene." Cell 80(2): 293-299.
    Momand, J., H. H. Wu, et al. (2000). "MDM2--master regulator of the p53 tumor suppressor protein." Gene 242(1-2): 15-29.
    Momand, J. and G. P. Zambetti (1997). "Mdm-2: "big brother" of p53." J Cell Biochem 64(3): 343-352.
    Montes de Oca Luna, R., D. S. Wagner, et al. (1995). "Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53." Nature 378(6553): 203-206.
    Moroni, M. C., E. S. Hickman, et al. (2001). "Apaf-1 is a transcriptional target for E2F and p53." Nat Cell Biol 3(6): 552-558.
    Murphy, M., J. Ahn, et al. (1999). "Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a." Genes Dev 13(19): 2490-2501.
    Murray-Zmijewski, F., E. A. Slee, et al. (2008). "A complex barcode underlies the heterogeneous response of p53 to stress." Nat Rev Mol Cell Biol 9(9): 702-712. Nagata, S. (1997). "Apoptosis by death factor." Cell 88(3): 355-365.
    Nakano, K. and K. H. Vousden (2001). "PUMA, a novel proapoptotic gene, is induced by p53." Mol Cell 7(3): 683-694.
    Nechushtan, A., C. L. Smith, et al. (2001). "Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis." J Cell Biol 153(6): 1265-1276.
    Nip, J., D. K. Strom, et al. (2001). "E2F-1 induces the stabilization of p53 but blocks p53-mediated transactivation." Oncogene 20(8): 910-920.
    O'Connor, D. J., E. W. Lam, et al. (1995). "Physical and functional interactions between p53 and cell cycle co-operating transcription factors, E2F1 and DP1." EMBO J 14(24): 6184-6192.
    O'Connor, D. J. and X. Lu (2000). "Stress signals induce transcriptionally inactive E2F-1 independently of p53 and Rb." Oncogene 19(20): 2369-2376.
    O'Reilly, L. A., P. Ekert, et al. (2002). "Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9." Cell Death Differ 9(8): 832-841.
    Oda, E., R. Ohki, et al. (2000). "Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis." Science 288(5468): 1053-1058.
    Oda, K., H. Arakawa, et al. (2000). "p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53." Cell 102(6): 849-862.
    Ofir-Rosenfeld, Y., K. Boggs, et al. (2008). "Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26." Mol Cell 32(2): 180-189.
    Olave, I. A., S. L. Reck-Peterson, et al. (2002). "Nuclear actin and actin-related proteins in chromatin remodeling." Annu Rev Biochem 71: 755-781.
    Olsson, A., C. Manzl, et al. (2007). "How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression?" Cell Death Differ 14(9):1561-1575.
    Pan, Y., P. R. Oprysko, et al. (2004). "p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment." Oncogene 23(29): 4975-4983.
    Pediconi, N., A. Ianari, et al. (2003). "Differential regulation of E2F1 apoptotic target genes in response to DNA damage." Nat Cell Biol 5(6): 552-558.
    Peirce, S. K. and H. W. Findley (2009). "The MDM2 antagonist nutlin-3 sensitizes p53-null neuroblastoma cells to doxorubicin via E2F1 and TAp73." Int J Oncol 34(5): 1395-1402.
    Percipalle, P., A. Jonsson, et al. (2002). "Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins." Nucleic Acids Res 30(8): 1725-1734.
    Pestic-Dragovich, L., L. Stojiljkovic, et al. (2000). "A myosin I isoform in the nucleus." Science 290(5490): 337-341.
    Phillips, A. C., M. K. Ernst, et al. (1999). "E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways." Mol Cell 4(5): 771-781.
    Phillips, A. C. and K. H. Vousden (2001). "E2F-1 induced apoptosis." Apoptosis 6(3): 173-182.
    Polager, S. and D. Ginsberg (2008). "E2F - at the crossroads of life and death." Trends Cell Biol 18(11): 528-535.
    Polager, S. and D. Ginsberg (2009). "p53 and E2f: partners in life and death." Nat Rev Cancer 9(10): 738-748.
    Read, A. P. and T. Strachan (1999). "Chapter 18: Cancer Genetic. ." Human molecular genetics 2.(ISBN 0-471-33061-2.).
    Reed, J. C., J. M. Jurgensmeier, et al. (1998). "Bcl-2 family proteins and mitochondria." Biochim Biophys Acta 1366(1-2): 127-137.
    Rodriguez, M. S., J. M. Desterro, et al. (1999). "SUMO-1 modification activates the transcriptional response of p53." Embo J 18(22): 6455-6461.
    Rogoff, H. A., M. T. Pickering, et al. (2002). "E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis." Mol Cell Biol 22(15): 5308-5318.
    Rogoff, H. A., M. T. Pickering, et al. (2004). "Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2." Mol Cell Biol 24(7): 2968-2977.
    Roucou, X., S. Montessuit, et al. (2002). "Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein." Biochem J 368(Pt 3): 915-921.
    Russell, J. L., J. T. Powers, et al. (2002). "ARF differentially modulates apoptosis induced by E2F1 and Myc." Mol Cell Biol 22(5): 1360-1368.
    Ryo, A., Y. C. Liou, et al. (2002). "PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells." Mol Cell Biol 22(15): 5281-5295.
    Saito, M., S. J. Korsmeyer, et al. (2000). "BAX-dependent transport of cytochrome c reconstituted in pure liposomes." Nat Cell Biol 2(8): 553-555.
    Saito, S., H. Yamaguchi, et al. (2003). "Phosphorylation site interdependence of human p53 post-translational modifications in response to stress." J Biol Chem 278(39): 37536-37544.
    Sakaguchi, K., S. Saito, et al. (2000). "Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding." J Biol Chem 275(13): 9278-9283.
    Schon, O., A. Friedler, et al. (2002). "Molecular mechanism of the interaction between MDM2 and p53." J Mol Biol 323(3): 491-501.
    Sdek, P., H. Ying, et al. (2005). "MDM2 promotes proteasome-dependent ubiquitin-independentdegradation of retinoblastoma protein." Mol Cell 20(5): 699-708.
    Sdek, P., H. Ying, et al. (2004). "The central acidic domain of MDM2 is critical in inhibition of retinoblastoma-mediated suppression of E2F and cell growth." J Biol Chem 279(51): 53317-53322.
    Sedlak, T. W., Z. N. Oltvai, et al. (1995). "Multiple Bcl-2 family members demonstrate selective dimerizations with Bax." Proc Natl Acad Sci U S A 92(17): 7834-7838.
    Sellers, J. R. (2000). "Myosins: a diverse superfamily." Biochim Biophys Acta 1496(1): 3-22.
    Seri, M., A. Pecci, et al. (2003). "MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness." Medicine (Baltimore) 82(3): 203-215.
    Serrano, M., A. W. Lin, et al. (1997). "Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a." Cell 88(5): 593-602.
    Shaw, P., R. Bovey, et al. (1992). "Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line." Proc Natl Acad Sci U S A 89(10): 4495-4499.
    Sherr, C. J. and F. McCormick (2002). "The RB and p53 pathways in cancer." Cancer Cell 2(2): 103-112.
    Shibue, T., K. Takeda, et al. (2003). "Integral role of Noxa in p53-mediated apoptotic response." Genes Dev 17(18): 2233-2238.
    Shieh, S. Y., M. Ikeda, et al. (1997). "DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2." Cell 91(3): 325-334.
    Shieh, S. Y., Y. Taya, et al. (1999). "DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization." Embo J 18(7): 1815-1823.
    Shimizu, S., M. Narita, et al. (1999). "Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC." Nature 399(6735): 483-487.
    Siliciano, J. D., C. E. Canman, et al. (1997). "DNA damage induces phosphorylation of the amino terminus of p53." Genes Dev 11(24): 3471-3481.
    SL, H. and L. AJ (2005). "The p53 pathway: positive and negative feedback loops." Oncogene 24: 2899–2908.
    Stommel, J. M. and G. M. Wahl (2004). "Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation." Embo J 23(7): 1547-1556.
    Suzuki, H., A. Tomida, et al. (2001). "Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia." Oncogene 20(41): 5779-5788.
    Sykes, S. M., H. S. Mellert, et al. (2006). "Acetylation of the p53 DNA-binding domain regulates apoptosis induction." Mol Cell 24(6): 841-851.
    Takagi, M., M. J. Absalon, et al. (2005). "Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin." Cell 123(1): 49-63.
    Tanaka, H., I. Matsumura, et al. (2002). "E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination." Mol Cell 9(5): 1017-1029.
    Tang, Y., J. Luo, et al. (2006). "Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis." Mol Cell 24(6): 827-839.
    Tao, W., C. Kurschner, et al. (1997). "Modulation of cell death in yeast by the Bcl-2 family of proteins." J Biol Chem 272(24): 15547-15552.
    Tao, W. and A. J. Levine (1999). "P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling ofMdm2." Proc Natl Acad Sci U S A 96(12): 6937-6941.
    Teufel, D. P., S. M. Freund, et al. (2007). "Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53." Proc Natl Acad Sci U S A 104(17): 7009-7014.
    Thut, C. J., J. L. Chen, et al. (1995). "p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60." Science 267(5194): 100-104.
    Timchenko, N. A., M. Wilde, et al. (1999). "C/EBPalpha regulates formation of S-phase-specific E2F-p107 complexes in livers of newborn mice." Mol Cell Biol 19(4): 2936-2945.
    Tsujimoto, Y. (2003). "Cell death regulation by the Bcl-2 protein family in the mitochondria." J Cell Physiol 195(2): 158-167.
    Udayakumar, T. S., P. Hachem, et al. (2008). "Antisense MDM2 enhances E2F1-induced apoptosis and the combination sensitizes androgen-sensitive [corrected] and androgen-insensitive [corrected] prostate cancer cells to radiation." Mol Cancer Res 6(11): 1742-1754.
    Unger, T., T. Juven-Gershon, et al. (1999). "Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2." Embo J 18(7): 1805-1814.
    Urist, M., T. Tanaka, et al. (2004). "p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2." Genes Dev 18(24): 3041-3054.
    Varfolomeev, E. E., M. Schuchmann, et al. (1998). "Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally." Immunity 9(2): 267-276.
    Vassilev, L. T. (2007). "MDM2 inhibitors for cancer therapy." Trends Mol Med 13(1): 23-31.
    Vassilev, L. T., B. T. Vu, et al. (2004). "In vivo activation of the p53 pathway by small-molecule antagonists of MDM2." Science 303(5659): 844-848.
    Vaux, D. L. and S. J. Korsmeyer (1999). "Cell death in development." Cell 96(2): 245-254.
    Villunger, A., E. M. Michalak, et al. (2003). "p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa." Science 302(5647): 1036-1038.
    Vogelstein, B. and K. W. Kinzler (2001). "Achilles' heel of cancer?" Nature 412(6850): 865-866.
    Vogelstein, B., D. Lane, et al. (2000). "Surfing the p53 network." Nature 408(6810): 307-310.
    Vousden, K. H. and D. P. Lane (2007). "p53 in health and disease." Nat Rev Mol Cell Biol 8(4): 275-283.
    Vousden, K. H. and X. Lu (2002). "Live or let die: the cell's response to p53." Nat Rev Cancer 2(8): 594-604.
    Walensky, L. D., K. Pitter, et al. (2006). "A stapled BID BH3 helix directly binds and activates BAX." Mol Cell 24(2): 199-210.
    Wang, C., L. Chen, et al. (2006). "Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage." Nat Cell Biol 8(9): 1025-1031.
    Wang, C. Y., M. W. Mayo, et al. (1996). "TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB." Science 274(5288): 784-787.
    Wang, H., X. Zeng, et al. (1999). "MDM2 oncogene as a target for cancer therapy: An antisense approach." Int J Oncol 15(4): 653-660.
    Wang, X. (2001). "The expanding role of mitochondrial in apoptosis." Genes Dev. 15: 2922-2933.
    Wang, X., D. Michael, et al. (2002). "p53 Activation by nitric oxide involves down-regulation of Mdm2." J Biol Chem 277(18): 15697-15702.
    Wang, Y. H., Y. G. Tsay, et al. (2003). "Identification and characterization of a novel p300-mediated p53acetylation site, lysine 305." J Biol Chem 278(28): 25568-25576.
    Weber, J. D., L. J. Taylor, et al. (1999). "Nucleolar Arf sequesters Mdm2 and activates p53." Nat Cell Biol 1(1): 20-26.
    Wu, L. and A. J. Levine (1997). "Differential regulation of the p21/WAF-1 and mdm2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene." Mol Med 3(7): 441-451.
    Xiao, Z. X., J. Chen, et al. (1995). "Interaction between the retinoblastoma protein and the oncoprotein MDM2." Nature 375(6533): 694-698.
    Xu, Q. and J. C. Reed (1998). "Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast." Mol Cell 1(3): 337-346.
    Yang, H. L., Y. B. Dong, et al. (1999). "Adenovirus-mediated E2F-1 gene transfer inhibits MDM2 expression and efficiently induces apoptosis in MDM2-overexpressing tumor cells." Clin Cancer Res 5(8): 2242-2250.
    Yang, J., X. Liu, et al. (1997). "Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked." Science 275(5303): 1129-1132.
    Yonish-Rouach E, Resnitzky D, et al. (1999). "Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6." nature(352): 345–347.
    Yonish-Rouach, E., D. Resnitzky, et al. (1991). "Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6." Nature 352(6333): 345-347.
    Yoshida, H., Y. Y. Kong, et al. (1998). "Apaf1 is required for mitochondrial pathways of apoptosis and brain development." Cell 94(6): 739-750.
    Yu, J., L. Zhang, et al. (2001). "PUMA induces the rapid apoptosis of colorectal cancer cells." Mol Cell 7(3): 673-682.
    Zhai, D., X. Huang, et al. (2000). "Characterization of tBid-induced cytochrome c release from mitochondria and liposomes." FEBS Lett 472(2-3): 293-296.
    Zhai, D., Q. Miao, et al. (2001). "Leakage and aggregation of phospholipid vesicles induced by the BH3-only Bcl-2 family member, BID." Eur J Biochem 268(1): 48-55.
    Zhang and H. Wang (2000). "MDM2 oncogene as a novel target for human cancer therapy." Curr Pharm Des 6(4): 393-416.
    Zhang, J. and X. Chen (2008). "Posttranscriptional regulation of p53 and its targets by RNA-binding proteins." Curr Mol Med 8(8): 845-849.
    Zhang, L. and C. Wang (2006). "F-box protein Skp2: a novel transcriptional target of E2F." Oncogene 25(18): 2615-2627.
    Zhang, Y. and Y. Xiong (1999). "Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53." Mol Cell 3(5): 579-591.
    Zhang, Z., H. Wang, et al. (2005). "Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway." Oncogene 24(48): 7238-7247.
    Zhu, J. W., D. DeRyckere, et al. (1999). "A role for E2F1 in the induction of ARF, p53, and apoptosis during thymic negative selection." Cell Growth Differ 10(12): 829-838.
    Zhu, J. W., S. J. Field, et al. (2001). "E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis." Mol Cell Biol 21(24): 8547-8564.
    Zinkel, S. S., K. E. Hurov, et al. (2005). "A role for proapoptotic BID in the DNA-damage response." Cell 122(4): 579-591.
    Zong, W. X., C. Li, et al. (2003). "Bax and Bak can localize to the endoplasmic reticulum to initiateapoptosis." J Cell Biol 162(1): 59-69.
    Zong, W. X., T. Lindsten, et al. (2001). "BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak." Genes Dev 15(12): 1481-1486.
    Zou H, Henzel WJ, et al. (1997). "Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. ." Cell. . 90: 405-413.
    Zou H, L. X. Li Y, et al. ( 1999). "An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. ." J Biol. Chem. 274: : 11549-11556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700