负载型TiO_2净化材料的制备及降解甲醛的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛是具有较高毒性的物质,有强烈的致癌和致畸作用,室内环境中甲醛超标的问题已经引起人们越来越多的重视。本文主要基于TiO2在气相光催化领域的应用,针对室内环境中的甲醛,开展了一系列相关的实验研究,内容涉及TiO2光催化剂的制备、负载和光催化降解甲醛的性能研究,本实验研究的开展对TiO2光催化净化空气技术的应用具有一定的参考价值。
     采用溶胶-凝胶法在玻璃基片上成功制备了负载型TiO2薄膜材料,自行设计制作了镀膜装置,确定了制备TiO2薄膜的最佳工艺条件。以甲基橙为目标降解物,检测TiO2薄膜的光催化活性,研究了焙烧温度、镀膜层数、焙烧升温速度及紫外线光照时间对薄膜光催化活性的影响。实验结果表明,焙烧温度为500℃,镀膜层数为3层,焙烧升温速度为5℃/min所制得的负载型TiO2薄膜具有较高的光催化活性。
     研究了气态甲醛的光催化降解行为,自行设计了甲醛光催化降解反应器,重点研究了甲醛初始浓度、二氧化钛负载量、紫外光照对甲醛光催化降解的影响,实验结果表明,其它实验条件相同的情况下,甲醛初始浓度为95.18μg/L时TiO2薄膜对甲醛的降解率最高。另外,甲醛气体的降解率随TiO2的负载量增加而逐渐增大,紫外光照射对甲醛的降解率明显好于自然光照射的降解率。
Formaldehyde is dangerous substance with high toxicity which can induce cancer and abnormality. People have paid more and more attention to superscale of formaldehyde indoors. The study is mainly based on TiO2 application in gas phase photocatalysis, aiming at indoor formaldehyde, a series of correlative experiments were carried on, including preparation of TiO2 photocatalyst, loading and photocatalytic degradation of formaldehyde. The results have proved reference value to photocatalysis technology in purifying air.
     Titanium dioxide films were prepared on glass substrates by sol-gel method and the best preparation conditions was developed. Designed and made a coating device for prepared TiO2 thin film. The TiO2 thin film purification ability was examined through the degeneration certain density methyl orange experiment. The influences of calcining temperature, coating layer, the speed of rising temperature, the UV illumination on the photocatalytic activities of the TiO2 thin films were also investigated. The experimental results showed that the TiO2 thin films had the higher photocatalytic activity when glass was calcinated at 500℃, with 5℃/min rising temperature speed and was coated three layers.
     A reaction device was designed for formaldehyde photocatalytic degradation. The photocatalytic degradation behavior of gaseous formaldehyde was studied and the influence factors of formaldehyde photocatalytic degradation, such as initial concentration of gaseous formaldehyde, titanium dioxide quantity, UV illumination were also studied. The experimental results showed that the percentage of degrading gaseous formaldehyde was the highest when the concentration of gaseous formaldehyde was 95.18μg/L, the percentage of degrading gaseous formaldehyde increased with the increasing of quality of TiO2, the percentage of degrading gaseous formaldehyde with UV illumination is better than sunlight.
引文
[1]白志鹏,韩旸,袭著革.室内空气污染与防治[M].化学工业出版社, 2006: 1-40
    [2]李丽蓉.室内空气污染及控制措施[J].装备制造技术, 2007, 5: 122-123
    [3]人类健康的“隐形杀手”-室内空气污染[J] .绿色视野, 2007, 6: 41-46
    [4]倪涵松,曹坚.居室空气污染的防治与标准[J].上海标准化, 2001, 5: 25-27
    [5] A T Hodgson, D Beal, J E R Mcllvaine. Sources of formaldehyde other aldehydes and terpenesina new manufactured house[J]. IndoorAir, 2002,12: 235-242
    [6] Zhangyiheng, Chenqi, Zhangyu, etal. Study of ESR on the photocatalytic oxidation of methanal[J]. Chinese journal of cheoicalphysics,1998(11): 461-464
    [7]丁震,林萍,昌永生等.室内空气甲醛污染的净化与控制[J].中国公共卫生, 2003, 19(5): 998-100
    [8]沈毅,张青龙等.纳米TiO2光催化材料研究新进展[J].矿业研究与开发, 2006, 26(4): 39-43
    [9]杨卫芳,杨玉军,邢冰梅.室内空气中甲醛的污染[J].职业与健康, 2006, 22(14): 1049-1050
    [10]李艳莉,尹诗,黄宝妍.室内甲醛污染来源及对人体的危害[J].佛山科学技术学院学报(自然科学版), 2003, 21(1): 49-52
    [11] Minami T, Matsumoto H,Kondo F, etal. Variation in indoor air pollutant concentration with time in a newly constructed private house[J]. Nippon Koshu Eisei Zasshi2002, 49(3): 211-221
    [12]杨敏.室内空气环境中甲醛的危害及分析方法[J].湖北预防医学杂志, 2003, 14(2): 20-21
    [13]斯琴高娃,乌云,高小平.谈室内空气中甲醛污染物的危害及防治[J].内蒙古石油化2001, 1: 25-26
    [14]陆学奎,吕建中.家庭室内装修后空气中甲醛污染调查及防治措施初探[J].环境与职业卫生2006, 33(6): 952-953
    [15]周建平,何建平,柯振东等.我国居室内空气中甲醛污染现状分析及对策研究[J].环境科与技术, 2005, 28: 18-20
    [16] Dingle P, Kerrp P. In indoor air: an inte-grated approach[J]. Elsevier Science, INC, 1994, 660: 10591-5153
    [17]刘春丽,章亚东.室内甲醛污染治理的研究进展[J].江苏化工, 2007, 35(1): 15-18
    [18]孙瑶毅.甲醛有害气体治理的进展研究[J].化工科技市场, 2004, 4: 17-20
    [19]张彭义,余刚,蒋展鹏.光活性二氧化钦膜的制备与应用[J].环境科学进展, 1998, 6(5): 50
    [20] Hager S, Baue R, Kuduelka G. Photocatalitic oxidation of gaseous chlorinated organics over titanium dioxide[J]. Chemosphere, 2000, 41: 1219-1225
    [21] ShangJing, DuYaoguo, XuZiLi. Photocatalytic oxidation of heptane in the gas-phase over TiO2[J]. Chemosphere, 2002, 46: 93-99
    [22]鹿院卫,马重芳,夏国栋等.室内污染物甲醛的光催化氧化降解研究[J].太阳能学报, 2004, 25(4): 542-546
    [23]黄舒.二氧化钛薄膜材料制备工艺研究进展[J].中国科技信息, 2007,17:68-70
    [24] Timothy N. Obee, Sunita Satyapal. Photocatalytic decomposition of DMMP on titania[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 118: 45-51
    [25] Sonawane R S, Kale B B, Dongare M K. Preparation and photoactalytic activity of Fe-TiO2 thin films prepared by sol-gel dip-coating[J]. Materials chemistry and Physics, 2005, 85: 52-57
    [26]李辉勇,金密,周军.纳米TiO2的制备及其对甲醛的光催化降解性能[J].精细化工中间体, 2006, 36(4): 43-53
    [27]朱顺萍. TiO2催化降解室内甲醛的影响因素[J].中国卫生工程学, 2007, 6(1): 41-44
    [28]孙瑶毅.甲醛有害气体治理的研究进展[J].化工科技市场,2004, 4: 17-20
    [29]蔡卫权,李会泉,张鼓等.纳米催化技术用于空气净化[J].环境污染治理技术与设备, 2004, 5(4): 58-61
    [30]丁震,林萍,陈晓东.纳米光催化空气净化器对甲醛及总挥发性有机物净化效果的实验[J].中国卫生工程学, 2004, 3(3): 136-138
    [31]刘守新,刘鸿.光催化及光电催化基础与应用[M].化学工业出版社, 2006: 51-135
    [32] Michael R H, Martin S T, Choi W Y,Bahnemann D W. Environmental application of semiconductor photocatalysis[J]. Chem.Rev, 1995, 95: 69-96
    [33]吴迪,王鼎聪,赵德智.纳米二氧化钛的制备工艺与应用进展[J].河北化工, 2005, 2: 8-12
    [34] Xu W Ping, Zheng Lirong, Xin Huo Ping, et al. Formation of BatiO3 and PbtiO3 thin films under mild Hydrothermal conditions[J]. Mater.Res, 1996, 11(4): 821-824
    [35]吴迪,王鼎聪,赵德智.纳米二氧化钛制备工艺研究进展[J].钛工业进展, 2005, 22(3): 32-36
    [36]成晓玲,曾鹏,谢光荣等.纳米二氧化钛薄膜制备研究进展[J].表面技术, 2005 34(4): 1-5
    [37]张健,吴全兴.纳米二氧化钛的研究进展[J].稀有金属快报, 2005, 24(3): 1-5
    [38]余家国,赵修建,赵青南. TiO2纳来薄膜的溶胶-凝胶工艺制备和表征[J].物理化学学报, 2000, 16(9): 792-797
    [39]王振华.溶胶-凝胶法(Sol-Gel)制备TiO2光催化剂的反应机理和制备工艺[D].济南:山东大学, 2006
    [40]李铮伟,刘艳华.溶胶-凝胶制备TiO2空气净化特性研究[J].工业催化, 2007, 15(2): 65-70
    [41]董素芳.制备纳米二氧化钛凝胶过程中若干因素对凝胶时间的影响[J].山东理工大学学报(自然科学版), 2005 19(5): 94-97
    [42]魏宏斌,徐迪民.固定相TiO2膜的制备及其光催化活性[J].中国给水排水, 2002, 18(7): 57-59
    [43]李炜罡,霍冀川,刘树信等.负载型TiO2光催化剂研究进展[J].陶瓷学报, 2004, 25(2): 132-138
    [44]宋绵新,周天亮,王峰等. TiO2光催化剂改性掺杂与负载技术研究进展[J].材料导报, 2006, 20(8): 16-20
    [45] Dislich H, Hussmannl E. Amorphous and crystalline dip-coatings obationed from organmetallic solutions procedures chemical processes and products[J]. Thin Solid Films, 1981, 77(2): 129-139
    [46]鲍兴旺,张金龙,梁学海等.二氧化钛薄膜的低温制备及其性能表征[J].物理化学, 2005, 21(1): 69-73
    [47]张学骜,吴文健,满亚辉等.溶胶-凝胶法制备ITO薄膜研究进展[J].材料科学与工艺, 2007, 15(2): 264-268
    [48]李宁,卢迪芬,陈森凤.溶胶-凝胶法制备薄膜的研究进展[J].玻璃与搪2004,32(6): 50-55
    [49]刘世军,王培英.用sol-gel法在不锈钢基片上制备TiO2薄膜[J].电子元件与材料, 1999, 12: 5-6
    [50]银董红,邓吨英,陈恩伟等.溶胶-凝胶法制备二氧化钛薄膜的研究进展[J].工业催化, 2004,12(1): 1-6
    [51]于向阳,程继健,杜永娟. TiO2光催化薄膜的制备法[J].玻璃与搪瓷, 2001, 29(1): 37-41
    [52]郑江,贺蕴秋. TiO2纳米薄膜光催化效率评价标准的研究[J].玻璃与搪瓷, 2005, 33(6): 10-14
    [53]范以辉,惠焕强.浅谈分光光度法和分光光度计的原理及其应用[J].计量与测试技术, 200633(12): 11-13
    [54]吴子豹,黄妙良,杨媛媛等.负载型TiO2复合材料对甲基橙的吸附行为及光催化降解动力学[J].精细化工, 2007, 24(1): 21-26
    [55] Yu J G, Zhao X J, Zhao Q N. Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films[J]. Journal of materials science letters, 2000, 19: 1015-1017
    [56]许佩瑶,康玺,朱洪涛等.掺杂Fe3+和Zn2+纳米二氧化钛薄膜光催化降解制革废水的试验研究[J].中国皮革, 2007 36(13): 17-20
    [57]李霞,王晓霞,刘素文.溶胶-凝胶法制备釉面砖TiO2涂层和光催化性能研究[J].中国陶工业, 2003, 10(1): 14-16
    [58] GB/T15516-1995,空气质量甲醛的测定乙酰丙酮分光光度法[S].北京:中国标准出版社, 1995
    [59]杨建军等.甲醛光催化氧化的反应机理[J].物理化学学报, 2001, (17)3: 278-281
    [60]张宜恒等.甲醛光催化的ERS研究[J].化学物理学报, 1998, (11)5: 461-464
    [61] Yang J J, Li D X, et al. A study of photocatalytic oxidation of formaldehyde on Pt/ Fe2O3/ TiO2 [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137: 197-202
    [62]江俊俊.复合二氧化钛制备表征及光催化降解甲醛的研究[D].成都:成都理工大学, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700