A位取代Ba_(0.7)Sr_(0.3)TiO_3铁电体制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ABO_3型钙钛矿结构铁电体钛酸锶钡(BaxSr1-xTiO_3、BST)材料具有较高的相对介电常数、较低的插入损耗、以及介电常数在直流电场下显著的非线形特性行为,被公认为是制备相控阵微波移相器的理想材料。本文主要研究了A位Ba~(2+)部分取代的(Ba_(0.7-x)Pb_x)Sr_(0.3)TiO_3陶瓷的结构特性与电学特性。
     本文采用固相反应法制备了ABO_3型化合物Ba0.7Sr0.3TiO_3、以及Pb~(2+)对A位Ba~(2+)部分取代的(Ba_(0.7-x)Pb_x)Sr_(0.3)TiO_3 (x=0.1~0.4)陶瓷,研究了其结构、铁电与介电特性。XRD分析表明,随着Pb~(2+)对Ba~(2+)取代程度的加强,样品逐渐由立方相过渡到四方相,c轴和a轴晶格常数偏离相应增大,晶格畸变程度明显加剧。ESEM分析表明随着样品烧结温度的升高,陶瓷晶粒逐渐长大;Pb的掺入使样品更加致密,孔洞大量减少,晶粒细化,而当Pb含量较大时,由于高温下Pb挥发严重,使得陶瓷样品会产生少量第二相且使陶瓷样品的孔洞增多。铁电性能测试发现,当x≤0.3时,样品的电滞回线形状平滑饱和,随着Pb浓度的提高,BST陶瓷的铁电性能逐渐增强,剩余极化相应增大。(Ba_(0.4)Pb_(0.3))Sr_(0.3)TiO_3与BST相比极化Ps值由8.268μC/cm~2增大到15.698μC/cm~2,剩余极化Pr值由4.115μC/cm~2增大到11.300μC/cm~2,矫顽场由2.183 kV/cm增大到9.470 kV/cm。介电特性测试表明,随着Pb取代程度的加强,样品的居里温度逐渐升高,介电常数逐渐减小、且变化趋于平缓,说明室温下样品处于更稳定的铁电相。与纯BST相比,Pb~(2+)部分取代后样品的介电损耗均有所降低。
Ferroelectric materials such as Barium strontium titanate (Ba_xSr_(1-x)TiO_3, BST) with ABO_3 type perovskite structure have gained much attention for their superior performance. They are considered as a kind of the most important materials which have great potential perspective in field of microwave、micro-electronics and memories. Nowadays, Ba_xSr_(1-x)TiO_3 has been recognized as one of the most ideal materials for microwave phase shift fabricating because of its high dielectric constant, lower loss tangent and remarkable nonlinear properties.
     In this paper, the Ba_(0.7)Sr_(0.3)TiO_3 and (Ba_(0.7-x)Pb_x)Sr_(0.3)TiO_3 (x=0.1~0.4, BPST) compounds with a structure of ABO_3 were synthesized by conventional solid reaction method. Influence of Pb~(2+) substitute for Ba~(2+) in A-site on the sintering behavior and the dielectric and ferroelectric properties of BST/BPST ceramics were investigated. The X-ray diffractometry (XRD) patterns analysis reveals that the samples change from tetragonal to cubic system, and more dramatical structural distortion have been observed with the increase of Pb~(2+) concentration. The Environment Scanning Electron Microscope (ESEM) micro-graph indicate that the grain size of BST ceramics grows with the increase of sintering temperature. The smaller grain size and more compact structure of the Pb~(2+) substituted samples can be observed clearly in the ESEM graphics. The ferroelectric properties analysis shows saturated hysteresis loops of the samples when x≤0.3, which indicates the improvement of their ferroelectric properties. Compared with the ferroelectric parameters such as saturate polarization (Ps), remnant polarization (Pr) and coercive field (Ec) of BST, (Ba_(0.4)Pb_(0.3))Sr_(0.3)TiO_3 has a superior performance of 15.693μC/cm~2, 11.300μC/cm~2 and 9.470 kV/cm, respectively, while the accordingly values of BST are 8.268μC/cm~2, 4.115μC/cm~2 and 2.183 kV/cm. The dielectric properties analysis reveals that the Tc increases gradually with the enhancement of Pb substitution. At room temperature, the decrease of dielectric constant becomes smaller with the Pb content increase, which i validate a relative static ferroelectric phase of the high Pb content samples. Besides, the loss tangent of the samples which are substituted by Pb~(2+) is lower than that of pure BST.
引文
[1] Chiu L. H., Zhang X. B., Sengupta L. Electronically Tunable Ceramic Materials Including Tunable Dielectric and Metal Silicate Phases. US Patent, 6,514,895 B1, Feb.4, 2003:511-523
    [2]徐业彬,袁孝.微波调谐钛酸锶钡复合陶瓷.中国专利, 1453241, 2004:10-15
    [3] Vendik I., Vendik O., Pleskachev V. et al. Tunable Microwave Filters Using Ferroelectric Materials. IEEE Trans. On Applied Superconductivity, 2003,13(2):716~719
    [4]何进,杨传仁.微波介质陶瓷材料综述.电子元件与材料, 1995,2:7-13
    [5] Richtmyer R. D. Dielectric resonators [J].J Appl. phys., 1939.10:391-398
    [6] Hakki B. W. and Coleman P. D. A Dielectric Resonator Method of Measuring Inductive Capacitors in the Millimeter Range, IRE Trans. Microwave Theory Tech., 1960. MTT-8:402-410
    [7] Cohn S. B., IEEE Trans. On MTT, MTT-16, 218(1968):311-318
    [8]杨辉.微波介质陶瓷及器件研究进展.硅酸盐学报, 2003.10:967-973
    [9] LEE D. Y., YOON S. J., YEO J. H. et al. Crystal Structure and Microwave Dieletric Properties of La(Mg1/2Ti1/2)O3 Ceramics. J. Mater. Sci. Lett., 2000, 19: 131~134
    [10] Liqin Zhou, Vilarinho P. M., Baptista J. L. Dependence of the structural and dielectric properties of Ba1-xSrxTiO3 ceramic solid solutions on raw material processing. Journal of the European Ceramic Society, 1999, 19:2015-2020
    [11] Liqin Zhou, Vilarinho P. M., Baptista J. L. Dielectric properties of bismuth doped Ba1-xSrxTiO3 ceramics. Journal of the European Ceramic Society, 2001, 21:531-534
    [12] Bednorz J. G.. and Müller K. A. Sr1-xCaxTiO3: an XY quantum ferroelectric with transition to randomness. Phys. Rev. Lett., 1984, 52: 2289-2292
    [13] Cheng A., Zhi Y., Vilarinho P. M. BiSrTiO3: a quantium ferroelectric and a relaxor. Phy. Rev. B, 1998, 57: 7403-7406
    [14] Di Wu, Aidong Li, Huiqin Lin, et al. Preparation of (Ba0.5Sr0.5)TiO3 thin films by sol-gel method with rapid thermal annealing. Applied Surface Science, 2000, 165:309-314
    [15]钟维烈.铁电体物理学.第一版.北京.科学出版社, 1996: 1~4, 5~9, 22~24,156~158
    [16] Razak K. A. et al., Properties of BST ceramics prepared by high temperature hydrothermal process, Ceramics International (2006), 2006.06.011:08-15
    [17] Sengupta, et al. Ceramic ferroelectric composite material - BSTO-ZrO2 [P]. US Patent: #5 486 491, 1996-1-23:134-141
    [18] Ding Y. P., Meng Z. Y. The orderd micro-domain in BST thin films and its effect on phase transition. Journal of Materials Science Letters, 2000, 19: 163-165
    [19]张磊,钟维烈,彭毅萍等,钛酸锶钡的铁电相变与晶胞体积的关联,物理学报,2000,49(7):1371-1376
    [20] Zhang L., Zhong W. L. Order-disorder model in ferroelectrics. Phys. Lett., 1999, A260. 279:211-218
    [21] Wu L., Chen Y. C., Chen L. J. Preparation and microwave characterization of Ba1-xSrxTiO3 ceramics. Jpn. J. Appl. Phys, 1999, 38: 5612-5615
    [22] TAGANTSEV A. K., SHERMAN V. O., ASTAFIEV K. F., et al. Ferroelectric Materials for Microwave Tunable Applications. Journal of Electroceramics, 2003, 11: 5~66
    [23] Siqueiros J. M., Portelles J., Garcia S. Study by hysteresis measurements of the influence of grain size on the dielectric properties of ceramics of the Ba0.6Sr0.4TiO3 type prepared under different sintering conditions. Solid State Communications, 1999, 112: 189-194
    [24] Barnes F. S., Huey D. W., Benton R., et al. Yb and Ca doped Ba0.6Sr0.4TiO3 for device application near room temperature. Integr. Ferroelectr., 1999, 24(1-4):327~339
    [25] Sengupta L. C., Sengupta S.. Novel Ferroelectric Materials for Phased Array Antennas. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control., 1997, 44(4): 792~797
    [26] Sengupta L. C., Sengupta S. Breakthrough Advances in Low Loss, Tunable Dielectric Materials. Mat Res Innovat., 1999, 2: 278~282
    [27] Johnson K. M. Variation of dielectric constant with voltage in ferroelectrics and itsapplication to parametric devices. J Appl. Phys., 1962, 33:2826-2831
    [28] Liou J. W., Chiou B. S. DC Field dependence of the dielectric characteristics of doped Ba0.65Sr0.35TiO3 with various grain Sizes in the paraelectric state. Jpn J Appl. Phys., 1997,36:4359-4368
    [29] Louca D, Roder H, Sarrao J L, et al. The local atomic structure and phonons in Ba0.5Sr0.5TiO3 J Phys. Chem. Solids., 2000,61:239-294
    [30]慧春,徐爱兰,高顺华.一种用于相控点阵天线的新型钛酸锶钡电光移相器.西安电子科技大学学报,1999,26(4):514-519
    [31] Iskander M. F., Zhang Z. J., Zheng Q. Y. New phase shifters and phased antenna array designs based on ferroelectric materials and CTS technologies. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(12):481-489
    [32] Zimmermann F., Voigts M., Weil C., et al. Investigation of barium strontium titanate thick films for tunable phase shifters [J] J Euro Ceram Soc., 2001, 21:2019-2023
    [33]杨文,常爱民,杨邦朝.晶粒尺寸对Ba0.8Sr0.2TiO3陶瓷介电铁电特性的影响[J].硅酸盐学报, 2002,30(3):390-392,397
    [34]慧春,陈寿田,徐爱兰等. BSTO电光材料及其制备.压电与声光,1999,21(6):465-470
    [35] Magdy F., Iskander, Zhijun Zhang, Zhengqing Yun. New phase shifters and phased antenna array designs based on ferroelectric materials and CTS technologies. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(12):181-186
    [36]吕文中.电子材料物理.第一版.北京:电子工业出版社,2002:154-155
    [37] Sung Min Rhim, Seokmin Hong, Heungjin Bak, and Kyung Kim Ok. Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics. Journal of the American Ceramic Society, 2000, Vol.83, No.5:511-520
    [38] Liou J. W., Chiou B. S. Dielectric tunability of barium strontium titanate/silicone- rubber composite. [J] J. Phys.: Condens. Matter, 1998, 10:2773-2786
    [39] De Flaviis F., Alexoloulos N. G., Stafsudd O. M. Planar Microwave Integrated Phase-Shift Design with High Purity Ferroelectric Material. IEEE Trans. Microwave Theory Tech., 1997, 45 (6) : 963~969
    [40]姚中兴,黄立伟.微波技术与天线,[M]西安:西安电子科技大学出版社,1993.:15-35
    [41] Varadan V. K., Ghodgaonkar D. K., Varadan V. V., et al. Ceramic Phase Shifters for Electronically Steerable Antenna Systems. Microwave Journal, 1992, 35(1): 116~127
    [42] Babbit R. W., Koscica T. E., Drach W. C. Planar microwave electro-optic phase shifters. Microwave Journal, 1992, 35(6): 63~79
    [43] Carlson C. M., Rivkin T. V., Parilla P. A. 30 GHz electronically steerable antennas using BaxSr1-xTiO3 based room-temperature phase shifters. Materials Research Society Symposium - Proceedings, 2000, 603: 15-25
    [44] Zimmermann F., Voigts M., Weil C. et al Investigation of barium strontium titanate thick films for tunable phase shifters [J] J Euro Ceram Soc., 2001, 21:2019-2023
    [45] Sharpe C. B., Brockus G. G.. Investigations of Microwave Properties of Ferroelectric Materials [R]. University of Michigan Research Institute, Report No.2732-4-F, 1959:94-99
    [46] Johnson D. A., Microwave Properties of Ceramic Nonlinear Dielectrics [R]. ML Report, No.825, Microwave Laboratory, Standford University, Standford, CA, 1961:285-293
    [47] Harrison G.., Lavedan L., Denaldson M. Microwave Ferroelectric Phase Shifters and Switches [R]. Final Report, Army Contract, No. DA 36-039-AMC-0240(E), 1965:641-648
    [48] Flaviis F. D., Alexopoulos N. G. Planar Microwave Integrated Phase-Shifter Design with High Purity Ferroelectric Material. IEEE transaction on microwave theory and techniques, Vol.45, NO.6, JUNE 1997 :478-485
    [49] BABBIT R.W., KOSCICA T. E., DARCH W.C. Planar Microwave electro-optic phase shifters [J]. Microwave J., 1992, (6): 63-79
    [50] Liang G, Dai X, Hebert G. F. High temperature superconducting resonators and phase shifters. IEEE trans on applied superconductor, 1991, 1(1):58~66
    [51] Ding Y. P., Cheng J. R., Li C. M. et al. Microstructure and electrical properties of Ba1-xSrxTiO3 thin film prepared by Sol-Gel process. Advances in Science andTechnology, 1999, 20:615~620
    [52] Kotecki D. E., Athavadale S. D., Baniecki J. D. et al. (Ba,Sr)TiO3 dielectrics for future stacaked capacitor DRAM [J] IBM J. RES. DEVELOP., 1999,43(3)3:637-380
    [53]邵式平.非制冷红外焦平面阵列进展.红外技术,1999,18(2):1~6
    [54]新田恒治等. National technical report 1980, 26(3):433-441
    [55]郭演仪,郑玉芳,冯宝康.温湿度双功能陶瓷传感器. [J]上海硅酸盐, 1995,3:29-32
    [56]张光义.相控阵雷达系统.第1版.北京:国防工业出版社,1994:37~39
    [57] Sengupta. Ceramic ferroelectric composite material-BSTO-ZnO [P]. US Patent: #5635 433, 1997-6-3:51-60
    [58] Hu T., Jantunen H., Uusimki A. et al. Ba0.7Sr0.3TiO3 powders with B2O3 additive prepared by the sol-gel method for use as microwave material. Material Science in Semiconductor Processing , 2003,5:215-211
    [59] Chen Y. C., Wu L., Chou Y. P., et al. Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate. [J] Materials Science and Engineering, 2000.B76: 95-100
    [60] Wang X. H. et al. Effects of La2O3 additions on properties of Ba0.6Sr0.4TiO3–MgO ceramics for phase shifter applications Journal of the European Ceramic Society, 26 (2006) :1981–1985
    [61]李标容.电子陶瓷工艺原理.武汉:华中理工大学出版社,1986:340~350
    [62] Subrahmanyam S., Goo E. Diffuse phase transitions in the (PbxBa1-x)TiO3 system. Journal of Materials Science, 1998, 33: 4085~4088
    [63]李秀峰,肖腊连,胡勇等.基于数字示波器的铁电材料参数测试系统.仪器仪表学报,2005,26(8):309~310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700