碳纳米管对聚酯共混体系酯交换反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对聚酯共混体系中的酯交换反应的研究是近年来日益受到人们关注的一个重要课题。这类体系在熔融状态下可以通过酯交换反应原位形成嵌段或无规共聚物,这不仅为制备具有特定组成和序列的共聚物提供了新的途径,还为探究大分子之间的反应提供了良好的模板。因此,深入了解这类共混体系中影响酯交换反应的各种因素,对于控制和设计共混物的化学结构和物理形态,乃至材料的宏观性能,具有十分重要的理论和实践意义。
     在线型饱和聚酯家族中,聚对苯二甲酸丙二醇酯(PTT)是近年来出现的新成员。它兼具了家族中聚对苯二甲酸乙二醇酯(PET)的强度高、耐热性佳和聚对苯二甲酸丁二醇酯(PBT)的柔性好、易加工的优点,因此在热塑性工程塑料领域具有美妙的应用前景。此外,由于其聚合单体来源于玉米糖等可再生资源,因而被誉为新世纪的绿色材料之一,并越来越受到人们的关注。不过与传统的聚酯PET、PBT的改性工作相比,针对PTT的改性研究才刚刚起步。这其中,通过简单易行的共混改性制备高性能及功能化的PTT复合材料是研究工作的主要方向。然而围绕PTT与其他聚酯的共混体系在加工过程中可能发生的酯交换反应及其对宏观性能的影响其研究尚不充分。如果能够明确PTT共混体系的酯交换反应对加工工艺的依赖性,并在此基础上进一步确定这些反应引起的化学结构的变化与材料宏观性能之间的关系,就可以为制备高性能及功能化的PTT复合材料提供理论基础和加工依据,从而达到对PTT复合材料进行结构设计和性能控制的目的。这对PTT应用领域的拓展具有重要意义。
     因此本论文首先采用熔融共混制备了聚对苯二甲酸丙二醇酯/聚对苯二甲酸丁二醇酯(PTT/PBT)和聚对苯二甲酸丙二醇酯/聚碳酸酯(PTT/PC)两种共混体系。随后通过核磁共振波谱仪(NMR)、差示扫描量热仪(DSC)等方法研究了共混体系中的酯交换反应,重点考察了共混工艺、传统的酯交换催化剂(正钛酸四丁酯)以及表面改性的纳米粒子(碳纳米管)作为新型的酯交换催化剂对酯交换程度和共混物形态的影响,建立了不同体系中聚合物的数均序列长度和无规度与组分间酯交换反应之间的关系。得到的结果叙述如下:
     (1)PTT/PBT为典型的热力学相容体系。在不添加催化剂的情况下,延长共混时间对体系的酯交换程度几乎无影响;正钛酸四丁酯(Ti(OBu)4)对PTT与PBT的酯交换具有较佳的催化活性,酯交换度随Ti(OBu)4含量的增加单调增加;酯交换反应的产物为PTT-PBT共聚物,随着酯交换度增加,共聚物中PTT和PBT嵌段的数均序列长度趋于变短,共聚物也由嵌段型逐渐变为无规型,体系的无规度相应增加;此外,共混体系的熔点Tm和结晶温度Tc随酯交换的进行逐渐降低,结晶度和结晶的完善程度减弱;表面改性的碳纳米管对PTT/PBT体系的酯交换反应同样具有催化作用:少量碳纳米管(CNT)的加入能够促进酯交换反应的进行,不过随CNT浓度的增加,共混体系黏度的上升使酯交换度有所下降,但仍高于未加CNT的体系;此外,与羟基化的碳纳米管(OH-CNT)相比,羧基化的碳纳米管(COOH-CNT)能够更好的促进酯交换反应;不过COOH-CNT的存在会使得相容的PTT/PBT体系发生晶相分离;
     (2)PTT/PC为典型的热力学不相容共混体系。Ti(OBu)4对该体系同样具有较佳的催化活性,PTT与PC酯交换度随Ti(OBu)4含量的增加单调增加,反应产物为PTT-PC共聚物;酯交换反应显著改善了共混体系的不相容性,共混物的相形貌由宏观两相结构转变为宏观均相结构;与此同时,体系两组分的玻璃化转变温度合二为一,PTT的熔融峰也随着酯交换反应程度的增加而消失,晶区转变为无定形区;少量COOH-CNT的加入同样能够一定程度上促进PTT/PC体系的酯交换反应,而随COOH-CNT含量继续增加,酯交换程度略有下降;不过COOH-CNT的存在有利于共混体系玻璃化转变温度的提高。
Transesterification in the polyester blends is an important subject which has gained increasing attention in recent years. The block or random copolyesters could be in-situ formed via transesterification between the components during melt mixing, which not only provides a new route to fabricating novel copolymers with designed composition and sequential order, but also provides a good template to explore the reaction between macromolecules.Therefore, understanding the factors on the transesterification is vital to design the chain structure and the physical morphology of the blends, and to control the final properties of produced materials.
     Poly(trimethylene terephthalate) (PTT) is a new member of linear saturated polyester family. It combines high mechanical strength and good heat resistance of poly(ethylene terephthalate) (PET) and nice flexibility and processing features of poly(butylene terephthalate) (PBT), and hence, is a promising candidate in the field of engineering thermoplastics.Moreover, the monomer of PTT, namely propanediol, can be derived from corn sugar, a renewable resource, and hence PTT has also drawn considerable attention for having a biobased origin yet having the properties of an engineering plastic. Comparing with those already on the traditional polyester PET and PBT, however, the modification work on the PTT is not sufficient and the transesterification in the blends based on PTT and other polyesters have not yet been fully studied, which is very important to fabricate PTT based materials with high performance and to extend their applications.
     Thus, in this work, the poly(trimethylene terephthalate)/poly(butylenes terephthalate) blend (PTT/PBT) and poly(trimethylene terephthalate)/polycarbonate blend (PTT/PC) were prepared by melt mixing. Then, the transesterifications in these two blends were studied by nuclear magnetic resonance spectroscopy (NMR) and differential scanning calorimetry (DSC).The effects of blending time, addition of the traditional catalyst (tetrabutyl orthotitanate) and a new type catalyst (surface modified carbon nanotube) on the transesterification level and the morphologies of these two blends were deeply explored, aiming at relating number-average length, degree of randomness to the transesterification level among the component polymers. The preliminary results are as follows.
     (1)Miscible PTT/PBT Blend
     For the PTT/PBT blend, the morphological characterization results show that the system is thermodynamically miscible. Prolonging the blending time has few effects on the transesterification level.But the tetrabutyl orthotitanate (Ti(OBu)4) shows high catalytic activity to the transesterification, which yields the PTT-PBT copolymers.The transesterification level increases monotonically with the increase of Ti(OBu)4 contents, and the number-average length of PTT and PBT in the copolymers tends to be reduced and the degree of randomness of blends increases as a result, accompanied by the decrease of melt temperature (Tm) and crystallization temperature (Tc) of blends.The presence of surface-modified carbon nanotube could also catalyze the transesterification between two component polymers.Small addition of carbon nanotubes (CNT) could promote transesterification remarkably while excessive addition of CNT depressed the transesterification slightly becauses of increasing viscosity of the blends.Compared with hydroxy carbon nanotubes (OH-CNT), carboxylic carbon nanotubes (COOH-CNT) can better promote the transesterification. But the presence of COOH-CNT leads to the crystalline separation between PTT and PBT.
     (2) Immiscible PTT/PC Blend
     For the PTT/PC blend,two typical immiscible morphologies, i.e.,spherical droplet and co-continuous structures can be observed at various compositions. The Ti(OBu)4 also has high catalytic activity to the transesterification between PTT and PC,yielding the PTT-PC copolymers.The transesterification level increases monotonically with increasing Ti(OBu)4 contents, which improved the compatibility of the PTT/PC blend evidently. After transesterification, the original two glass transition temperatures (Tg) of the blends were found to shift to each other and finally merge into one single Tg, and the transesterificated system exhibits a homogeneous phase morphology. With increasing transesterification level, the melting behavior of semicrystalline PTT disappears and the PTT component becomes amorphous.Small addition of COOH-CNT also promotes the transesterification remarkably, while superfluous COOH-CNT reduces reaction levels slightly. However, the presence of COOH-CNT could increase Tg of PTT/PC blends.
引文
[1]Rameshwaram JK, Yang YS,Jeon HS.Structure-property relationships of nanocomposite-like polymer blends with ultrahigh viscosity ratios. Polymer 2005:46(15): 5569-5579.
    [2]Huitric J, Mederic P, Moan M, Jarrin J.Influence of composition and morphology on rheological properties of polyethylene/polyamide blends.Polymer 1998:39(20): 4849-4856.
    [3]Retolaza A, Eguiazabal JI, Nazabal J.Structure and mechanical properties of polyamide-6,6/poly(ethylene terephthalate) blends.Polymer Engineering and Science. 2004:44(8):1405-1413.
    [4]Walsh DJ. "Polymer blends", in:Comprehensive polymer science.Pergamon, Oxford 1989:2.
    [5]Dell'Erba R, Groeninckx G, Maglio G, Malinconico M, Migliozzi A.Immiscible polymer blends of semicrystalline biocompatible components:thermal properties and phase morphology analysis of PLLA/PCL blends.Polymer 2001:42(18):7831-7840.
    [6]Dai KH, Kramer EJ,Shull KR. Interfacial segregation in two-phase polymer blends with diblock copolymer additives:the effect of homopolymer molecular weight. Macromolecules 1992:25(1):220-225.
    [7]Na YH,He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y.Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends. Biomacromolecules 2002: 3(6):1179-1186.
    [8]Coumans WJ, Heikens D, Dirk, Sjoerdsma S.Dilatometric investigation of deformation mechanisms in polystyrene-polyethylene block copolymer blends:correlation between Poisson ratio and adhesion. Polymer 1980:21(1):103-108.
    [9]Creton C, Kramer EJ, Hadziioannou G. Critical molecular weight for block copolymer reinforcement of interfaces in a two-phase polymer blend. Macromolecules 1991:24(8):1846-1853.
    [10]Anastasiadis SH, Gancarz I, Koberstein JT.Compatibilizing effect of block copolymers added to the polymer/polymer interface.Macromolecules 1989:22(3): 1449-1453.
    [11]Lee Y, Char K. Enhancement of interfacial adhesion between amorphous polyamide and polystyrene by in-situ copolymer formation at the interface.Macromolecules 1994: 27(9):2603-2606.
    [12]Brown SB,Orlando CM. "Reactive extrusion", in:Encyclopedia of polymer science and engineering, Wiley, New York 1988:14:169.
    [13]Bahloul W, Legare VB,Fenouillot F, Cassagnau P.EVA/PBT nanostructured blends synthesized by in situ polymerization of cyclic cBT (cyclic butylene terephthalate) in molten EVA. Polymer 2009:50(12):2527-2534.
    [14]Martin VD,Marnix VG, Luc L, Monique W, Marcel A, Philippe M, Roger L, Ana M, Jose C.Interfacial chemistry and morphology of in-situ compatibilised PA-6 and PBT based blends.Macromolecular Symposia 2003:198(1):135-145.
    [15]Evstatiev M, Fakirov S,Schultz JM, Friedrich K. In situ fibrillar reinforced PET/PA-6/PA-66 blend. Polymer Engineering and Science 2004:41(2):192-204.
    [16]Haberstroh E, Prollius S.Reactive blending of incompatible polymer systems containing polyamide and PET. Journal of Polymer Engineering 2001:21(2):239-250.
    [17]Li XR, Su YL,Chen QY, Lin Y, Tong YJ, Li YS.Synthesis and characterization of biodegradable hyperbranched poly(ester-amide)s based on natural material. Biomacromolecules 2005:6(6):3181-3188.
    [18]Kricheldorf HR, Denchev Z. "Interchange reactions in condensation polymers and their analysis by NMR spectroscopy", in:Transreactions in condensation polymers. Wiley-VCH 1999:2.
    [19]Korshak VV.Some features of non-equilibrium polycondensation. Pure and Applied Chemistry 1966:12(1):101-115.
    [20]Kotliar AM. Interchange reactions involving condensation polymers.Journal of Polymer Science Macromolecular Reviews 1981:16(1):367-395.
    [21]Lambla M. Comprehensive Polymer Science. First Supplement. Pergamon Press: New York 1992:619.
    [22]Porter RS,Hui WL. Compatibility and transesterification in binary polymer blends. Polymer 1992:33(10):2019.
    [23]Devaux J,Godard P, Mercier JP.The transesterification of bisphenol-A polycarbonate (PC) and polybutylene terephthalate (PBTP):A new route to block copolycondensates. Polymer Engineering Science 1982:22(4):229-233.
    [24]Montaudo G, Puglisi C,Samperi F.Chemical reactions occurring in the thermal treatment of polymer blends investigated by direct pyrolysis mass spectrometry: polycarbonate/polybuthyleneterephthalate. Journal of Polymer Science Part A Polymer Chemisty 1993:31(1):13-25.
    [25]Wings N, Trafara G. Transesterification in blends of poly(butylene terephthalate) and bisphenol-A-polycarbonate. Angewandte Makromolekulare Chemie 1994:217(1):91
    [26]Wilkinson AN, Cole D, Tattum SB.The effects of transesterification on structure development in PC-PBT blends.Polymer Bulletin 1995:35(6):751-757.
    [27]Wilkinson AN, Tattum SB,Ryan AJ. Melting, reaction and recrystallization in a reactive PC-PBT blend. Polymer 1997:38(8):1923-1928.
    [28]Hopfe I, Pompe G, Eichhorn KJ. Ordered structures and progressive transesterification in PC/PBT melt blends studied by FTIR spectroscopy combined with DSC and NMR. Polymer 1997:38(10):2321-2327.
    [29]Godard P,Dekominck JM, Devlesaner V, Devaux J.Molten bisphenol-A polycarbonate-poly(ethylene terephthalate) blends.I.Identification of the reactions. Journal of Polymer Science Part A Polymer Chemisty 1986:24(12):3301-3313.
    [30]Montaudo G, Puglisi C, Samperi F.Chemical reactions which occur in the thermal treatment of polycarbonate/polyethyleneterephthalate blends investigated by direct pyrolysis mass spectrometry. Polymer Degradation and Stability 1991:31(3):291-326.
    [31]Fiorini M, Berti C,Ignatov VN, Toselli M, Pilati F.New catalysts for poly(ethylene terephthalate)-bisphenol A polycarbonate reactive blending.Journal of Applied Polymer Science 1995:55(8):1157-1163.
    [32]Kollodge SJ, Porter RS.Phase behavior and transreaction studies of model polyester/bisphenol-a polycarbonate blends.1.synthesis, end-capping, and characterization of poly(2-ethyl-2-methylpropylene terephthalate).Macromolecules 1995:28(12):4089-4096.
    [33]Shuster M, Narkis M, Siegman A. Catalytic transesterification in polycarbonate polycaprolactone systems.Journal of Applied Polymer Science 1994:52(10): 1383-1391.
    [34]Zhang R, Luo X, Ma D.Miscibility and transesterification in bisphenol-A polycarbonate/ethylene terephthalate-caprolactone copolyester blends.Journal of Applied Polymer Science 1995:55(3):455-460.
    [35]Eguiazabal JI,Fernandez-Berridi MJ, Iruin JJ, Miza I.PBT/Par mixtures:Influence interchange reation on mechanical and thermal properties.Journal of Applied Polymer Science 1996:59(2):329-337.
    [36]Hocking MB,Klimchuk KA.A refinement of the terpolymer equation and its simple extension to two-and four-component systems. Journal of Polymer Science Part A Polymer Chemisty 1996:34(12):2481-2497.
    [37]Van Bennekom ACM, Pluimers DT, Bussink J, Gaymans RJ. Blends of amide modified polybutylene terephthalate and polycarbonate:transesterification and degradation. Polymer 1997:38(12):3017-3024.
    [38]Montaudo G, Puglisi C, Samperi F.Exchange reactions occurring through active chain ends:Melt mixing of nylon 6 and polycarbonate. Journal of Polymer Science Part A Polymer Chemisty 1994:32(1):15-31.
    [39]Ramjit HG, Sedgwick RD.The kinetics of ester-ester exchange reactions by mass spectrometry. Journal of Macromolecular Science Part A Pure and Applied Chemistry 1976:10(5):815-824.
    [40]Montaudo G, Montaudo MS,Scamporrino E, Vitalini D.Mechanism of exchange in polyersters:composition and microstructure of copolymers formed in the melting process of poly(ethylene terephthalate) and poly(ethylene adipate).Macromolecules 1992:25(19):5099-5107.
    [41]Montaudo MS.Montecarlo modeling of exchange reations in polyesters dependence of copolymer composite on the exchange mechanism. Macromolecules 1993:26(10):2451-2454.
    [42]Hwa WK, Chong HJ.The role of transesterification on the miscibility in blends of polycarbonate and liquid crystalline copolyester. Macromolecules 1997:30(6): 1587-1593.
    [43]Jacques B, Devaux J, Legras R, Nield E.NMR study of ester-interchange reations during melt of poly(ethylene terephthalate)/poly(butylene terephthalate) blends.Journal of Polymer Science Part A Polymer Chemisty 1996:34(7):1189-1194.
    [44]Plage B, Schulten HR. Pyrolysis-field ionization mass spectrometry of aliphatic polyesters and their thermal interactions in mixtures.Journal of Analytical and Applied Pyrolysis 1989:15(1):197-207.
    [45]Montaudo G, Puglisi C,Samperi F.Mechanism of exchange in PBT/PC and PET/PC blends.Composition of the copolymer formed in the melt mixing process. Macromolecules 1998:31(3):650-661.
    [46]Delimoy D."Melanges de polycarbonate de bisphenol A et de polybutylene terephtalate" in PhD thesis, College Hypotheses 7.Louvain-la-Neuve 1988.
    [47]Mehrota RC.The reaction of the alkoxides of titanium, zirconium and hafnium with esters.Journal of the America Chemical Society 1954:76(8):2266.
    [48]Fradet A, Marhchal E.Kinetics and mechanisms of polyesterifications.Advances in Polymer Science 1982:43(1):51-142.
    [49]Pilati F, Manaresi P,Fortunato B,Munari A, Passalacqua V.Formation of poly(butylene terephthalate):growing reactions studied by model molecules. Polymer 1981:22(6):799-803.
    [50]Keshav VD, Hemant MR. Kinetics of transesterification of dimethylene terephthalate with ethylene glycol.Journal of Applied Polymer Science 1985:30(1): 205.
    [51]Flory PJ. A comparison of esterification and ester interchange kinetics.Journal of American Chemical Society 1940:62(9):2261-2264.
    [52]Calleja FJ, Fakirov S,Zachmann HG. "Effect of transreactions and additional condensation on structure formation and properties of condensation polymers", in Transreactions in condensation polymers.Wiley-VCH 1999:11.
    [53]Woo EM, Wu PL. Effects of miscible diluent of poly(ether imide) on ring-banded morphology of poly(trimethylene terephthalate).Colloid and Polymer Science 2006: 284(4):357-365.
    [54]Liang H, Xie F, Guo FQ, Chen B,Luo FS,Jin Z. Non-isothermal crystallization behavior of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends. Polymer Bulletin:60(1):115-127.
    [55]Run MT, Song AJ, Wang YJ, Yao CG. Melting, crystallization behaviors, and nonisothermal crystallization kinetics of PET/PTT/PBT ternary blends.Journal of Applied Polymer Science 2007:104(5):3459-3468.
    [56]Liang H, Xie Fang, Chen B,Guo FQ,Jin Z, Luo FS.Miscibility and melting behavior of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends. Journal of Applied Polymer Science 2008:107(1):431-437.
    [57]Nujalee D, Pitt S,Manit N. Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends.Polymer Testing 2004:23(2):187-194.
    [58]Kuo YH, Woo EM. Miscibility in two blend systems of homologous semicrystalline aryl polyesters involving poly(trimethylene terephthalate).Polymer Journal 2003:35(3):236-244.
    [59]Matsuda H, Asakura T, Miki T. Triad sequence analysis of poly(ethylene/butylene terephthalate) copolymer using'H NMR. Macromolecules 2002:35(12):4664-4668.
    [60]Liu SL, Li WG, Liang BR, Yu YH.Chain structure and thermal behavior of reactive blends of poly(ethylene terephthalate)/poly(butylene terephthalate) by addition of 2,2'-(1,4-phenyl) bisoxazoline. European Polymer Journal 2000:36(10):2159-2165.
    [61]Aravind I, Eichhorn KJ, Komber H, Jehnichen D, Zafeiropoulos NE, Ahn KH, Grohens Y, Stamm M, Thomas S.A study on reaction-induced miscibility of poly(trimethylene terephthalate)/pPolycarbonate blends. The Journal of Physical Chemistry B 2009:113(6):1569-1678.
    [62]Zhang YP, Xie YJ, Ma DZ. Relationship between miscibility and chemical structures in reactive blending of poly(bisphenol A carbonate) and poly(ethylene terephthalate).European Polymer Journal 2001:37(10):1961-1966.
    [63]Lee SC, Yoon KH, Park IH, Kim HC, Song TW. Phase behavior and transesterification in poly(ethyene 2,6-naphthalate) and poly(ethylene terephthalate) blends. Polymer 1997:38(19):4831-4835.
    [64]Sim PH.Shell completes PTT plant may build another PDO unit. Chemical Week 2004:166(22):39-40.
    [65]Thapagorn B, Artiwan S,Veerapat T, Phatthanon P, Chaya C, Panatpong B, Chirakarn M.Solvent extraction of biologically derived 1,3-propanediol with ethyl acetate and ethanol cosolvent. Separation Science and Technology 2010:29(12): 1328-1336.
    [66]Chen KQ, Zhang B,Chen EQ, Tang XZ. Study on the synthesis of poly (trimethylene terephthalate).Polymeric Materials Science and Engineering 2005:21(2): 166-169.
    [67]Hwo C,Brown H, Casey P,Chuah H, Dangayach K, Forschner T, Moerman M, Oliveri L. Opportunities of Corterra PTT fibres in textiles.Chemical Fibers International 2000:50(1):53-56.
    [68]Kulandaiappan V, Manickam P.PTT-Innovative polymer and its application in textiles.Chemical Fibers International 2008:58(3):153-156.
    [69]Joseph K, Randy M, Ray M. DuPont sorona(?) polymer:A new sustainable platform for growth.Global Plastics Environmental Conference 2005:GPEC 2005-Creating Sustainability for the Environment,2005:179-199.
    [70]Joseph K. A new polymer platform for the future-Sorona(?) from corn derived 1,3-propanediol.Journal of Polymers and the Environment 2005:13(2):159-167.
    [71]Sujata B, Joseph K. Biological characterization of Sorona polymer from corn-derived 1,3-propanediol.Biotechnology Letters 2008:30(4):619-623.
    [72]Hu XB,Alan L.Non-isothermal crystallization of poly(trimethylene terephthalate) (PTT)/clay nanocomposites.Macromolecular Chemistry and Physics 2004:205(5): 574-580.
    [73]Li GJ, Mu XW, Fan SR, Ren XL.Study on the non-isothermal melt crystallization kinetics of PTT/PBT blends.Journal of Macromolecular Science Part B:Physics 2009: 48(4):684-695.
    [74]Xu F, Zhang P, Ding YH, Jang Y.Water absorptivity and mechanical properties of PA6/PTT blends.Polymeric Materials Science and Engineering 2010:26(2):73-76.
    [75]Woo EM, Wu PL. Effects of miscible diluent of poly(ether imide) on ring-banded morphology of poly(trimethylene terephthalate).Colloid and Polymer Science 2006: 284(4):357-365.
    [1]Matsuda H, Asakura T. Triad sequence analysis of poly(ethylene/butylene terephthalate) copolymer using 1H NMR. Macromolecules 2002:35(12):4664-4668.
    [2]Liu AS, Liau WB, Chiu WY. Studies on blends of binary crystalline polymers.1. Miscibility and crystallization behavior in poly(butylene terephthalate)/polyarylates based on bisphenol A isophthalate. Macromolecules 1998:31(19):6593-6599.
    [3]Liu SL, Li WG, Liang BR, Yu YH.Chain structure and thermal behavior of reactive blends of poly(ethylene terephthalate)/poly(butylene terephthalate) by addition of 2,2-(1,4-phenyl) bisoxazoline. European Polymer Journal 2000:36(10):2159-2165.
    [4]Su CC, Shih CK. Miscibility and transesterification in ternary blends of poly(ethylene naphthalate)/poly(trimethylene terephthalate)/poly(ether imide).Colloid Polymer Science 2005:283(12):1278-1288.
    [5]Collins S,Kenwright AM, Pawson C, Peace SK, Richards RW. Transesterification in mixtures of poly(ethylene terephthalate) and poly(ethylene naphthalene-2,6-dicarboxylate):An NMR study of kinetics and end group effects. Macromolecules 2000:33(8):2974-2980.
    [6]Zhang ZP, Xie YJ, Ma DZ. Relationship between miscibility and chemical structures in reactive blending of poly(bisphenol A carbonate) and poly(ethylene teraphthalate).European Polymer Journal 2001:37(10):1961-1966.
    [7]Yavari A, Asadinezhad A, Jafari SH, Khonakdar HA, Bohme F, Hassler R. Effect of transesterification products on the miscibility and phase behavior of poly(trimethylene terephthalate)/bisphenol A polycarbonate blends.European Polymer Journal 2005:41(12):2880-2886.
    [8]Wu CG, Han CD, Suzuki Y, Mizuno M. Transesterification and mechanical properties of blends of a model thermotropic polyester and polycarbonate. Macromolecules 2006:39(11):3865-3877.
    [9]Takeda Y, Paul DR. Phase homogenization of mixtures of poly(m-xylene adipamide) and nylon 6 by interchange reactions. Polymer 1991:32(15):2771-2778.
    [10]Takeda Y, Paul DR. The effect of physical interactions on melt-phase homogenization of mixtures of poly(m-xylene adipamide) with aliphatic polyamides induced by interchange reactions.Polymer 1992:33(18):3899-3907.
    [11]Supaphol P, Dangseeyun N, Srimoaon P. Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polymer Testing 2004:23(2):175-185.
    [12]Dangseeyun N, Supaphol P, Nithitanakul M. Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polymer Testing 2004:23(2):187-194.
    [13]Ignatov VN, Carraro C, Tartari V, Pippa R, Scapin M, Pilati F. PET/PC blends and copolymers by one-step extrusion:1.Chemical structure and physical properties of 50/50 blends. Polymer 1997:38(1):195-200.
    [14]Ignatov VN, Carraro C, Tartari V, Pippa R, Scapin M, Pilati F. PET/PC blends and copolymers by one-step extrusion:2.Influence of the initial polymer composition and type of catalyst. Polymer 1997:38(1):201-205.
    [15]Ignatov VN, Carraro C,Tartari V, Pippa R, Scapin M, Pilati F. Reactive blending of commercial PET and PC with freshly added catalysts. Polymer 1996:37(26): 5883-5887.
    [16]Coltelli MB, Aglietto M, Ciardelli F. Influence of the transesterification catalyst structure on the reactive compatibilization and properties of poly(ethylene terephthalate) (PET)/dibutyl succinate functionalized poly(ethylene) blends. European Polymer Journal 2008:44(5):1512-1524
    [17]何曼君,陈维孝,董西侠.高分子物理(修订版).上海:复旦大学出版社,2005:108.
    [18]Newmark RA. Sequence distribution in polyethylene/tetramethylene terephthalate copolymers by 13C-NMR. Journal of Polymer Science:Polymer Chemistry 1980:18(2): 559-664.
    [19]Pilati F, Fiorini M, Berti C,Fakirov S.Transreaction in Condensation Polymers. WILEY-VCH,1999:101.
    [20]Yamadera R, Murano M. The Determination of Randomness in Copolyesters by High Resolution Nuclear Magnetic Resonance. Journal of Polymer Science A-1: Polymer Chemistry 1967:5(9):2259-2268.
    [21]Wang F, Meng XF, Xu XF, Wen B,Qian ZZ, Gao XW, Ding YF, Zhang SM, Yang MS.Inhibited transesterification of PET/PBT blends filled with silica nanoparticles during melt processing. Polymer Degradation and Stability 2008:93(8):1397-1404.
    [22]Matsuda H, Asakura T, Nagasaka B, Sato K. Relationship between sequence distribution and thermal properties of the transesterification product between poly(ethylene terephthalate) and poly(butylene terephthalate).Macromolecules 2004: 37(12):4651-4657.
    [1]Ray SS, Pouliot S, Bousmina M, Utracki LA. Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 2004:45(25):8403-8413.
    [2]Khatua BB,Lee DJ, Kim HY, Kim JK. Effect of organoclay platelets on morphology of nylon-6 and poly(ethylene-ran-propylene) rubber blends.Macromolecules 2004:37(7): 2454-2459.
    [3]Li Y, Shimizu H.Novel morphologies of poly(phenylene oxide) (PPO)/polyamide 6 (PA6) blend nanocomposites. Polymer 2004:45(22):7381-7388.
    [4]Wang Y, Zhang Q, Fu Q.Compatibilization of immiscible poly(propylene)/polystyrene blends using clay. Macromolecular Rapid Communications 2003:24(3):231-235.
    [5]Chow WS,Mohd Ishak ZA, Karger-Kocsis J, Apostolov AA, Ishiaku US. Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer 2003:44(24):7427-7440.
    [6]Zou H, Zhang Q, Tan H, Wang K, Du R, Fu Q. Clay locked phase morphology in the PPS/PA66/clay blends during compounding in an internal mixer. Polymer 2006:47(1): 6-11.
    [7]Khare RA, Bhattacharyya AR, Kullkarni AR, Saroop M, Biswas A.Influence of multiwall carbon nanotubes on morphology and electrical conductivity of PP/ABS blends. Journal of Polymer Science. Part B:Polymer Physics 2008:46(21):2286-2295.
    [8]Wu D,Wu L, Zhang M, Zhou W, Zhang Y.Morphology evolution of nanocomposites based on poly(phenylene sulfide)/poly(butylene terephthalate) blend. Journal of Polymer Science. Part B:Polymer Physics 2008:46(12):1265-1279.
    [9]Hong J, Kim Y, Ahn K, Lee S, Kim C.Interfacial tension reduction in PBT/PE/clay nanocomposite.Rheologica Acta 2007:46(4):469-478.
    [10]Li Y, Shimizu H.Co-continuous polyamide 6/acrylonitrile-butadiene-styrene nanocomposites. Macromolecular Rapid Communication 2005:26(9):710-715.
    [11]Wang KY, Chen YM, Zhang Y. Effects of organoclay platelets on morphology and mechanical properties in PTT/EPDM-g-MA/Organoclay ternary nanocomposites. Polymer 2008:49(15):3301-3309.
    [12]Kim JY, Han SI, Hong SP. Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer 2008:49(15):3335-3345.
    [13]Gurmendi U, Eguiazabal JI, Nazabal J. Structure and properties of nanocomposites with a poly(trimethylene terephthalate) matrix. European Polymer Journal 2008:44(6): 1686-1695.
    [14]Li GW, Jaganathan S, Chae HG, Minus ML, Kumar S.Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites. Polymer 2008:49(7):1831-1840.
    [15]Wu CS.Synthesis and characterization of poly(trimethylene terephthalate) nanocomposites incorporating multi-walled carbon nanotubes. Journal of Applied Polymer Science 2009:114(3):1633-1642.
    [16]Ray SS, Bousmina M. Effect of organic modification on the compatibilization efficiency of clay in an immiscible polymer blend. Macromolecular Rapid Communications 2005:26(20):1639-1646.
    [17]Wu DF, Zhang YS,Zhang M, Yu W. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 2009:10(2): 417-424.
    [18]Mago G, Fisher FT, Kalyon DM. Effects of multiwalled carbon nanotubes on the shear-induced crystallization behavior of poly(butylene terephthalate). Macromolecules 2008:41(21):8103-8113.
    [19]Xu DH, Wang ZG. Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer 2008:49(1):330-338.
    [20]Wu DF, Wu L, Sun YR, Zhang M.Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(e-caprolactone) composites. Journal of Polymer Science. Part B:Polymer Physics 2007:45(23):3137-3147.
    [21]Xu XF, Ding YF, Qian ZZ, Wang F, Wen B,Zhou H, Zhang SM,Yang MS. Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension. Polymer Degradation and Stability 2009: 94(1):113-123.
    [22]Qin HL, Zhang SM, Liu HJ, Xie SB, Yang MS,Shen DY. Photo-oxidative degradation of polypropylene/montmorillonite nanocomposites.Polymer 2005:46(9): 3149-3156.
    [23]Qin HL, Zhang ZG, Feng M, Gong FL, Zhang SM, Yang MS.The influence of interlayer cations on the photo-oxidative degradation of PE/montomorillonite composites. Journal of Polymer Science. Part B:Polymer Physics 2004:42(16): 3006-3012.
    [1]Xue ML, Yu Y,Sheng J, Chuah HH, Geng CH.Compatibilization of poly(trimethylene terephthalate)/polycarbonate blends by epoxy. Part 2.Melting behavior and spherulite morphology. Journal of Macromolecular Science Part B 2005: 44(3):331-343.
    [2]Yavari A, Asadinezhad A, Jafari SH, Khonakdar HA, Bohme F, Hassler R. Effect of transesterification products on the miscibility and phase behavior of poly(trimethylene terephthalate)/bisphenol A polycarbonate blends.European Polymer Journal 2005:41(12):2880-2886.
    [3]Avarind I, Ahn KH, Ranganathaiah C,Thomas S.Rheology, morphology, mechanical properties and free volume of poly(trimethylene terephthalate)/polycarbonate blends.Industrial and Engineering Chemistry Research 2009:48(22):9942-9951.
    [4]Montanari B,Ballone P,Jones RO.Density functional study of crystalline analogs of polycarbonates.Macromolecules 1998:31(22):7784-7790.
    [5]Diepens M, Gijsman P.Photodegradation of bisphenol A polycarbonate.Polymer Degradation and Stability 2007:92(3):397-406.
    [6]Chen L, Qu MZ. Wang GX, You YJ, Zhang BL, Yu ZL. Study on carbon nanotubes/bisphenol A polycarbonate composites produced by solution mixing. Journal of Functional Materials 2005:36(1):139-141.
    [7]Stokes VK, Bushiko WC.On the phenomenology of yield in bisphenol-A polycarbonate.Polymer engineering and science 1995:35(4):291-303.
    [8]Li XG, Huang MR. Thermal degradation of bisphenol A polycarbonate by high-resolution thermogravimetry.Polymer International 1999:48(5):387-391.
    [9]Xue ML, Sheng J, Chuah HH, Zhang XY.Miscibility, morphology, and thermal properties of poly(trimethylene terephthalate)/polycarbonate.Journal of Macromolecular Science-Physics 2004:43(5):1045-1061.
    [10]Chiu FY, Ting MH. Thermal properties and phase morphology of melt-mixed poly(trimethylene terephthalate)/polycarbonate blends-mixing time effect. Polymer Testing 2007:26(3):338-350.
    [11]Gonzalez I, Eguiazabal JI, Nazabal J. Solid state structure and mechanical properties of melt mixed poly(trimethylene terephthalate)/polycarbonate blends.Journal of Applied Polymer Science 2008:108(6):3828-3835.
    [12]Yavari A, Asadinezhad A, Jafari SH, Khonakdar HA, Ahmadian S, Bohme Frank. Linear viscoelastic characteristics of poly(trimethylene terephthalate)/polycarbonate blends in the melt state.Macromolecular Materials and Engineering 2005:29(11): 1091-1096.
    [13]Elshafee E, Zaki M, Saad GR. Annealing of poly(trimethylene terephthalate)/polycarbonate blends.Journal of Polymer Research 2009:16(4):317-327.
    [14]Avarind I, Eichhorn KJ, Komber H, Jehnichen D, Zafeiropoulos NE, Ahn KH, Grohens Y, Stamm M,Thomas S.A Study on reaction-induced miscibility of poly(trimethylene terephthalate)/polycarbonate blends.Journal of Physical Chemistry B 2009:113(6):1569-1578.
    [15]Devaux J, Godard P,Mercier JP.Bisphenol-A polycarbonate-poly(butylene terephthalate) transesterification-4.Kinetics and mechanism of the exchange reaction. Journal of Polymer Science Part B:Polymer Physics 1982:20(10):1901-1907.
    [16]Wilkinson AN,Tattum SB,Ryan AJ.Melting, reaction and recrystallization in a reactive PC-PBT blend. Polymer 1997:38(8):1923-1928.
    [17]Tattum SB,Cole D, Wilkinson AN.Controlled transesterification and its effects on structure development in polycarbonate-poly(butylene terephthalate) melt blends. Journal of Macromolecular Science-Physics 2000:39(4):459-479.
    [18]Wilkinson AN, Cole D, Tattum SB.Effects of transesterification on structure development in PC-PBT blends.Polymer Bulletin 1995:35(6):751-757.
    [19]Luo Z, Yu J, Chen XJ, Liu YC, Li H, Liao YL.Study of compatible modification of PC/PBT blends.Modern Chemical Industry 2006:26(2):162-165.
    [20]Collins S,Kenwright AM, Pawson C,Peace SK, Richards RW, MacDonald WA, Mills P.Transesterification in mixtures of poly(ethylene terephthalate) and poly(ethylene naphthalene-2,6-dicarboxylate):An NMR study of kinetics and end group effects.Macromolecules 2000:33(8):2974-2980.
    [21]Becker O,Simon GP, Rieckmann T, Forsythe JS,Rosu RF, Volker S.Phase separation, physical properties and melt rheology of a range of variously transesterified amorphous poly(Ethylene terephthalate)-poly(ethylene naphthalate) blends.Journal of Applied Polymer Science 2002:83(7):1556-1567.
    [22]Ihm DW, Park SY, Chang CG, Kim YS,Lee HK. Miscibility of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) blends by transesterification. Journal of Polymer Science Part A:Polymer Chemistry 2000:34(14):2841-2850.
    [23]何曼君,陈维孝,董西侠.高分子物理(修订版).上海:复旦大学出版社,2005:254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700