Ti/IrCo/RuTiSn氧化物阳极的研制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解海水防污技术是防止冷却水系统生物污损最安全、有效的办法。而金属氧化物阳极材料是该技术的关键,其电催化性和电化学稳定性是最终评价阳极性能的两个主要指标。在某些盐度较低,受锰离子污染的特殊海域,目前的阳极却存在着电催化活性和稳定性不足的问题。
     针对上述问题,本文应用热分解法,通过引入中间层和改变工艺条件考察对阳极性能的影响。采用析氯析氧电位、循环伏安曲线、极化曲线及加速寿命等测试方法考察阳极涂层的电化学性能,并通过扫描电镜(SEM)、电子探针(EPMA)和X射线衍射分析(XRD)等观察涂层表面形貌及进行物相分析,研制出一种适合电解海水,特别是淡海水应用的氧化物阳极。
     对改善电极稳定性的研究表明:IrCo中间层能提高表层与基体的结合力,不仅显著改善了电极的稳定性而且保持了良好的电催化活性。随中间层层数的增加,阻挡氧渗透的作用增强,延缓电极的失效。强化寿命值达到了RuTiSn电极的44倍。通过SEM、EPMA及交流阻抗测试分析得出两种电极的失效机理不同:Ti/RuTiSn电极的失效是由于活性物质的丧失和不导电的TiO_2膜的生成;Ti/IrCo/RuTiSn电极的失效则是主要是由于基体不导电的TiO_2的生成。
     通过考察制备工艺条件(溶剂种类、涂液浓度、涂刷次数及热氧化温度等)对催化性能的影响,结果表明异丙醇和正丁醇混合作为溶剂有利于提高电催化活性。随涂液浓度的增加,阳极表面的龟裂纹增加,伏安电量随之增加。涂液浓度为0.4mol/L时,电极呈现了较好的电催化活性。随着涂刷次数的增加,涂层呈现出阳极典型的龟裂纹形貌,涂刷次数不应少于14次。热氧化温度为420℃时涂液的氧化反应已完全,涂层表面形成固溶的金红石型稳定结构,电极电催化活性较好。
     通过失效阳极的分析知,在电解过程中MnO_2的沉积是导致阳极失效的重要原因。同时考察了电极在普通海水和淡海水中的电流效率,并进行了含锰离子的强化寿命实验。结果表明含中间层的RuTiSn电极在盐度较低时仍具有较高的电流效率,并呈现很好的抗Mn~(2+)污染的能力。
Electrolytic seawater anti-fouling is the best and most effective technique in preventing cooling water system from marine organisms fouling. The metal oxide anode is crucial element of the technology. The electrocatalytic activity and stability are primary aspects to evaluate the performance of anode. In some sea area, there is lower salinity than the natural sea water, and even is contaminated by Mn~(2+), so there are some defects such as low electrocatalytic activity and short service life in the application of anodes.
     Based on the above problems, the anodes are prepared by thermal decomposition. The effects of intermediate layer and preparation techics on the performance are discussed. The electrochemical properties of these anodes are studied by chlorine evolution potential and oxygen evolution potential, cyclic voltammetric curves(CV), accelerated life tests and electrochemical impedance spectroscopy(EIS). The anode microcosmic morphology, element composition are charactered by scanning electron microscopy(SEM), electronic probe microanalysis(EPMA) and X-ray diffraction analysis(XRD). An excellent anode are prepared for Electrolyzing seawater, especially for diluent seawater.
     The effect of intermediate layer on the electrochemical stability of RuTiSn anode is studied firstly. The results show that not only the stability of anode is improved observably, but also it holds high electrocatalytic activity as a result of intermediate layer between Ti substrate and coating. The intermediate layer can block oxygen diffusing to substrate effectively, so its' accelerated life is extended greatly, which is 43 times higher than the anode without intermediate layer. The change of anode before and after degradation is detected by SEM, EPMA and EIS. The deactivation mechanisms are different between anodes without and with intermediate layer. The degradation of former is resulted from the coating flaked off and the insulating TiO_2 grown on Ti substrate, While the latter is mainly resulted from the insulating TiO_2 grown on Ti substrate.
     The effects on electro-catalytic activity of preparation technics are studied. The results show that the mixed solvent of isopropanol and n-butanol is beneficial to improve the electro-catalytic activity. The superficial cracks are increased and become wider and deeper as the solution concentration increased. As the concentration is 0.4mol/L, the anodic electro-catalytic activity is best. The anodic superficial cracks become more and more visible as the coating times increased. And the coating times should not less than 14 times. The anode prepared at the thermal decomposition temperature of 420℃has better electrocatalytic activity. Its crystal structure of electrode is rutile which is the most stable style.
     The manganese ion deposited on the anode surface in the form of MnO_2 induced the degradation of the anode dominantly. The current efficiency in natural and diluent seawater and the accelerated life test are measured. The results show that the RuTiSn anode with intermediate layer has higher current efficiency in lower salinity solution and superior property of preventing manganese depositing.
引文
[1]李长彦,张桂芳,付洪田.电解海水防污技术的发展及应用[J].材料开发与应用,1996,11(1):38-43.
    [2]朱素兰,侯保荣,张经磊.微型生物与金属腐蚀的研究[J].海洋环境科学,2000,19(4):2730.
    [3]陈光章,吴建华,许立坤,等.舰船腐蚀与防护[J].舰船科学技术,2001,2:39-43.
    [4]刘灿起,李青.海滨电厂海水污染、腐蚀与防护[J].山东电力技术,1995,2:15.
    [5]姚洪猛,李青.电解海水防污原理、应用及改进[J].山东电力技术,1999,5:41-43.
    [6]黄宗国,蔡如星.海洋污损生物及其防除(上册)[M]:北京:海洋出版社,1984.1-22.
    [7]Hector A.Videla.Manual of Biocorrosion[M].Boca Raton:CRC Press INC,1996.1-8.
    [8]梁成浩,顾谦农,吴青镐.电解海水防污处理技术[J].东海海洋.1997,15(1):59-65.
    [9]边蕴静,于杰,阎永江.新型海洋涂料技术[J].涂料工业.2003,1:31-34.
    [10]石孝洪.有机锡化合物的环境化学行为及效应[J].重庆大学学报.2003.71 104-107.
    [11]逯艳英,吴建华,孙明先等.海洋生物污损的防治[J].腐蚀与防护.2001,22(12):530-534.
    [12]Kenjiro Yanagase,Tetsutaro Yoshinaga.The production of hypochlorite by direct electrolysis of seawater-influence of electrode gap[J].Denki Kagaku.1981,49(5):274-280.
    [13]梁成浩,顾谦农.RuO_2/TiO_2电极在海水电解防污中的电化学行为[J].腐蚀科学与防护技术.1996,8(2):125-129.
    [14]P.M.Robertson,L.Ponto,W.Gnehm.High efficiency hypochlorite generation[J].Appl.Electrochem,1983,13:307-315.
    [15]马淳安.有机电化学合成导论[M].北京:科学出版社,2002.
    [16]查全性.电极过程动力学导论[M].北京:科学出版社,2002:171-192.
    [17]潘会波.海水电解用阳极[J].稀有金属材料与工程.1997,26,(5):7-12.
    [18]潘会波.我国钛阳极开发应用现状及水平[J].稀有金属材料与工程,1999,8(6):337-339.
    [19]Ch.Comninellis,G.P.Vetcesi.Problems in DSA coating depositioa by thermal decomposition[J].Appl Electrochem,1991,21:136-142.
    [20]张招贤.钛电极工学[M].北京:冶金工业出版社,2002.
    [21]陈康宁.金属阳极[M].上海:华东师范大学出版社,1989.
    [22]D.A.Deton,J.A.Harrison,R.I.Knowles.Automation of electrode kinetics-Ⅳ.The chorine evolution reaction on a RuO_2-TiO_2 plate electrode[J].Eletrochimica Acta,1980,25:1147-1152.
    [23]武正簧,杨冬花,田芳.钌钛阳极的性能测定[J].太原工业大学学报,1997,28(2):20-22.
    [24]Minoru Ito,Yasushi Murakami,hayato Kaji et al.Surface characterization of RuO_2-SnO_2Coated Titanium Electrodes[J].Joural of Electrochemical Society,1996,143(1):32-36.
    [25]O.R.Camara,S.Trasatti.Surface Electrochemical Properties of Ti/(RuO_2+ZrO_2)Electrodes[J].Eletrochimica Acta,1996,41(3):419-427.
    [26]L.M.Da Silva,L.A.De Faria,J.F.C.Boodts.Electrochemical impedance spectroscopic (EIS) investigation of the deactivation mechanism,surface and electrocatalytic properties of Ti/RuO_2(x) +Co_3O_4_(1-x) electrodes[J].Journal of Electroanalytical Chemistry,2002,532:141-150.
    [27]J.Mozota,B.E.Conway.Surface and bulk processes at oxidized iridium electrodes I.monolayer stage and transition to reversible multilayer oxide film behavior[J].Electrochimca Acta,1983:28(1):175-183.
    [28]陶自春,罗启富,潘建跃.铱系涂层钛阳极的研究进展[J].材料科学与工程学报,2003,21(1):138-142.
    [29]胡吉明,孟惠民,张鉴清等.Ti基IrO_2+Ta_2O_5涂层阳极的析氧电催化活性[J].金属学报,2001,(6):632.
    [30]王欣,唐电,周敬恩.添加SnO_2组元对RuO_2+SnO_2+TiO_2/Ti钛阳极组织形貌的影响[J].中国有色金属学报,2002,12(5):920-924.
    [31]C.G.Smith,Y.Okinaka.High speed gold plating:Anodic bath degration and search for stable low polarization anodes.[J].Eletrochem Soc,1983,11:2149.
    [32]L.A.De Faria,J.F.C.Boodts,S.Trasatti.Effect of composition on the point of zero charge of RuO_2+TiO_2+CeO_2 mixed oxides[J].Colloids and Surfaces,1998(132):53-59.
    [33]王清泉.钛基金属氧化物-稀土阳极涂层的制备及性能:(硕士学位论文).大连:大连理工大学,2006.
    [34]Ma'rio H.P.Santana,Investigation of surface properties of Ru-based oxide electrodes containing Ti,Ce and Nb[J].Electrochimica Acta.2003(48):1885-1891.
    [35]Ma'rio H.P.Santana,Luiz A.De Faria.Oxygen and chlorine evolution on RuO_2+TiO_2+CeO_2+Nb_2O_5 mixed oxide electrodes[J].Electrochimica Acta.2006(51):3578-3585.
    [36]王科,韩严,王均涛等.添加Sn组元对RuTiSn阳极涂层的改性研究[J].电化学,2006,12(2):159-164.
    [37]王彬,侯世忠,韩严等.海水电解防污用金属氧化物涂层阳极研究现状[J].材料开发与应用,1998,13(1):41-45.
    [38]鞠鹤,潘会波,陈风云.添加IrSnCo元素对RuTi阳极的显微结构及电化学行为的影响[J].稀有金属材料与工程,1992,21(1):52-56.
    [39]唐电.钌钛铱锡钴五元氧化物纳米晶涂层的制备[J].福州大学学报(自然科学版),1995,23(6):61-64.
    [40]陈士仁,文仕学,唐电.RuO_260%-TiO_240%纳米材料的制备与表征[J]金属热处理报.2000,21(3):12-16.
    [41]李海涛.纳米级细晶表面电极材料的制备[J].氛碱工业.1998,2:9-11.
    [42]蔡天晓,鞠鹤,刘正堂.纳米晶Ru-Ir-Zr-Ti氧化物涂层电极的研制及性能[J].氯碱工业.2004(11):8-12.
    [43]但建明,陈康宁.电极的浸涂工艺[J].氛碱工业.2000,3:6-10.
    [44]Ailton Terezo,Ernesto,C.Pereira.Preparation and characterization of Ti/RuO_2 anodes obtained by sol-gel and conventional routes[J].Materials Letters,2002(53):339-345.
    [45]Chun Nan Ho,Bing Joe Hwang,Eletrochim.Acta[J].1993,38(18):2749-2757.
    [46]Matsumoto Y,et al.Photo electrochemical properties of thermally oxidized TiO_2[J].Electrochem Soc.1982,3(27):419-427.
    [47]S.Trasatti et al.Electrodes of Conductive Metallic Oxides part B[C].Amsterdam:Elsevier,1981.
    [48]但建明,陈康宁,刘志勇等.梯度功能氧化物电极的电性能研究[J].氯碱工业.2000,3:15-20.
    [49]王清泉,刘贵昌.钌钛阳极催化机理研究进展[J].氯碱工业,2005,12:20-24.
    [50]T.A.F.Lassali,S.C.De Castro,J.F.C.Boodts.Structural,morphological and surface properties as a function of composition of Ru+Ti+Pt mixed-oxide electrodes[J].Electrochimica Acta,1998,43,(16-17):2515-2525.
    [51]L.M.Da Silva,J.F.C.Boodts,L.A.De Faria.Oxygen evolution at RuO_2(x)+ Co_3O_4(1-x)electrodes from acid solution[J].Electrochimica Acta,2001,46:1369-1375.
    [52]张琼,彭俊华,蔡传荣.钛阳极涂层剥落失效机理初探[J].电子显微学报,2001,20(4):410-411.
    [53]Olga M.S.Filipe,Christopher M.A.Brett.Cathodic stripping voltammetry of trace Mn(Ⅱ) at carbon film electrodes[J].Talanta,2003,61(5):643-650.
    [54]王极刚.华能丹东电厂温排水和灰水对近海海域水环境的影响[J].辽宁城乡环境科技,18(6)52-58.
    [55]G.P.Vercesi,J.Rolewicz,Ch.Comninellis.Characterization of DSA-type oxygen evolving electrodes:choice of base metal[J].Thermochimica Acta,1991,176:31-47.
    [56]Mahe E,Devilliers D.Surface modification of titanium substrates for the preparation of Noble metal coated anodes[J].Electrochimica Acta,2000,46:629-636.
    [57]潘懋.钉钛金属阳极涂层改进的途径探讨[J]氯碱工业,1994(1):14-19.
    [58]Bewer.G.国外钒钛[J].1984,1:72.
    [59]C.Comninellis,G.P.Vercesi.Problem in DSA Coating Deposition by Thermal Decomposition [J].Appl Electrochem[J],1991,21(4):136-142.
    [60]TrasattiS.Electrocatalysis:understanding the success of DSA[J].Electrochimica Acta,2000,45:2377-2385.
    [61]童宏扬.以Ti为基体的电极材料的开发应用基础研究:(硕士论文).扬州:扬州大学,2004.
    [62]梁镇海,张福元,孙彦平.耐酸非贵金属Ti/MO_2阳极SnO_2+Sb_2O_4中间层研究[J].稀有金属材料与工程,2006,35(10):1605-1609.
    [63]潘建跃,陶自春,罗启富等.含铂钛合金中间层的铱钽涂层钛阳极的研究[J].材料保护,2003,36(11):46-48.
    [64]王雅琼,童宏扬,许文林.不同前驱体制备的锡锑中间层对Ti/SnO_2+Sb_2O_3/PbO_2电极性能的影响[J].稀有金属材料与工程,2004,33(9):976-979.
    [65]L.K.Xu,J.D.Scantlebury.A study on the deactivation of an IrO_2-Ta_2O_5 coated titanium anode[J].Corrosion Science,2003,45:2729-2740.
    [66]L.A.D Silva,V.A.Alves,S.Trasatti.Surface and Electrocatalytic Properties of Ternary Oxides Ir_(0.3)Ti_(0.7-x)Pt_xO_2:Oxygen Evolution from Acidic Solution[J].Journal of Electroanlytical Chememistry.1997,427:97.
    [67]T.A.F.Lassali,J.F.C Boodts,L.O.S Bulhoes.Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated by in situ AC impedance measurements[J].Electrochimica Acta,1999,44(24):4203-4216.
    [68]L.A.D Silva,V.A.Alves,M.A.Silva.Oxygen evolution in acid solution on IrO2+TiO2ceramic films,a study by impedance,voltammetry and SEM[J].Electrochimica Acta,1997,42(2):271-281.
    [69]邵艳群.电催化活性组元与载体材料的相互作用:(博士学位论文).武汉:华中科技大学.
    [70]L.A.De Farla,J.F.C Boodts,S.Trasatti.Electrocatalytic properties of ternary oxide mixtures of composition Ru_(0.3)Ti_(0.7-x)Ce_x O_2:oxygen evolution from acidic solution[J].Journal of Applied Electrochemistry,1996,26:1195.
    [71]刘惠章,陈康宁.钌钛金属阳极涂层的改进[J].氯碱工业,1994(8):12-15.
    [72]Yoshio Takasu,Satoshi Onoue,Kohichi Kameyama,et al.Preparation of ultra fine RuO2-1rO_2-TiO_2 oxide particles by a sol-gel process[J].Electrochimica Acta,1994,39(13):1993-1997.
    [73]潘会波等.Ti/IrO_2涂层阳极热氧化处理温度的选择[J].稀有金属材料与工程1999.2:50-52.
    [74]张招贤.Ir,Ta氧化物涂层钛阳极恶化原因的分析[J].稀有金属快报,2004,23(10):17-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700