纳米TiO_2及TiO_2/PMMA复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2是一种新型多功能精细无机材料,具有熔点低、比表面积大、光吸收性能好等优越特性,从而广泛应用于功能陶瓷、油墨、高性能涂料、太阳能电池等诸多领域。有机/无机纳米杂化材料的组装以及相关的纳米技术在制备新型纳米复合材料中越来越受到研究者的关注。有机/无机纳米杂化材料是无机相和有机相互穿的网络结构,无机组分可改进有机组分的性能或使其功能化。由于纳米无机物与聚合物之间具有协同作用,使得高聚物基无机纳米杂化材料具有普通材料所没有的优良特性。
     本文采用水热合成法,制备了棒状纳米TiO_2以及掺杂稀土离子的纳米TiO_2,对其表面进行修饰并研究了其分散性。在本体聚合中添加TiO_2以及掺杂LaCl3、EuCl3的TiO_2来制备TiO_2/PMMA复合材料。重点考察了二氧化钛纳米粒子表面的有机改性,二氧化钛纳米粒子的填充量及外加电场对聚合物复合材料结构以及性能的影响。主要的研究结果如下:
     (1)通过水热合成法成功制备出形貌均一热稳定性较好的金红石型TiO_2纳米棒和掺杂稀土La和Eu的TiO_2纳米颗粒。掺杂稀土离子可以增大TiO_2纳米粒径,形状也由棒状向球形逐渐过渡,比表面积变小,稀土对TiO_2的掺杂降低了失重率,而晶型没有变化。
     (2)水热法制备TiO_2纳米颗粒的同时,采用聚甲基丙烯酸、油酸等不同有机物质进行表面修饰,以解决纳米TiO_2的团聚问题。结果发现油酸对TiO_2纳米颗粒的分散起到了很好的效果,PMA包裹对TiO_2纳米颗粒没有明显的分散效果。
     (3)将纳米TiO_2在本体聚合的过程中添加到聚甲基丙烯酸甲酯中。发现纳米TiO_2对聚甲基丙烯酸甲酯有很好的增韧作用。添加纳米TiO_2粒子会导致材料接触角变大,透光率降低。在电场的作用下PMMA及TiO_2/PMMA复合材料的力学和光学性能都明显提高。
Nano-TiO_2 is a new multi-function fine inorganic material with many excellent features, such as low melting point, magnetic strength, large specific surface area, and excellent light absorption properties and etc. So far, nano-TiO_2 is widely used as functional ceramics, printing ink, high-performance coatings, solar cells and other areas. However, how to solve the reunion of nano-TiO_2 has been a hot topic. Organic / inorganic hybrid nano-materials, nano-assembly and related technology in the preparation of novel nano-composite materials have been aroused great concern. Inorganic and organic phase with each other through the network structure; inorganic components can improve the performance of organic components or their function, beacause of the synergic action between inorganic and polymer nano synergy can strengthen the bond among the two-phase capacity. Makes the polymer-based inorganic hybrid materials have properties which common materials do not have: Optical properties, mechanical properties, catalytic properties, etc.
     This paper mainly studies with titanium tetrachloride as the raw material by hydrothermal synthesis method, as a reasult rod-shaped powder and doping LaCl3, EuCl3 rare earth ion nano-TiO_2 powder was prepared. Meanwhile, to study the dispersivity of nano-TiO_2 with oleic acid, methyl methacrylate modified nano-TiO_2 on the surface. To make PMMA/TiO_2 composites, by adding TiO_2 and which is doped of LaCl3, EuCl3 into PMMA with in-situ bulk polymerization. The mechanisms of organic modified and effects on polymer matrix for nano-TiO_2 particles were studied such as mechanics, thermodynamics, morphology and so on. The main findings are as follows:
     (1) By hydrothermal method successfully prepared a diameter of about 15nm, 200nm length about the uniform morphology of rutile TiO_2 nanoparticles. The TiO_2 nanoparticles doping with rare earth La and Eu were prepared with the same way . Doping of rare earth ions can increase the size of TiO_2 nanoparticles, particle shape also changed from rod to spherical and the specific surface is smaller. Rare earth doping on the TiO_2 further improve the yield rate of weight loss.
     (2) Different substances on the surface modified TiO_2 nanoparticles, nano-TiO_2 aggregation to solve the problem. It was found that oleic acid on the dispersion of TiO_2 nanoparticles have played a very good results, the best concentration of 0.1M and modified 0.2M, PMA TiO_2 nanoparticles on the dispersion effect is not obvious.
     (3)By adding TiO_2 nanoparticles to the PMMA inside, the use of FE-SEM, impact properties, bending properties, contact angle, transmittance test for performance testing of the hybrid material, it is found that nano-TiO_2 particles on the polymer material has a good toughening effect. With the increasing amount of TiO_2 added the matrix micro-cracks increased, resulting in larger contact angle. Nano TiO_2 particles will reduce the light transmission rate of PMMA. Using the same method to add the rare earth ion doped into PMMA-TiO_2 hybrid materials tested and it is found that rare earth ions La and Eu doped TiO_2 nanoparticles can reduce the toughening effect.
引文
[1]张立德,纳米材料的研究现状和发展趋势[J].现代科学仪器, 1998, 1, 27.
    [2]严东生,冯端.我国纳米材料研究进展[J].中国科学院院刊, 1997, 12, 364.
    [3]张立德,纳米材科[M].化工出版社, 2000
    [4]李宏伟,李淮湘,牛福生等.纳米二氧化钛粉体材料的生产现状[J].现代矿业, 2009, 485, 18
    [5]李玲,向航.功能材料与纳米技术[D],化学出版社, 2002.
    [6]吴迪,王鼎聪,赵德智.纳米二氧化钛的制备工艺与应用进展[J].河北化工, 2005, (2): 8-12.
    [7] H.Hahn, J. Logas, R. S. Averbaek, J. Master.Res, 1990, (5): 609.
    [8]李大成,周大利.纳米TiO_2的制备[J].四川有色金属, 2003, (2): 4.
    [9]赵改青,邱克辉,高晓明.化学沉淀法合成纳米TiO_2粉体及其应用[J].材料导报, 1992, (7): 47-49
    [10]吴迪,王鼎聪,赵德智.纳米二氧化钛的制备工艺与应用进展[J].河北化工, 2005, (2): 8-12.
    [11]尹书成.电子陶瓷用超细粉体的生产方法及评价[J].无机盐工业, 1997, 3: 22–23.
    [12]胡娟,邓建刚,何水样等.纳米级二氧化钛制备方法的比较研究[J].材料科学与工程, 2001, 19(4): 71–74.
    [13] Sun F Y, Wu M, Li W Z, et al.Relationship between crystallite size and photocalytic activity of titanium dioxide. Chinese J Catal, 1998, 19(3): 229–233.
    [14] Vorkapic D, Matsoukas T. Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides. J Am Ceram Soc, 1998, 81(11): 2815–2819.
    [15]朱盈权,胡琦,郑学芳等.我国热敏电阻用高纯TiO_2现状[J].电子元件与材料, 2000, 19(4): 37–39.
    [16]罗忠富,黄锐,卢艾等.表面处理对HDPE/nano-CaCO_3复合材料性能的影响[J].中国塑料, 1999, 13(21): 47-51
    [17]郭卫红,李盾,唐颂超.纳米材料及其在聚合物改性中的应用[J].工程塑料应用, 1998, 26(4): 11
    [18]徐伟平,黄锐,蔡碧华等.大分子偶联剂对HDPE/纳米CaCO3复合材料性能的影响[J].中国塑料, 1999, 13(9): 25-29
    [19]贾巧英,马晓燕,纳米材料及其在聚合物中的应用[J].塑料科技, 2001, 2: 6
    [20]张立德,牟季美.纳米材料学[M].沈阳辽宁科学技术出版社, 1994
    [21]祝桂香,瞿雄伟,吴培熙.高分子偶联剂在CaCO_3,填充PVC体系中的应用研究[J].中国塑料, 1997, 11(6): 43一45
    [22]曾人泉.塑料加工助剂[M].中国物资出版社, 1997. 9: 807
    [23] J. D. Casey, J. S. Haggerty, J. Mater. Sci., 1987, 22, 4307
    [24]李大成,周大利,刘恒等.纳米TiO_2的表面处理[J].四川有色金属, 2000, 3: 7-12.
    [25]张素香.二氧化钛光催化环境净化技术的应用及发展动向[J].新疆石油学院学报, 2002, 14, 62.
    [26] H. X. Fu, G. X. Lu, S. B. Li. J. Photochem. Photobiol. A., 1998, 114, 81.
    [27]郑华,彭宗林,张勇等. EPDM/有机蒙脱土纳米复合材料的制备和性能研究.橡胶工业, 2003, 50(7): 398-402.
    [28] M. Barbeni, M. Morello, Palladium catalysis of O_2 reduction by electrons accumulated on TiO_2 particles during photoassisted oxidation of organic compounds, E. Pramauro, Chemosphere, 1987, 16, 1165.
    [29]郭清泉,陈焕钦.溶胶凝胶技术革新及其在涂料工业中的应用.热固性树脂, 2003, 18(4): 29-32.
    [30] Vaia R A, Ginnelis E P. Polmyer melt intercalation in organically- modified layered silicates:model predictiond and experiment. Macromolicules, 1997, 30: 8000-8009.
    [31]祝万鹏,王利,杨志华等.光催化氧化法处理染料中间体H酸水溶液[J].环境科学, 1996, 17, 7.
    [32] R. W. Photo-oxidation of organic material in aqueous suspensions of titanium dioxide .Mathews, WarerRes., 1991, 25, 169.
    [33] C. Anderson, A. J. Bard, Improved Photocatalytic Activity and Characterization of Mixed TiO_2/SiO_2 and TiO_2/Al2O3 Materials. J. Phys. Chem., 1995, 99, 9882.
    [34] V.Hequet, P. L. Cloirec, C. Gonzalez, B. Meunier, Photocatalytic degradation of atrazine by porphyrin and phthalocyanine complexes, Chemosphere, 2000, 41, 379.
    [35] D, M. Blake, Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, 1999, 23.
    [36] K. Harada, T. Hisanaga, T. K. anaka, Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions, Warer Res., 1990, 24, 1415.
    [37]陈士夫,赵梦月,玻璃载体TiO_2薄层光催化降解久效磷农药[J].陶跃武.环境科学, 1996, 17, 33.
    [38]赵进才,张丰雷.二氧化钛微粒存在下表面活性剂光催化分解机理的研究[J].感光科学与光化学, 1996, 14, 269.
    [39] H. Hidaka, K, Ihara, Y. Fujita, Photodegradation of surfactants IV: Photodegradation of non-ionic surfactants in aqueous titanium dioxide suspensions, J. Photoehem. Photobiol. A, 1988, 42, 375.
    [40] H.Hidaka, H. Kubota, M. Gratzel, Photodegradation of surfactants II: Degradation of sodium dodecylbenzene sulphonate catalysed by titanium dioxide particles, J. Photochem, 1986, 35, 219.
    [41] H.Hidaka, J. C. Zhao, E. Pelizzetti, Photodegradation of surfactants. 8. Comparison of photocatalytic processes between anionic DBS and cationic BDDAC on the titania surface, J. Phys. Chem., 1992, 96, 2226.
    [42] D. M. Blake, Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, 1997, 299.
    [43]张萍,丁世华,周大利.化妆品专用二氧化钛[J].日用化学工业, 1999(1): 58-59
    [44]沈国良,宁桂玲.纳米二氧化钛在功能纤维中的应用[J].辽阳石油化工高等专科学校学报, 2001, 17(4): 1-4
    [45]李大成,周大利,任成军.纳米TiO_2的修饰改性[J].材料导报, 2003, 17: 52-55
    [46]张淑霞,李建保,张波,翟华嶂,汪立芜. Ti颗粒表面无机包覆的研究进展[J].化学通报, 2001, 2: 71-75
    [47] Jacobaon H W, Del W. Alumina Coated TiO_2. US Pat. 4416699, 1983
    [48]王训,祖庸,李晓娥.纳米TiO_2表面改性[J].化工进展, 2000, l: 67-70
    [49]丁延伟,范崇政.纳米二氧化钛表面包覆的研究[J].现代化工, 2001, 21(7): 18-22
    [50]鲍新努,赖祖献.表面包覆对TiO_2超微粒光学性质的影响[J].吉林大学自然科学学报, 1993, (2): 119-122
    [51]蒋种,何厚康,吴文华等.纳米二氧化钛粒子的表面处理及其分散性研究[J].合成纤维工业, 2003, 26(3): 12-14
    [52] Novak B M. Hybrid naocomposite materials-between inorganic glasses and polymers. Adv. Mater., 1993, 5: 422-433
    [53] Chna C K, Chu I M, Lee W. Perparation and properties of organic-inorganic hybrid materials based on poly{( butyl methacrylate)-co-[( 3- methacryloxypropyl) trimethoxysilane]}. Macormol. Chem. Phys., 2001, 202(6): 911-916
    [54] Li X, King TA., Structural modification of sol-gel-derived optieal composites. Proc. SPIE, 1994, 2288: 216-226.
    [55] MackenzieJD.Structures and porperties of ormosils.J.Sol-Gel Sci. & Techn., 1994, 2: 8-86.
    [56]徐卫兵,何平笙. Epoxy/ Clay有机-无机纳米复合材料[J].高分子材料科学与工程, 2002, 18(1): 6-11.
    [57] Chen W, Xu Q, Yuan R Z. Modification of poly ( ethylene oxide ) with poly ( methyl-methacrylate ) in polymer-layered silicate nanocomposites. J. Mater. Sci. Lett., 1999, 18: 711-713.
    [1]陈雄,袁曦明,王永钱等.纳米TiO_2粉体的制备方法及应用[J].材料开发与应用, 2008(04): 50
    [2]吴迪,王鼎聪,赵德智.纳米二氧化钛的制备工艺与应用进展[J].河北化工, 2005, (2): 8-12.
    [3]李大成,周大利,刘恒等.纳米TiO_2的制备[J].四川有色金属, 2003(2): 2
    [4]韩旭彤,安树林.纳米TiO_2的制备及表面处理技术[J].合成技术及应用, 2004(19): 4-6
    [5]徐鹏,王玉国,刘学武等.纳米TiO_2的制备、表面处理及表征的研究进展[J].中国涂料在线.
    [6] M. Ye, et al., Large-scale synthesis and characterization of fan-shaped rutile TiO_2 nanostructures. Mater. Lett. (2008): 10.1016
    [7] Yanqin Wang, Humin Cheng. The preparation, characterization, photoelectro- chemical and photocatalytic properties of lanthanide metal-ion-doped TiO_2 nano- particles. Journal of Molecular Catalysis A: Chemical 1512000. 205–216
    [8] CHENG Humin, MA Jiming, ZHAO Zhengguo, et al. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater, 1995, (7), 63-245
    [9]邹玲,乌学东,陈海刚等.表面修饰二氧化钛纳米粒子的结构表征及形成机理[J].物理化学学报, 2001, 17(4): 305-30
    [10]方晓明,陈焕钦.纳米TiO_2的液相合成方法[J].化工进展, 2001, (9): 7-19
    [11]孙静,高濂,张青红.制备具有光催化活性的金红石相纳米氧化钛粉体[J].化学学报, 2003, 16(1): 74-77
    [12]单凤君,高杰.溶胶-法制备纳米TiO_2粉体分散性的研究[J].化学与生物工程, 2004 (4) : 25-26.
    [13]黄伟,吴越,顾宇辉等.钛的乙二醇盐水解制备超细二氧化钛[J].华东理工大学学报, 2003, 29(2): 198-01
    [14]刘公召,隋智通. Sol-Gel法制备超细TiO_2粉体条件的研究[J].化学世界, 2002, (6): 293-295
    [15]张汝冰,刘宏英,李凤生.均匀共沉淀法制备TiO_2及其在环保方面的应用[J].环境化学, 1999, 18(6): 79-583
    [16] Hiroyasu Shimizu, Tatsuya Kumazaki, Tetsuji Kume, In Situ Observations of High-Pressure Phase Transformations in a Synthetic Methane Hydrate, J. PhysChem. B. 2002, 106(1): 30-33.
    [17] Nakades, Matsudam, Catalyst-Free Growth and Characterization of ZnO Nanorods Kambes. J. Phys. Chem. B. 2002, 106, 10004.
    [18] A. Chaves, K. S. Katiyan and S. P. S. Porto, Coupled modes with asymmetry in tetragonal BaTiO3, Phys. Rev. B, 1974, 10: 3522.
    [19]张宁,徐明霞,陈超,洪三国.拉曼光谱对碘掺杂二氧化钛的晶相与表面结构[J].南昌大学学报(理科版). 2008, 32: 130-133.
    [20] MA Y, QIU J B, CAO Y A, et al. Photocatlaytic Activity of TiO_2films grown on different substrates. Chemo-sphere, 2001, 44: 1087-1092.
    [21] Lin J, Yu C J.An investigation on photocatalytic activities of mixed TiO_2-rare earth oxides for the oxidation of aceton in air.J. Photochem. Photobiol. A: Chem., 1998, 116(1): 63.
    [22] Masui T , Fukuhara K, Imanaka N, et al. Effects of Titanium Oxide on the Optical Properties of Cerium Oxide. Chemistry Letters, 2002, 5(4): 474.
    [23] CAPWELL R J, SPAGNOLO F, DESESAM A. A Rapid Determination of Low Concentrations of Anatase in Rutile TiO_2 Pigments by Raman Spectroscopy. Applied Spectroscopy, 1972, 26(5): 537-539.
    [24] Palomino-Merino R, Conde-Gallardo A, Garcia-Rocha I, et al. Photoluminescence of TiO_2: Eu3+Thin Films Obtained by Sol-Gel on Si and Corning Glass. Thin Solid Films, 2001, 401(1/2): 118.
    [25]孟庆国,张洪杰,符连社等. Eu3+离子作为荧光探针研究TiO_2凝胶的结构变化[J].无机学报, 1999, 14(4): 630.
    [26] Ting C C, Chen S Y, Hsieh W F, et al. Effects of Yt- trium Codoping on Photoluminescence of Erbium Doped TiO_2 Films.. Journal of Applied Physics, 2001, 90(11): 5564.
    [27]王彦,苏会东.铕掺杂纳米二氧化钛光催化实验研究[J].环境保护科学, 2005,31(3): 31~33
    [28] Kan T, Akira Y, Takaaki I, et al. Transient IR Ab-sorption Study of Charge Carriers Photogenerated inSulfur-doped TiO_2. Photochem Photobiol A: Chem, 2006, 177(2/ 3): 269.
    [29] Mackenzie K J D. Trans the calcination of titania: IV the effect of additives on the anatase-rutile transformation. J. Br Ceram Soc, 1975,74: 29~34.
    [30]岳林海,水淼,徐涛德等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报, 2000, 27(1): 69.
    [31]钱斯文,王智字,王明权. La3+掺杂对纳米二氧化钛晶的制备及光催化性能的影响[J].材料科学与工程学报, 2003, 21(1): 48~52
    [32] Amay L, Linsebigler, Guangquan Lu, et al. Photocatalysis on TiO_2 surfaces: principles, mechanisms and results. Chem Rev. 1995, 95: 735~738
    [33] Debnath R, Chaudhuri J. Inhibiting effect of AlPO4and SiO_2on the anatase-rutile transformation reaction: an X-ray and laser Raman study. J. Mater. Res. 1992, 7: 3348~3351.
    [34] N. Uekawa, Y.Kurashima, K. Kakegawa, et al. Preparation and Nonstoichiometric property of wide compositional Fe(Ⅲ)-doped TiO_2(anatase). J. Mater. Res. 2000, 15(4): 967~973.
    [35]卢萍,姚明明,张颖等.过渡金属离子的掺杂对TiO_2光催化活性的影响[J].感光科学与化学. 2002, 20(3): 185~190
    [36]陈俊涛,李新军,杨莹等.稀土元素掺杂对TiO_2薄膜光催化性能的影响[J].中国稀土学报. 2003, 21: 67~71
    [1]杨虹.非金属矿物填料FSMF填充树脂复合材料的增强增韧研究[D].武汉理工大学2004
    [2]袁金颖,左光汉,左晓兵等.共聚交联改性有机玻璃的研制与性能研究[J].高分子材料科学与工程. 1999. 5: 154-156
    [3]吴岩.提高有机玻璃耐热性能的研究[J].沈阳化工. 1998. 3: 37-39
    [4]杨瑞芹,陈尔凡,张瑞.提高有机玻璃耐热性能的研究进展.塑料工业[J]. 1999. 1: 14-18
    [5]杨瑞芹,陈尔凡.耐热有机玻璃的研制[J].塑料工业. 1999. 2: 49-51
    [6]吴培熙,张留成.聚合物共混改性[M].北京:中国轻工业出版社. 1996: 1-42
    [7]史建立,吴健,过梅利.航空有机玻璃环境-应力开裂的研究1.环境因素对应力-溶剂银纹临界应力的影响[J].材料科学与工程. Vol.13, No.4, 1995: 38
    [8]沈华弼.有机玻璃低温聚合方法探索[J].安徽化工. 1994: 19-21
    [9]李克友,张菊华,向福如.高分子合成原理及工艺学[M].北京科学出版社. 1999. 10
    [10] Zheng Wenge, Wong Shing chung. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science&Technology, 2003, (2): 225-235.
    [11] Qian G D, Wang M Q. Recent developments of organci-inorganic hybrid optical functional materials and related devices. J Chin Ceram Soc, 2001, 29: 596
    [12] Zheng Wenge, Wong Shing chung. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science&Technology, 2003, (2): 225-235.
    [13] Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci, 2003, 28: 83
    [14] Hofstadler K, Bauer R, Novallc S et al. TiO_2-Assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environ. Sci. and Technol, 1996, 30: 817-824
    [15]罗文波,杨挺青,张平.高聚物银纹化的研究进展[J].力学进展, 2001, 31(2): 264-275.
    [16] Kramer E J, Berger L L. Advances in Polymer Science, Crazing in Polymers. M.Berlin: Springer-Verlag,1990: 91-92.
    [17]颜志军,罗文波,张平.高聚物银纹断裂的研究现状[J].高分子材料科学与工程, 2002,18(4):41-44.
    [18] KrupenkinTN, Fredrickson GH.Crazing in two and three dimensions. I: Two-dimensional crazing. Macromolecules, 1999, 32:5029-5045.
    [19] Yang A C M, Kunz MS, Logan J A.Micronecking operative during crazing in polymer glasses. Micromolecules,1993,26:1767-1773.
    [20]郑强,冯金茂,俞月初等.聚合物增韧机理研究进展[J].高分子材料科学与工程, 1998, 14(4): 12~16.
    [21] David A. Norman, Richard E. Robertson, The Effect of Fiber Orientation on the Toughening of Short Fiber-Reinforced Polymers, Journal of Applied Polymer Science, 2003, 90: 2740–2751
    [1] DENG Zhongsheng, WANG Jue, ZHANG Yulong, Preparation and photocatalytic activity of TiO_2-SiO_2 binary aerogels, Nanostructured Materials, 11(8), 1313(1999)
    [2] Kenji Otzschi, Keiichi Koga, Yutaka Ueda, Relations between Oxygen Deficiency and Structures in the La-Sr-Cu-O System: III. Oxygen Content and Structure of the (La, Sr)8Cu8O16+δPhase , Journal of Solid State Chemistry, 115(1), 187(1995)
    [3] Tae Kwon Young, Yong Song Kang, In Lee Wan. Photocatalytic Behavior of WO3-Loaded TiO_2 in an Oxidation Reaction, Journal of Catalysis, 191(1), 192(2000)
    [4] Nishikawa.Harumitsu, Takahara.Yasumiteu., Adsorption and photocatalytic decomposition of odor compounds containing sulfur using TiO_2/SiO_2 bead. Journal of Molecular Catalysis A:Chemical, 172, 247(2001).
    [5] V.Keller, P.Behardt, F.Garin, Investigation of WO3-doped TiO_2 filmcoposite photocatalyst. Joural of Catalysis, 215(1), 129(2001)
    [6] XU Guagxian, Rare Earth, Metallurgical Industry Press, 1995.29
    [7]李慧泉,周新木,李越湘.稀土掺杂二氧化钛光催化的研究进展[J].江西化工, 2003(4):81-84.
    [8] Li X Z, Li F B, Yang C L, et al.Photocatalytic Activity of WOx–TiO_2 Under Visible Light Irradiation. Photochem.Photobiol. A: Chem., 2001, 141: 209-217.
    [9] He C, Yu Y, Hu X F, et al. Influence of silver doping on the photocatalytic activity of titania films. Appl. Surf. Sci., 2002, 200: 239-247.
    [10] Xu A W, Gao Y, Liu H Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO_2 photocatalysts. Catal., 2002, 207: 151-157.
    [11] Ohno T,Tanigawa F, Fujihara K, et al. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. Photochem. Photobiol.A: Chem., 1999, 127: 107-110.
    [12] Bahtat A, Bouazaoui M, Bahtat M, et al. Fluorescence of Er3+ions in TiO_2 plnarwaveguides prepared by a sol-gel process. Non-Cryst. Solids, 1996, 202: 16-22.
    [13] Yan Xiaoli, He Jing, G. Evans, et al. Preparation characterization and photocatalytic activity of Si-doped and rare earth-doped TiO_2 from mesoporous precursors. Applied Catalysis B: Environmental, 2005, 55: 243-252.
    [14] Lin J., Jimmy C. Y. An investigation on photocatalytic activities of mixed TiO_2-rare earth oxides for the oxidation of acetone in air. Photochem. Photobiol. A, 1998, 116: 63-67.
    [15]高远,徐安武,祝静艳等. RE/TiO_2用于NO_2-光催化氧化的研究[J].催化学报, 2001, 22(1): 53-56.
    [16] Ranjit, K.T., Willner, I. Bossmann, S.H.,A.M.Lanthanide Oxide-Doped Titanium Dioxide Photocatalysts: Novel Photocatalysts for the Enhanced Degradation of p-Chlorophenoxyacetic Acid. Environ. Sci.Technol, 2001, 35: 1544-1549.
    [17] Xie Y B, Li P, Yuan C W. Visible-light excitated photocatalytic activity of rare earth metal-Ion-doped titania.J. Rare Earth, 2002, 20(6):619-625.
    [18]于向阳,程继健,杨阳等.稀土元素掺杂对TiO_2光催化性能的影响[J].华东理工大学学报, 2000, 26(3): 287-289.
    [19]水淼,岳林海,徐铸德,稀土镧掺杂二氧化钛的光催化特性[J].物理化学学报, 2000, 16(5): 459-46.
    [20]岳林海,水淼,徐铸德等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版), 2000, 27(1): 69-74.
    [21] Xie Y B, Yuan C W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation Appl. Catal.B, 2003, 46: 251-259.
    [22]于向阳,程继健,杜永娟.稀土元素掺杂对TiO_2相组成和光催化性能的影响[J].玻璃与搪瓷, 2000, 28(2): 15-20.
    [23]岳林海.稀土元素掺杂二氧化钛催化剂光降解久效磷的研究[J].上海环境科学, 1998, 17(9): 17-19.
    [24]余锡宾,王桂华,罗衍庆等. TiO_2微粒的掺杂改性与催化活性[J].上海师范大学学报(自然科学版), 2000, 29(1): 75-82.
    [25] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge. Phys.Chem. 1994, 98,13669- 13679
    [26] Wang C, Wang T M, Zheng S K. Investigation of the photoreactivity of nanocrystalline TiO_2 thin film by ion-implantation technique. Physica E, 2002, 14: 242-248.
    [27] Karakitsou K E, Verykios X E.Effects of altervalent cation doping of TiO_2 on its performance as photocatalyst for water cleavage. Phys. Chem., 1993, 97(6): 1184-1189.
    [28] Rampaul A, Parkin I P, O’Neill S A, et al. Titania and tungsten doped titania thin films on glass:active photocatalysts. Polyhedron, 2003, 22: 35- 44.
    [29] Jimmy CY, Jun, L.,Raymund, WM.Enhanced photocatalytic activity of solid solution on the degradation of acetone.J Photochem Photobiol A: Chem, 1997, 111: 199-203.
    [30] Kim Soonhyun Hwang, Seong-Ju, Choi Wonyong. Visible light active platinum- ion- doped TiO_2 photocatalyst. Journal of Physical Chemistry B, 2005, 109: 24260-24267
    [31] Yang Min-Chi, Yang Tien-Syh, Wong Ming-Show. Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition. Thin Solid Films, 2004, 469- 470: 1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700