固基银膜材料的制备—形貌控制及性质分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米结构的表面等离子体共振(SPR)吸收性质使其在传感、太阳能吸收、医学热疗、局域场增强、激光惯性约束聚变等领域具有重要的应用价值。在传感探测、化学催化、太阳能吸收等领域应用金属纳米结构时,液相纳米粒子溶胶由于粒子数密度不固定、粒子不稳定、难以回收和重复使用,因此不方便直接应用,当前研究的热点是使纳米结构在固相基底上形成阵列或薄膜,探测基底上纳米结构的性质。另外,在惯性约束聚变研究中,需要在基底上构筑金属纳米结构,调节其吸收波长与激光波长相对应,研究基底在强激光作用下的响应。因此,有必要发展出在固相基底上生长金属纳米结构的简便方法。
     本论文研究了固基贵金属膜材料的制备、形貌控制及其在光学性能方面的应用研究。应用扫描电子显微镜、原子力显微镜、紫外可见分光光度计、荧光光谱仪、X射线衍射仪、拉曼光谱等技术来研究所制膜材料的性质和分析金属的沉积机理,实现了由“材料制备”、“材料组成形貌分析”到“材料应用”的交叉、系统性研究。论文的主要内容如下:
     1.用硅烷化处理的玻璃基底吸附三角形银纳米盘种子,以单宁酸为还原剂,在基底上原位生长三角形银纳米粒子聚集结构;用硅烷化处理的玻璃基底吸附类球形金纳米种子,以荧光灯为光源,在基底上原位生长银纳米粒子聚集结构。基底的吸收光谱上呈现出明显的电偶极子耦合吸收峰,研究了该峰随反应时间的变化。探讨了不同种子和反应条件对基底上粒子形貌和吸收光谱的影响。
     2.采用化学镀的方法,通过控制AgNO3和络合剂的摩尔比以及反应温度,在玻璃基底上原位生长不同结构的银纳米粒子。研究了基底的SPR吸收峰,考察了银纳米粒子的形貌对其薄膜基底SERS活性的影响。
     3.采用铜箔为活性基底,研究了在相同的实验条件下,通过加入不同种类的络合剂,得到形貌各异的银纳米粒子薄膜。采用带有银树枝结构的铜箔为活性基底,在相同的实验条件下,通过加入分散剂PVP,采用多步法置换金盐,得到Au/Ag双金属树枝结构,研究了不同置换次数下Au/Ag双金属树枝结构的拉曼增强效应。
Noble metal nanostructures take on surface plasmon resonance (SPR) absorption under irradiation of incident light, thus show various potential applications in the fields of sensing, solar energy absorption, biomedical thermotherapy, local filed enhancement, laser induced inertial confinement fusion and so on. In the fields of sensing, chemical catalysis, solar energy absorption, the number nano-particles are not fixed in liquid. The nano-particles are difficult recovery and reuse, so inconvenient for direct application. The research focuses are to make nano-structure form array column or thin film on the solid phase substrates and to detect the character of nano-structured on substrate. In laser induced inertial confinement fusion, in addition, metal nano-structures need be built on the substrates; the absorption wavelength and the laser wavelength are transferred corresponding; the response of substrate is studied in the harder laser. Therefore, it is necessary to develop an easy way make metal nano-structures grow on solid phase substrates.
     This thesis deseribes the preparation of noble metal films on solid substrates, morphologieal control and the studies of their properties such as optical, electrical and eatalytic properties. The properties of the films and metal deposition mechanism were investigated by using scanning electron microscopy (SEM), atomic force microsceopy (AFM), UV-Vis spectrophotometer, fluorescence spectroscopy, X-ray diffraction measurement (XRD), Raman spectroscopic analysis, ete. Some important results obtained are deseribed as follows:
     1. Triangular silver nanoplates on the surface of glass substrate have been synthesized by small triangular silver nanoplate seeds with the assistance of Tannin. Silver nanoparticles aggregates adsorbed on glass substrates were in-situ prepared under irradiation of a fluorescent lamp after the substrates were silanized and attached with metal seeds. A new strong band appeared in the absorption spectra of the substrates due to the interparticle dipole-dipole coupling of SPR response of the silver particles. The change of this band with irradiating time and the influence of different seeds and reacting conditions on the morphology and absorption properties of the silver structrures on the substrates were studied.
     2. The novel silver nanoparticles were successfully synthesized by a novel electroless plating approach on glass substrate. The formation of silver nanoparticles was attributed to the molar ratio of AgNO3 and complexing agent and the influence of reaction temperature. The SERS activity of the substrate degree on the effect of surface morphology of silver nanoparticles.
     3. The different morphology of thin films of silver nanoparticles has been synthesized by using the copper active substrate with different types of complexing agents at the same experimental conditions. Ag/Au Bimetallic Nanostructures have been synthesized by using the Ag dendrites on the Cu substrate as active substrate with multi-stage replacement at the same experimental conditions. The SERS activity of the Ag/Au Bimetallic Nanostructures was studied.
引文
[1]巩雄,张桂兰,汤国庆.纳米晶体材料研究进展[J].化学进展,1997,9(2):349-360.
    [2]冯异,赵军武,齐晓霞,等.纳米材料及其应用研究进展[J].工具技术,2006,40(1):10-15.
    [3]李俊寿.新材料概论[M].北京:国防工业出版社,2004.
    [4]Y. Xia, P. Yang, Y. Sun, et al. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications [J]. Adv. Mater.,2003,15(1):353-389.
    [5]李朝阳.铝团簇的理论计算以及金属纳米材料制备和性能的初步研究[硕士学位论文].四川:中国工程物理研究院,2003:1-10.
    [6]韦建军.自悬浮定向流法制备金属与合金纳米微粒及其结构物性的研究[博士学位论文].四川:四川大学原子与分子物理研究所,2003:10-39.
    [7]周民.贵金属纳米粒子的可控合成与表征[博士学位论文].山东:山东大学化学系,2006:8-14.
    [8]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000:20-25.
    [9]张加涛.铜族纳米材料的调控合成、微结构及表面性能研究[博士学位论文].北京:清华大学,2006:1-7.
    [10]Murphy C. J. Nanocubes and Nannoboexs [J]. Science,2002,298(4):2139-2141.
    [11]Kelly K L, Coronado E, Zhao L L, et al. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment [J]. J. Phys. Chem. B,2003,107(2):668-677.
    [12]Rashid M H, Bhattacharjee R R, Mandal T K. Organic Ligand-Mediated Synthesis of Shape-Tunable Gold Nanoparticles:An Application of Their Thin Film as Refractive Index Sensors [J]. J. Phys. Chem. C,2007, 111(5):9684-9693.
    [13]Marinakos S M, Chen S H, Chilkoti A. Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor [J]. Anal. Chem.,2007,79(6):5278-5283.
    [14]Xu X, Stevens M, Cortie M B. In situ precipitation of gold nanoparticles onto glass for potential architectural applications[J]. Chem. Mater.2004, 16(3):2259-2266.
    [15]Shankar S S, Rai A, Ahmad A, et al. Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings [J]. Chem. Mater.,2005,17(6):566-572.
    [16]Pardinas-Blanco I, Hoppe C E, Pineiro-Redondo Y, et al. Formation of Gold Branched Plates in Diluted Solutions of Poly(vinylpyrrolidone) and Their Use for the Fabrication of Near-Infrared-Absorbing Films and Coatings [J]. Langmuir, 2008,24(3):983-990.
    [17]Chen J Y, Saeki F, Wiley B J, et al. Gold Nanocages:Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents [J]. Nano Lett.,2005, 5(3):473-477.
    [18]Gobin A M, Lee M H, Halas N J, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy [J]. Nano Lett.,2007, 7(7):1929-1934.
    [19]Kalele S, Gosavi S W, Urban J, et al. Nanoshell particles:synthesis, properties and applications [J]. Current Science,2006,91(8):1038-1052.
    [20]Sparnacci K, Laus M, Tondelli L, et al. Core-shell microspheres by dispersion polymerization as drug delivery systems [J]. Macromol. Chem. Phys.,2002, 203(3):1364-1369.
    [21]Shiotani A, Mori T, Niidome T, et al. Stable Incorporation of Gold Nanorods into N-Isopropylacrylamide Hydrogels and Their Rapid Shrinkage Induced by Near-Infrared Laser Irradiation [J]. Langmuir,2007,23(7):4012-4018.
    [22]谈勇,丁少华,王毅,等.金纳米壳球体的制备及其潜在的生物学应用[J].化学学报,2006,63(10):929-933.
    [23]Kelly K L, Coronado E, Zhao L L, et al. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment [J]. J. Phys. Chem. B,2003,107(6):668-677.
    [24]Aslan K, Leonenko Z, Lakowicz J R, et al. Fast and Slow Deposition of Silver Nanorods on Planar Surfaces:Application to Metal-Enhanced Fluorescence [J]. J. Phys. Chem. B,2005,109(8):3157-3162.
    [25]胡建强,张勇,任斌,等.不同形状的金纳米粒子的表面增强拉曼光谱[J].光散射学报,2003,15(2):63-65.
    [26]赵宏,周群,李晓伟,等.金纳米粒子的图案化组装及表面增强拉曼光谱研究[J].光散射学报,2005,17(2):172-175.
    [27]Chaney S B, Shanmukh S, Dluhy R A, et al. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates [J]. Appl. Phys. Lett.,2005,87(4):319-324.
    [28]Yang Y, Xiong L, Shi J, et al. Aligned silver nanorod arrays for surface-enhanced Raman scattering [J]. Nanotechnology,2006,17(6):2670-2674.
    [29]Ah C S, Yun Y J, Park H J, et al. Size-Controlled Synthesis of Machinable Single Crystalline Gold Nanoplates [J]. Chem. Mater.,2005,17(9):5558-5561.
    [30]Yun Y J, Park G, Ah C S, et al. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates [J]. Appl. Phys. Lett.,2005,87(1):233-238.
    [31]Jiang P, Li S Y, Xie S S, et al. Machinable Long PVP-Stabilized Silver Nanowires [J]. Chem. Eur. J.,2004,10(9):4817-4821.
    [32]Chen S, Wang Z L, Ballato J, et al. Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals [J]. J. Am. Chem. Soc.,2003,125(11):16186-16187.
    [33]Cook R. Production and Characterization of Doped Materials for Inertial Confinement Fusion Experiment [J]. J. Vac. Sci. Techno.,1994, 12(4):1275-1280.
    [34]Bieg K W. Summary Abstract:Metal Loaded Poly-p-Xylylene [J]. J. Vac. Sci. Techno.,1981,18(4):1231-1235.
    [35]李常明.金属纳米材料表面在线包覆的初步研究[硕士学位论文].四川:中国工程物理研究院,2005:1-10.
    [36]Hauer A, Cowan R D. Absorption Spectroscopy Diagnosis of Pusher Conditions in Laser-Driven Implosion [J]. Phys. Rev. A,1986,34(1):411-416.
    [37]Kulcsar G, AlMawlawi D, Budnik F W, et al. Intense Picosecond X-Ray Pulses from Laser Plasmas by Use of Nanostructured "Velvet" Targets [J]. Phys. Rev. Lett.,2000,84(22):5149-5152.
    [38]Nishikawa T, Nakano H, Oguri K, et al. Nanocylinder-array structure greatly increases the soft X-ray intensity generated fromfemtosecond-laser-produced plasma [J]. Appl. Phys. B,2001,73(2):185-188.
    [39]Rajeev P P, Taneja P, Ayyub P, et al. Metal Nanoplasmas as Bright Sources of Hard X-Ray Pulses [J]. Phys. Rev. Lett.,2003,90(11):115002-115006.
    [40]Rajeev P P, Banerjee S, Sandhu A S, et al. Role of surface roughness in hard-x-ray emission from femtosecond-laser-produced copper plasmas [J]. Phys. Rev. A,2002,65(1-5):52903-52938.
    [41]唐永建,张林,吴卫东,等.IcF靶材料和靶制备技术研究进展[J].强激光与 粒子束,2008,20(11):1827-1840.
    [42]楚广,唐永建,罗江山,等.ICF物理实验用纳米Cu块体靶材的制备研究[J].强激光与粒子束,2005,17(12):1829-1834.
    [43]Jana N R, Wang Z L, Sau T K, et al. Seed-mediated growth method to prepare cubic copper nanoparticles [J]. Current Science,2000,79(9):1367-1370.
    [44]A. Hartstein, J. R. Kirtley, J. C. Tsang. Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers [J]. Phys. Rev. Lett,1980, 45:201-204.
    [45]S. A. Bilmes, J. C. Rubim, A. Otto, et al. SERS from pyridine adsorbed on electrodispersed platinum electrodes [J]. Chem. Phys. Lett,1989,159(1):89-96.
    [46]M. Osawa, K. Ataka, K. Yoshii, et al. urface-enhanced infrared spectroscopy:The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles [J]. Appl. Spectrosc,1993, 47(9):1497-1502.
    [47]T. R. Jensen, R. P. V. Duyne, S. A. Johnson, et al. Surface-enhanced infrared spectroscopy:A comparison of metal island films with discrete and nondiscrete surface plasmons [J]. Appl. Spectrosc,2000,54(3):371-377.
    [48]G. Q. Lu, S. G. Sun, S. P. Chen, et al. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy [J]. J. Electroanal. Chem,1997,421(1):19-23.
    [49]A. E. Bjerke, P. R. Griffiths, W. Theiss. Surface-enhanced infrared absorption of CO on platinized platinum[J]. Anal. Chem,1999,71(4):1967-1974.
    [50]R. Oritz, A. Cuesta, O. P. Marquez, et al. Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates [J]. J. Electroanal Chem,1999,465(2):234-238.
    [51]H. D. Wanzenbock, B. Mizaikoff, N. Weissenbancher, et al. Multiple internal reflection in surface enhanced infrared absorption spectroscopy (SEIRA) and its significance for various analyte groups [J]. J. Mol. Struct,1997, 410-411(3):535-538.
    [52]F. Maroun, F. Ozanam, J. N. Chazalviel, et al. In suit infrared investigation of metals electrodeposited for SEIRAS [J]. Vib. Spectrosc,1999,19(2):193-198.
    [53]高美.新型SERS活性基底及C60修饰BLM膜研究[D].北京:首都师范大学,2006:12-42.
    [54]韦建军.自旋浮定向流法制备金属与合金纳米微粒及其结构物性的研究[D].成都:四川大学,2003:10-39.
    [55]贾嘉.溅射法制备纳米薄膜材料及进展[J].半导体技术,2004,29(7):72-76.
    [56]Liu Guang-Qiang, Cai Wei-Ping, Liang Chang-Hao. Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate[J]. Cryst. Growth Des.2008,8 (8):2748-2752.
    [57]Kadir Aslan, Joseph R. Lakowicz, Chris D. Geddes. Rapid Deposition of Triangular Silver Nanoplates on Planar Surfaces:Application to Metal-Enhanced Fluorescence[J]. J. Phys. Chem. B.2005,109(13):6247-6251.
    [58]Jia Hui-Ying, Zeng Jian-Bo, An Jing, et al. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate[J]. Thin Solid Films,2008,516(6):5004-5009.
    [59]郭斌,唐永建,罗江山,等.双还原剂法制备的三角形银纳米盘的吸收和发射光谱研究[J].贵金属,2008,29(2):5-10.
    [60]张立德,牟秀美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [61]易早,唐永建,易有根,等.中空Ag纳米球壳的制备及性能表征[J].强激光与粒子束,2009,21(9):1354-1359.
    [62]Sun Yu-Gang, Xia You-Nan. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium[J]. J. am. chem. soc.2004,12(6):3892-3901.
    [63]K. L. Kelly, E. Coronado, L. L. Zhao, et al. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment [J]. J. Phys. Chem. B.2003,107 (3):668-677.
    [64]Mohamed M B, Volkov V, L ink S, et al. The'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal [J]. Chem. Phys Lett.,2000,317 (6):517-523.
    [65]Wilcoxon J P, Martin J E, Parsapour F, et al. Photoluminescence from nanosize gold clusters [J]. J. Chem. Phys,1998,108(17):9137-9143.
    [66]Rabin I, Schulze W, Ertl G, et al. Absorption and fluorescence spectra of Ar-matrix-isolated Ag3 clusters [J]. Chemical Physics Letters,2000, 320(1):59-64.
    [67]Rabin I, Schulze W, Ertl G Absorption spectra of small silver clusters Agn (n≥3) [J]. Chemical Physics Letters,1999,312 (5):394-398.
    [68]尹洪宗,陈朗星,李文友,等.金纳米粒子-胱氨酸三维网状结构的形成及其光谱特性研究[J].化学学报,2006,64(7):617-622.
    [69]Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing [J]. Nano Lett,2002,2(2):165-168.
    [70]Washio I, Xiong Y, Yin Y, et al. Reduction by the end groups of poly(vinyl pyrrolidone):a new and versatile route to the kinetically controlled synthesis of Ag triangular nanplates [J]. Adv Mater,2006,18(6):1745-1749.
    [71]Kan C, Cai W, Li C, et al. Optical studies of polyvinylpyrrolidone reduction effect on free and complex metal ions [J]. J Mater Res,2005,20(2):320-324.
    [72]Jiang P, Li S Y, Xie S S, et al. Machinable long PVP-stabilized silver nanwires [J]. Chem Eur J,2004,10(5):4817-4821.
    [73]李喜波,唐晓红,吴卫东,等.磁控溅射法制备金团簇纳米颗粒及性能表征[J].强激光与粒子束,2006,18(6):1023-1026.
    [73]Seth M. Morton, Lasse Jensen. Understanding the molecule-surface chemical coupling in SERS[J]. J. AM. CHEM. SOC,2009,9(11):4090-4098.
    [74]TIAN Zhong-qun, REN Bin, WU De-yin. Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures [J]. J. Phy. Chem. B,2002,37(106):9463-9483.
    [75]Del Cano T, Aroca R De Saja, J. A. Rodriguez-Mendez. Langmuir-blodgett mixed films of titanyl(Ⅳ) pthalocyanine and arachidic acid:Molecular orientation and film structure[J]. Langmuir,2003,19(9):3747-3751.
    [76]Michaels A M, Nirmal M, Brus L E. Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals [J]. J Am Chem Soc,1999,121(9):9932-9939.
    [77]Liu Guang-qiang, Cai Wei-ping, Liang Chang-hao. Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate[J]. Cryst. Growth Des,2008,8 (8):2748-2752.
    [78]Vladimir P. Drachev, Vishal C. Nashine, Mark D. Thoreson, et al. Adaptive Silver Films for Detection of Antibody-Antigen Binding [J]. Langmuir,2005, 21(18):8368-8373.
    [79]Elizabeth J. Smythe, Michael D. Dickey, Jiming Bao, et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced raman scattering detection [J]. Nano Lett,2009,9(3):1132-1138.
    [80]SUN Lan-lan, SONG Yong-hai, WANG Li, et al. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection[J]. J. Phys. Chem. C,2008,112(3):1415-1422.
    [81]SONG Wei, CHENG Yu-chuan, JIA Hui-ying, et al. Surface enhanced raman scattering based on silver dendrites substrate [J]. Journal of Colloid and Interface Science,2006,298(3):765-768.
    [82]Yoshio Kobayashi, Vero'nica Salgueirino-Maceira, Luis M. Liz-Marzan. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating [J]. Chem. Mater,2001,13(4):1630-1633.
    [83]Sabahudin Hrapovic, LIU Ya-li, Gary Enright, et al. New strategy for preparing thin gold films on modified glass surfaces by electroless deposition [J]. Langmuir,2003,19(6):3958-3965.
    [84]Jiatao Zhang, Xiaolin Li, Xiaoming Sun, et al. Surface Enhanced Raman Scatting Effects of Silver Colloids with Different Shapes[J]. J. Phys. Chem. B,2005, 109(25):12544-12548.
    [85]Lijima S, Ichihashi T. Structural instability of ultrafine particles of metals [J]. Phys. Rev. Lett,1986,56(2):616-619.
    [86]Smith D J, Petford-Long A K, Wallenberg L R, et al. Dynamic atomic-level rearrangements in small gold particles [J]. Science,1986,233(3):872-874.
    [87]He Yi, Shi Gao-quan. Surface plasmon resonances of silver triangle nanoplates: graphic assignments of resonance modes and linear fittings of resonance peaks [J]. J. Phys. Chem. B,2005,109(5):17503-17511.
    [88]Gupta. R, Weimer. W.A. High enhancement factor gold films for surface enhanced Raman spectroscopy [J]. Chem. Phys. Lett,2003,374(3):302-306.
    [89]Nie S M, Steven R Emory. Probing single molecules and single nanoparticles by surface-enhanced raman scattering [J]. Science,1997,275(2):1102-1106.
    [90]WEI Gang, ZHOU Hua-lan, LIU Zhi-guo, et al. A simple method for the preparation of ultrahigh sensitivity surface enhanced Raman scattering (SERS) active substrate [J]. Applied Surface Science.,2005,240(4):260-267.
    [91]JIA Hui-ying, ZENG Jiang-bo, SONG Wei, et al. Preparation of silver nanoparticles by photo-reduction for surface-enhanced Raman scattering [J]. Thin Solid Films,2006,496 (282):281-287.
    [92]Milad G, O'Brien G. An overview of p rocesses and solderability performance of HASL alternatives[J]. CircuiTree,2002,15 (1):4-8.
    [93]Lee Yinp ing, TsaiMingshi, Hu Tingchen, et al. Selective copper metallization by electrochemical contact disp lacement with amorphous silicon film [J]. Electrochemical and Solid2State Letters,2001,4(7):47-49.
    [94]方景礼.21世纪的表面处理新技术[J].表面技术,2005,34(5):1-5.
    [95]宁远涛,赵怀志.银[M].长沙:中南大学出版社,2005:378-379.
    [96]李德良,唐鹤,黄念东,等.选冶联合流程回收铜银金的工艺[J].中国有色金属学报,1999,9(3):615-619.
    [97]胡天觉,曾光明,袁兴中.湿法炼锌废渣中硫脲浸出银的动力学[J].中国有色金属学报,2001,11(5):933-937.
    [98]王丽丽,编译.置换型化学镀银液[J].电镀与精饰,2003,25(1):39-41.
    [99]WATANABE T.纳米电镀[M].陈祝平,杨光,译.北京:化学工业出版社,2007:101-103.
    [100]覃奇贤,郭鹤桐,刘淑兰,等.电镀原理与工艺[M].天津:天津科学技术出版社,1993:207-209.
    [101]钟萍,黄先威.浸渍镀仿金工艺[J].电镀与涂饰,2001,20(6):8-10.
    [102]冯绍彬,董会超,夏同弛,等.钢丝化学镀铜工艺研究和理论探讨[J].金属制品,1997,23(4):12-15.
    [103]周绍民.金属电沉积-原理与研究方法[M].上海:上海科学技术出版社,1987:216-220.
    [104]吴辉煌.电化学[M].北京:化学工业出版社,2004:197-204.
    [105]Q.Zhou, S.Wang, N. Jia, et al. Synthesis of highly crystalline silver dendrites microscale nanostructures by electrode position[J]. Mater.Lett.,2006,60(5): 3789-3792.
    [106]L. Qu, L. Dai, Novel Silver Nanostructures from Silver Mirror Reaction on Reactive Substrates[J]. J. Phys. Chem. B,2005,109(7):13985-13990.
    [107]Sun Y G,B Mayers, T Herricks, et al. Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence [J]. Nano Lett,2003,3(7):955-960.
    [108]Kobayahi Y, Salgueirino-Maceira V, Liz-Marzan L M. Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating[J]. Chem. Mater,2001,13(5):1630-1633.
    [109]Yugang S, Younan X. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium[J]. J. AM. CHEM. SOC.2004,126(16):3892-3901.
    [110]Jensen, T. R.; Van Duyne, R. P.; Johnson, S. A.; Maroni, V. A. Surface- Enhanced Infrared Spectroscopy:A Comparison of Metal Island Films with Discrete and Nondiscrete Surface Plasmons [J]. Appl. Spectrosc.2000, 54(2):371-377.
    [111]Duval Malinsky, M.; Kelly, L.; Schatz, G C.; Van Duyne, R. P. Nanosphere Lithography:Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles [J]. J. Phys. Chem. B,2001, 105(12):2343-2350.
    [112]Lin. Y. T, Shen. J. H, Lee. S. L. p-p Overlap and Second Hyperpolarizability[J]. Chem. Phys. Lett.2001,345(12):228-234
    [113]Akamatsu. K, Tsubio. N, Hatakenaka. Y, et al. In Situ Spectroscopic and Microscopic Study on Dispersion of Ag Nanoparticles in Polymer Thin Films[J]. J. Phys. Chem. B,2000,104(44):10168-10173.
    [114]Haynes, C. L.; McFarland; A. D.; Zhao, L.; Van Duyne, R. P.; Schatz, G C.;Gunnarsson, L.; Prikulis, J; Kasemo, B.; Nanoparticle Optics:The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays [J]. J. Phys. Chem. B 2003,107(30):7337-7342.
    [115]Krenn. J. R, Gotschy. W, Somitsch. D, et al. Aussenegg, F. R. Investigation of localized surface plasmons with the photon scanning tunneling microscope [J]. Appl. Phys. A,1995,61(4):541-545.
    [116]Torok P, Wilson T. Rigorous theory for axial resolution in eonfocal microscope[J]. Opt. Commun,1997,137(1):127-135.
    [117]Freeman R QHommer M B,Grabar K C,et al. Ag-Clad Au Nanoparticles:Novel Aggregation,Optical and Surface-enhanced Raman Scattering Properties[J]. J. Phys. Chem.1996,100(12):718-724.
    [118]Cui Y, Ren B., Yao J. L., Gu R. A., Tian Z. Q. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on Surface-enhanced Raman Spectroscopy[J]. J. Phys. Chem. B.,2006,110(13):4002-4006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700