氧化钒及其衍生物纳米结构的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料,如纳米棒、纳米线、纳米管、纳米片和纳米环等具有不同于块体材料的,新奇的物理化学性质而广泛引起人们的关注。氧化钒和其衍生物有特殊的氧化还原特性和层状结构,这可使多种外来的小分子、离子等插入其层间而形成相应的化合物。由于钒系化合物在锂离子电池、化学传感器、纳米器件等领域的潜在的应用前景,使合成其纳米结构、研究其性能成为近年来的热点。本论文,介绍了钒系化合物中有代表性的几种物质的合成方法,并对他们的形成机理和性质进行了分析。
     (1)以V_2O_5粉体为原料,加入适量的盐酸,通过简单的水热处理,得到H_2V_3O_8单晶纳米带。H_2V_3O_8单晶纳米带是一种亚稳态结构,在氧气气氛下可转化为V_2O_5纳米带。为直接得到五价钒的氧化物纳米结构,加入稀H_2O_2作为氧化剂,水热处理直接得到V_2O_5单晶纳米带,V_2O_5单晶纳米带的合成由“脱水-再结晶-劈裂”过程形成,这种方式的得到的V_2O_5纳米带的生长方向与H_2V_3O_8经在氧气中煅烧得到的V_2O_5纳米带不同。V_2O_5作为锂离子电池的电极材料,制备成纳米带后,嵌锂能力得到很大的提高。
     (2)通过水热法合成了Ba(VO_3)_2·H_2O单晶纳米带、Ba_(1+x)V_6O_(16)·nH_2O带状和环状结构以及Cu_xV_2O_5。Ba(VO_3)_2·H_2O单晶纳米带由V_2O_5粉末和Ba(OH)_2·8H_2O在适量CTMA存在的条件下,直接反应得到;而Ba_(1+x)V_6O_(16)·nH_2O则是通过水热处理Ba_3(V_(10)O_(28))(H_2O)_(19)得到,在Ba_(1+x)V_6O_(16)·nH_2O纳米带中,有多种形貌的环状结构,如盘状、管状、圈状、车轮状等。这是第一次报道利用水热法,在无模板的情况下,成功合成钒酸盐的环状结构;钒酸铜的制备是以V_2O_5/H_2O_2溶液为钒源,通过控制Cu与V的比例,制备了不同的Cu_xV_2O_5,电化学性质分析表明,Cu_xV_2O_5作为一种理想的锂电池正极材料,但其比容量与Cu的含量有很大的关系。
     (3)通过V_2O_5原位氧化聚合苯胺得到聚苯胺-氧化钒复合纳米片,聚苯胺插层后,氧化钒的层间距由开始的4.38(?)增加到13.8(?),随着这种苯胺的原位插层,块体状V_2O_5被插层和剥离,最后生成木耳状聚苯胺-氧化钒复合纳米片。
One-dimensional nanostructures, such as nanorods, nanowires, nanotubes, nanosheets, and nanorings, have received considerable interest due to their novel physical and chemical properties which are different from their bulk counterparts. Vanadium oxides and their derivative compounds are of interest due to their redox-activity and layered structures, which allow the insertion of various intercalation species. In recent years, the fabrication of their nanostructures has been researched intensively due to their potential applications in lithium batteries, chemical sensors or actuators, and nanodevices. In this paper, we reported several synthesis methods of some typical vanadium oxides and their derivate compounds. The growth mechanism and properties had been discussed.H_2V_3O_8 single-crystal nanobelts were synthesized by hydrothermal processing of bulky V_2O_5 powders in hydrochloric acid solution without the aid of any templates or reducing agents. H_2V_3O_8 nanobelts were metastable and can be transformed to V_2O_5 nanobelts in oxygen at 500°C. Orthorhombic V_2O_5 single-crystalline nanobelts were synthesized in the H_2O_2 aqueous solution by the same methods. The products were very pure, and the process was environmentally friendly for no impure ions, harmful reagents in the reaction solution. A probable dehydration-recrystallization-cleavage mechanism for the formation of V_2O_5 nanobelts was proposed. The growth direction of V_2O_5 nanobelts was different to that one which was prapared by sintering H_2V_3O_8 nanobelts. The experiments also demonstrated that the use of nanosized belt-like structured materials can considerably enhanced the specific discharge capacity in lithium-ion batteries.
     Vanadium Oxide Bronzes, such as Ba(VO_3)_2·H_2O single-crystal nanobelts, Ba_(1+x)V_6O_(16)·nH_2O nanobelts and seamless ring-like structures, Cu_xV_2O_5, were prapared by hydrothermal methods. Ba(VO_3)_2·H_2O nanobelts were obtained by treating V_2O_5 powders and Ba(OH)_2·8H_2O with CTMA as the surfactant. Ba_(1+x)V_6O_(16)·nH_2O was formed by hydrothermal treating Ba_3(V_(10)O_(28))(H_2O)_(19) precursor, and it is interesting that, there were several types rings in the Ba_(1+x)V_6O_(16)·nH_2O products, such as plate-like, tube-like, doughnut-like and wheel-like morphologies. To our knowledge that, it is the first time to report that vanadate ring-like structures can be synthesized by simple hydrothermal method without any template. Cu_xV_2O_5, prapared from V_2O_5/H_2O_2 as the vanadium source, was a perfect anode lithium material and has higher specific capacity, which can be seriously effected by the content of copper.
     Polyaniline-vanadium oxide nanocomposite nanosheets were prepared via an in-situ intercalation polymerization process. The interplanar spacing was increased from 4.38A to 13.8A after intercalation reaction. During the reaction, the bulk V_2O_5 powders were intercalated and exfoliated by the reaction of aniline oxidated polymerization, and form the tremeUa-like structure.
引文
[1] Chandrappa G. T., Steunou N., Livage J., Macroporous crystalline vanadium oxide foam, Nature, 2002, 416: 702
    [2] Qiao H., Zhu X., Zheng Z., Liu L., Zhang L., Synthesis of V_3O_7·H_2O nanobelts as cathode materials for lithium-ion batteries, Electrochem. Commu., 2006, 8:21-26
    [3] Nordlinder S., Nyholm L., Gustafsson T., and Edstrom K., Lithium Insertion into Vanadium Oxide Nanotubes: Electrochemical and Structural Aspects, Chem. Mater., 2006, 18(2): 495-503
    [4] Gu G., Schmid M., Chiu P. W., Minett A., Fraysse J., Kim G. T., Roth S., Kozlov M., Munoz E., Baughman R. H., V_2O_5 nanofibre sheet actuators, Nat. Mater., 2003, 2:316
    [5] Mullagaliev I. R., Kharitonova E. Y., Urazbaev V. N., Monakov Y. B.,Butadiene Polymerization with Vanadium-Titanium-Aluminum Catalytic Systems, J. Appl. Polym. Sci., 2004, 91:211-217
    [6] Legagneur V., Salle A. L. G. L., Verbaere A., Piffard Y., Guyomard D., Lithium insertion/deinsertion properties of new layered vanadium oxides obtained by oxidation of the precursor H_2V_3O_8, Electrochimica Acta, 2002, 47: 1153-1161
    [7] Spahr M. E., Bitterli P., Nesper R., Muller M., Krumeich F., Nissen H.U. Redox-Active Nanotubes of Vanadium Oxide, Angew. Chem. Int. Ed., 1998, 37(9): 1263-1265
    [8] Whittingham, M. S., Lithium Batteries and Cathode Materials, Chem. Rev., 2004, 104(10): 4271-4301
    [9] 张勇,刘玉文,程玉山,胡信国,五氧化二钒薄膜/电解液界面电化学研究,电源技术,2005,29(9):594-598
    [10] 易惠华,戴永年,代建清,姚耀春,胡成林,锂离子电池正极材料的现状与发展,云南化工,2005,32(1):39-42
    [11] Tarascon J. M., Armand M., Issues and challenges facing rechargeable lithium batteries, Nature, 2003, 414:359-367
    [12] Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J. M., Nanosized transition metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407:496-499
    [13] Yang S. H., Laurence C., Claude D., Nelson E. C., Michael A., Atomic resolution of lithium ions in LiCoO_2, Nat. Mater., 2003, 2:464-467
    [14] Li W. Y., Xu L. N., Chen J.,Co_3O_4 nanomaterials in lithium ion batterials and gas sensors, Adv. Funct. Mater., 2005, 15(5): 851-857
    [15] 赵振荣,王立,王剑峰,低维聚合物纳米材料的自组装制备、性能及应用,高分子通报,2006,1:1-9
    [16] Pan Z. W., Dai Z. R., Wang Z. L., Nanobelts of Semiconducting Oxides, Science, 2001, 291: 1947-1949
    [17] Gao P. X., Ding Y., Mai W., Hughes W. L., Lao C., Wang Z. L., Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science, 2005, 309: 1700-1704
    [18] Juarez B. H., Garcia P. D., Golmayo D., Blanco A., Lopez C., ZnO Inverse Opals by Chemical Vapor Deposition, Adv. Mater., 2005, 17: 2761-2765
    [19] Pradhan S. K., Reucroft P. J., Yang F., Dozier A., Growth of TiO_2 nanorods by metalorganic chemical vapor deposition, J. Cryst. Growth, 2003, 256: 83-88
    [20] 王志,巴德纯,蔺增,曹培江,一维纳米材料的ECR-CVD方法制备,真空,2004,41(4):67-70
    [21] Malinauskas A., Chemical deposition of conducting polymers, Polymer, 2001, 42:3957-3972
    [22] Prieto A. L., Sander M. S., Martin-Gonzalez M. S., Gronsky R., Sands T., Stacy A. M., Electrodeposition of Ordered Bi_2Te_3 Nanowire Arrays, J. Am. Chem. Soc., 2001, 123(29): 7160-7161
    [23] Strohm H., Lobmann P., Liquid-Phase Deposition of TiO_2 on Polystyrene Latex Particles Functionalized by the Adsorption of Polyelectrolytes, Chem. Mater., 2005, 17(26): 6772-6780
    [24] Xie J., Cao X., Li J., Zhan H., Xia Y., Zhou Y., Application of Ultrasonic Irradiation to the Sol-gel Synthesis of Silver Vanadium Oxides, Ultrasonics Sonochemistry, 2005, 12:289-293
    [25] Guiton B. S., Gu Q., Prieto A. L., Gudiksen M. S., Park H., Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections, J. Am. Chem. Soc., 2005, 127(2): 498-499
    [26] Kanade K. G., Hawaldar R. R., Pasricha R., Radhakrishnan S., Seth T., Mulik U. P., Kale B. B., Amalnerkar D. P., Novel polymer-inorganic solid-state reaction for the synthesis of CdS nanocrystallites, Mater. Lett., 2005, 59:554-559
    [27] Shyue J. J., Guire M. R. D., Deposition of Vanadium(V) Oxide Thin Films on Nitrogen-Containing Self-Assembled Monolayers, Chem. Mater., 2005, 17(4): 787-794
    [28] Ca A. M., Hu J. S., Liang H. P., Wan L. J., Self-Assembled Vanadium Pentoxide (V_2O_5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed., 2005, 44:4391-4395
    [29] Corma A., Rey F., Rius J., Sabater M. J., Valencia S., Supramolecular Self-assembled Molecules as Organic Directing Agent for Synthesis of Zeolites, Nature, 2004, 43:287-290
    [30] 沈十林,周欣山,倪瑞澄,锂二次电池正极材料的液相合成LiVO_3,电池工业,2000,4(5):156-158
    [31] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354:56-58
    [32] Wang Z. L., Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides-From Materials to Nanodevices, Adv. Mater., 2003, 15(5): 432-436
    [33] 张爱黎,高虹,翟秀静,符岩,催化热解聚丙烯塑料制备纳米碳管,有色矿冶,2005,21(4):27-39
    [34] 陈长鑫,章仪,陈文哲,激光轰击制备碳纳米管及其相关纳米材料,福建工程学院学报,2004,21(1):8-11
    [35] 张琦锋,于洁,宋教花,张耿民,张兆祥,薛增泉,吴锦雷,碳纳米管阵列的气相沉积制备及场发射特性,物理化学学报,2004,20(4):409-413
    [36] 陈文,麦立强,徐庆,彭俊锋,朱泉晓,余华,氧化钒纳米管的自组装合成机理,无机材料学报,2005,20(1):65-70
    [37] Ruan C., Paulose M., Varghese O. K., Mor G. K., Grimes C. A.,Fabrication of Highly Ordered TiO_2 Nanotube Arrays Using an Organic Electrolyte, J. Phys. Chem. B, 2005, 109(33): 15754-15759
    [38] Sun L., Gong J., Zhu D., Zhu Z., He S., Diamond Nanorods from Carbon Nanotubes, Adv. Mater., 2004, 16(20): 1849-1853
    [39] Valcarcel V., Souto A., Guitian F., Development of Single-Crystal Al_2O_3 Fibers by Vapor-Liquid-Solid Deposition (VLS) from Aluminum and Powdered Silica, Adv. Mater., 1998, 10(2): 138-140
    [40] Gao Y. F., Nagaib M., Masuda Y., Satoc F., Koumoto K., Electrochemical deposition of ZnO film and its photoluminescence properties, J. Cryst. Growth, 2006, 286:445-450
    [41] Hacohen Y. R., Popovitz-Biro R., Grunbaum E., Prior Y., Tenne R., Vapor-Liquid-Solid (VLS) Growth of NiCl_2 Nanotubes via Reactive Gas Laser Ablation, Adv. Mater., 2002, 14(15): 1075-1078
    [42] 吴召平,方平安,二氧化钒薄膜在α-Al_2O_3衬底上的外延生长及其金属-半导体相变特性研究,无机材料学报,1999,14(5):823-827
    [43] Tang Y. H., Pei L. Z., Chen Y.W., Guo C., Self-Assembled Silicon Nanotubes under Supercdtically Hydrothermal Conditions, Phys. Rev. Lett., 2005, 95:116102-1-4
    [44] Qian Y., Solvothermal Synthesis of Nanocrystalline Ⅲ-Ⅳ Semiconductors, Adv. Mater., 1999,11(13):1101-1102
    [45] May X. L., Zhu Y. L., Zhang Z., Growth Orientation of One-Dimensional Silicon Nanowires Prepared by Thermal Evaporation, Philos. Mag. Lett., 2002, 82(8): 461-468
    [46] Duan X., Lieber C. M., Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires, J. Am. Chem. Soc., 2000, 122(1):188-189
    [47] 沈春英,鲁玉明,丘泰,碳热还原法合成A1N纤维,电子元件与材料,2003,22(4):22-24
    [48] Yang W., Araki H., Tang C., Thaveethavorn S., Kohyama A., Suzuki H., Noda T., Single-Crystal SiC Nanowires with a Thin Carbon Coating for Stronger and Tougher Ceramic Composites, Adv. mater., 17:1519-1523
    [49] Lew K. K., Redwing J. M., Growth Characteristics of Silicon Nanowires Synthesized by Vapor-Liquid-Solid Growth in Nanoporous Alumina Templates, J. Cryst. Growth, 2003, 254:14-22
    [50] Zhang X. Y., Dai J. Y., Ong H. C., Wang N., Chan H. L. W., Choy C. L., Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent: photoluminescence, Chem. Phys. Lett., 2004, 393:17-21
    [51] Duan J., Yang S., Liu H., Gong, J. Huang H., Zhao X., Zhang R., Du Y., Single Crystal SnO_2 Zigzag Nanobelts, J. Am. Chem. Soc., 2005, 127(17): 6180-6181
    [52] Ancona M. G., Kooi S. E., Kruppa W., Snow A. W., Foos E. E., Whitman L. J., Park D., Shirey L, Patterning of Narrow Au Nanocluster Lines Using V_2O_5 Nanowire Masks and Ion-Beam Milling, Nano Lett., 2003, 3(2): 135-138
    [53] Jeong J.S., Lee J.Y., Lee C.J., An S.J., Yi G.C., Synthesis and characterization of high-quality In_2O_3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature, Chem. Phys. Lett., 2004, 384:246-250
    [54] Cao M., Hu C., Peng G., Qi Y., Wang E., Selected-Control Synthesis of PbO_2 and Pb_3O_4 Single-Crystalline Nanorods, J. Am. Chem. Soc., 2003, 125(17): 4982-4983
    [55] He X., Trudeau M., Antonelli D., Synthesis and Electronic Properties of Low-Dimensional Bis (benzene) Vanadium Reduced Mesoporous Niobium Oxide Composites, Inorg. Chem., 2001, 40(25): 6463-6468
    [56] Matsuda Y., Bernstein E. R., Identification, Structure, and Spectroscopy of Neutral Vanadium Oxide Clusters, J. Phys. Chem. A., 2005, 109(17): 3803-3811
    [57] 何山,韦柳娅,傅群,林晨,雷德铭,郑臣谋,二氧化钒和三氧化二钒研究进展,无机化学学报,2003,19(2):113-118
    [58] Jiao L., Yuan H., Wang Y., Cao J., Wang Y., Mg intercalation properties into open-ended vanadium oxide nanotubes, Electrochem. Commun., 2005, 7:431-436
    [59] Kuwabata S., Tomiyori H., Masui S., Yoneyama H., Charge-discharge properties of composites of polypyrrole and vanadium oxide powder, Macromol. Symp., 2000, 156, 213-221
    [60] Wn X., Tao Y., Donga L., Hong J., Synthesis and Characterization of Self-Assembling(NH_4)_(0.5)V_2O_5 Nanowires, J. Mater. Chem., 2004, 14:901-904
    [61] 唐安平,秦毅红,钒酸铋颜料的研制,稀有金属,2001,27(1):199-201
    [62] 林树坤,陈燕梅,张莉珍,掺重稀土钒酸钇RE:YVO_4晶体的光谱性质,光谱学与光谱分析,2003,23(4):665-668
    [63] 刘国强,曾潮流,杨柯,钒酸锂化合物的制备和性能,无机材料学报,2002,17(6):1163-1166
    [64] Yu J., Yu J. C., Ho W., Wu L, Wang X., A Simple and General Method for the Synthesis of multicomponent Na_2V_6O_(16)·3H_2O Single-Crystal Nanobelts, J. Am. Soc., 2004, 11(26): 3422-3423
    [65] 赵志伟,姜彦岛,生长正钒酸钙晶体Ca(VO_4)_2的原料制备,人工晶体学报,1999,28(4):350-353
    [66] Wang X., Liu L, Jacobson A. J., Electrochemicall-hydrothermal synthesis and structure determination of a novel layered mixed-valence oxide: BaV_7O_(16)·nH_2O. Chem. Commun., 1998, 1009-1010
    [67] 余愿,韩培德,杜高辉,陈清,许并社,彭练矛,水热法氧化钒纳米管生长过程的研究,材料热处理学报,2003,24(3):46-49
    [68] 裘小宁,溶胶凝胶法制备无机有机插层材料的研究进展,安徽工业大学学报,2005,22(1):20-24
    [69] 金为群,张华蓉,权新军,尹伟,崔晓辉,石墨插层复合材料制备及应用现状,中国非金属矿工业导刊,2005,48(4):8-12
    [70] 王旭,黄锐,濮阳南,聚合物基纳米复合材料的研究进展,塑料,2000,4(29):25-30
    [71] Komarnei S., Nanocomposites, J. Mater. Chem., 1992, 12(2): 119-127
    [72] 陈国华,吴大军,叶藏,颜文礼,电化学插层对石墨晶层的剥离作用,新型炭材料,1999,14(4):59-62
    [73] 唐致远,薛建军,李建刚,杨敬武,聚合物电解质在锂二次电池中的应用,电池,2000,5(30):222-225
    [74] 肖立新,郭炳锟,李新海,聚合物锂离子电池,电池,2003,2(33):110-113
    [75] 王庚超,苏静,张敏璐,范晓青,聚苯胺/五氧化二钒插入型杂化纳米复合材料的合成与表征,高分子材料科学与工程,2004,3(20):53-57
    [76] 赵亮,葛岭梅,周安宁,刘春宁,聚苯胺导电材料在二次电池电极材料中的应用,化工新型材料,2004,32(6):13-17
    [77] Murphy D. W., Christian P. A., Disalo F. J., Lithium incorporation by and related (+4, +5) oxide materials, J. Electrochem. Sco., 1981, 128: 2053-2060
    [78] 刘长增,韩长秀,钒(Ⅴ)催化氧化二甲基黄的反应及其应用,理化检验化学分册,2002,38(11):558-561
    [79] 吴广明,吴永刚,倪星元,吴广明,张慧琴,吴翔,陈炎,锂离子注入对V_2O_5薄膜光吸收的影响,光学学报,1999,19(5):640-646
    [80] 童茂松,戴国瑞,溶胶-凝胶法制备V_2O_5为基体的薄膜及其应用,功能材料,2000,31(1):230-236
    [81] Alivisatos A. P., Semiconductor Ousters, Nanocrystals, and Quantum Dots, Science, 1996, 271: 933-937
    [82] Dobley A., Ngala K., Yang S., Zavalij P. Y., Whittingham M. S., Manganese Vanadium Oxide Nanotubes: Synthesis, Characterization, and Electrochemistry, Chem. Mater., 2001, 13(11): 4382-4386
    [83] Kim G. T., Muster J., Krstic V., Park J. G., Park Y. W., Roth S., Burghard M., Field-effect transistor made of individual V_2O_5 nanofibers, Appl. Phys. Lett., 2000, 76(14): 1875-1877
    [84] Muster J., Kim G. T., Krstic V., Park J. G., Park Y. W., Roth S., Burghark M., Electrical Transport Through Individual Vanadium Pentoxide Nanowires, Adv. Mater., 2000, 12(6): 420-424
    [85] Liu J., Wang X., Peng Q., Li Y., Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials, Adv. Mater., 2005, 17(6): 764-767
    [86] Zhang X., Wogggon W. D., A Supramolecular Fluorescence Sensor for Pyrovanadate as a Functional Model of Vanadium Haloperoxidase, J. Am. Chem. Soc., 2005, 127(41): 14138-14139
    [87] Biette L., Carn F., Maugey M., Achard M. F., Maquet J., Steunou N., Livage J., Serier H., Backov R., Macrosco pic Fibers of Oriented Vanadium Oxide Ribbons and Their Application as Highly Sensitive Alcohol Microsensors, Adv. Mater., 2005, 17(24): 2970-2974
    [88] Comini E., Faglia G., Sberveglieri G., Pan Z. W., Wang Z. L., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 2002, 81(10): 1869-1871
    [89] Myung S., Lec M., Kim G. T., Ha J. S., Hong S., Large-Scale "Surface-Programmed Assembly" of Pristine Vanadium Oxide Nanowire-Based Devices, Adv. Mater., 2005, 17(19): 2361-2364
    [90] Pang S. P., Li G. C., Zhang Z. K., Synthesis of Polyaniline-Vanadium Oxide Nanocomposite Nanosheets, Macromol. Rapid Commun., 2005, 26: 1262-1265
    [91] Pinna N., Wild U., Urban J., Sehlogl R., Divanadium Pentoxide Nanorods, Adv. Mater., 2003, 15(4): 329-331
    [92] Pinna N., Willinger M., Weiss K., Urban,J. Schlogl R., Local Structure of Nanoscopic Materials: V_2O_5 Nanorods and Nanowires, Nano Lett., 2003, 3(8): 1131-1134
    [93] Yu J., Yu J. C., Ho W., Wu L., Wang X., A Simple and General Method for the Synthesis of Multicomponent Na_2V_6O_(16)·3H_2O Single-Crystal Nanobelts, J. Am. Chem. Soc., 2004, 126(11): 3422-3423
    [94] Kong L., Liu Z., Shao M., Xie Q., Yu W., Qian Y., Controlled synthesis of single-crystal VO_x·nH_2O nanoribbons via a hydrothermal reduction method, J. Solid State chem., 2004, 177(3): 690-695
    [95] Oka Y., Yao T., Yamamoto N., Structure determination of H_2V_3O_8 by powder X-ray diffraction, J. Solid State Chem., 1990, 89(2): 372-377
    [96] Takahashi K., Limmer S. J., Wang Y., Cao G., Synthesis and Electrochemical Properties of Single-Crystal V_2O_5 Nanorod Arrays by Template-Based Electrodeposition, J. Phys. Chem. B, 2004,108(28): 9795-9800
    [97] Crepaldi E. L., Grosso D., Soler-Illia G. J. A. A., Albouy P. A., Amenitsch H., Sanchez C., Formation and Stabilization of Mesostructured Vanadium-Oxo-Based Hybrid Thin Films, Chem. Mater., 2002, 14(8): 3316-3325
    [98] Gao X., Banares M. A., Wachs I. E., Ethane and n-Butane Oxidation over Supported Vanadium Oxide Catalysts: An in Situ UV-Visible Diffuse Reflectance Spectroscopic Investigation, J. Catal., 1999, 188(2): 325-331
    [99] Legagneur V., Salle A. L. G. L., Verbaere A., Piffard A., Guyomard D., Lithium insertion/deinsertion properties of new layered vanadium oxides obtained by oxidation of the precursor H_2V_3O_8, Electrochim. Acta, 2002, 47(7): 1153-1161
    [100] Legagneur V., Salle A. L. G. L., Verbaere A., Piffard A., Guyomard D., New layered vanadium oxides M_yH_(1-y)V_3O_8·nH_2O(M=Li, Na, K) obtained by oxidation of the precursor H_2V_3O_8, J. Mater. Chem., 2000, 10(12): 2805-2810
    [101] Alonso B., Livage J., Synthesis of Vanadium Oxide Gels from Peroxovanadic Acid Solutions: A ~(51)V NMR Study, J. Solid State Chem., 1999, 148(1): 16-19
    [102] Wang Y., Shang H., Chou T., Cao G., Effects of Thermal Annealing on the Li~+ Intercalation Properties of V_2O_5·nH_2O Xerogel Films, J. Phys. Chem. B, 2005, 109(22): 11361-11366
    [103] Yao T., Oka Y., Yamamoto N., Layered structures of vanadium pentoxide gels, Mater. Res. Bull., 1992, 27(6): 669-675
    [104] Fontenot C. J., Wiench J. W., Schrader G. L., Pruski M., ~(17)O MAS and 3QMAS NMR Investigation of Crystalline V_2O_5 and Layered V_2O_5·nH_2O Gels, J. Am. Chem. Soc., 2002, 124(28): 8435-8444
    [105] Hirashima H., Gengyo M., Kojima C., Imai H., Effects of aging and drying on structure of V_2O_5 gels, J. Non-Cryst. Solids, 1995, 186: 54-58
    [106] Cheng S., Hwang H.D., Maece G. E., Synthesis and pillaring of a layered vanadium oxide from V_2O_5 at ambient temperature, J. Mol. Struct., 1998, 470(1-2): 135-149
    [107] Petkov V., Trikalitis P. N., Bozin E. S., Billinge S. J. L., Vogt T., Kanatzidis M. G., Structure of V_2O_5·nH_2O Xerogel Solved by the Atomic Pair Distribution Function Technique, J. Am. Chem. Soc., 2002, 124(34): 10157-10164
    [108] Li G., Pang S., Wang Z., Peng H., Zhang Z., Synthesis of H_2V_3O_8 Single-Crystal Nanobelts. Eur. J. Inorg. Chem., 2005, 2060-2063
    [109] Gao X., Banares M. A., Wachs I. E., Ethane and n-Butane Oxidation over Supported Vanadium Oxide Catalysts: An in Situ UV-Visible Diffuse Reflectance Spectroscopic Investigation, J. Catal., 1999, 188(2): 325-331
    [110] Gu G., Schmid M., Chiu P. W., Minett A., Fraysse J., Kim G. T., Roth S., Kozlov M., Munoz E., Baughman R. H., V_2O_5 nanofiber sheet actuators, Nat. Mater, 2003, 2: 316-319
    [111] Liu J. F., Li Q. H., Wang T. H., Yu D. P., Li Y. D., Metastable Vanadium Dioxide Nanobelts: Hydrothermal Synthesis, Electrical Transport, and Magnetic Properties, Angew. Chem., 2004, 43(38): 5048-5052
    [112] Kong L. F., Liu Z. P., Shao M. W., Xie Q., Yu W. C., Qian Y. T., Controlled synthesis of single-crystal VO_x·nH_2O nanoribbons via a hydrothermal reduction method, J. Solid State Chem., 2004, 177(3): 690-695
    [113] Kasai S., Saitoh E., Miyajima H., Quantum transport properties in a ferromagnetic nanoring, J. Magn. Magn. Mater., 2004, 272-276: 1612-1613
    [114] Takahashi K., Wang Y., Cao G., Growth and electrochromic properties of single-crystal V_2O_5 nanorod arrays, App. Phys. Lett. 2005, 86: 053102-1-3
    [115] Germain V., Li J., Ingert D., Wang Z., Pileni M.P., Stacking Faults in Formation of silver Nanodisks, J. Phys. Chem. B., 2003, 107(34): 8717-8720
    [116] Wang J., Xie S., Yuan H., Yan X., Liu D., Gao Y., Zhou Z., Song L., Liu L., Zhao X., Dou X., Zhou W., Wang G., Synthesis, structure, and photoluminescence of Zn_2SnO_4 single-crustal nanobelts and nanorings, Solid State Commum. 2004, 131(7): 435-440
    [117] Millstone J.E., Park S., Shuford K.L, Qin L., Schatz G. C., Mirkin C. A., Observation of a quadrulole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms, J. Am. Chem. Soc., 2005, 127(15): 5312-5213
    [118] Kong X., Ding Y., Yang R., Wang Z., Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polor Nanobelts, Science, 2004, 303: 1348
    [119] Yada M., Sakai S., Torikai T., Watari T., Furuta S., Katsuki H., Cerium Compound Nanowires and Nanorings Temlated by Mixed Organic molecules, Adv. Mater., 2004,16(14): 1222-1226
    [120] Li Z., Chen X., Li, H. Tu Q., Yang Z., Xu Y., Hu B., Synthesis and Raman scattering of GaN nanorings, and nanodbbons and nanowires, Appl. Phys. A., 2001, 72:629-632
    [121] Hobbs K. L., Larson P. R.,. Lian G. D, keay J. C., Johnson M.B., Fabracation of Nanoring Array by spttter redeposition Using Porous Alumina Templates, Nano Lett., 2004, 4(1): 167-171
    [122] Ozer N., Lampert C.M.,Electrochromic performance of sol-gel deposited WO_3-V_2O_5 films, Thin Solid Films, 1999, 349: 205-211
    [123] Chen W., Peng J., Mai L., Yu H., Qi Y., Fabrication of Novel Vanadium Dioxide Nanorods as Cathode Material for Rechargeable Lithium Batteries, Chem. Lett., 2004, 33(10): 1366-1367
    [124] Chu Y. Q., Qin Q. Z., Fabrication and Characterization of Silver-V_2O_5 Composite Thin Films as Lithium-Ion Insertion Materials, Chem. Mater., 14(7): 3152-3157
    [125] Fu R., Ma Z., Zheng J. P., Au, G. Plichta E. J., Ye C., High-Resolution ~7Li Solid-State NMR Study of Li_xV_2O_5 Cathode Electrodes for Li-Rechargeable Batteries, J. Phys. Chem. B, 2003, 107(36): 9730-9735
    [126] Morcrette M., Rozier P., Dupont L., Mugnier E., Sannier L., Galy J., Tarascon J. M., A reversible copper extrusion-insertion electrode for rechargeable Li batteries, Nat. Mater., 2003, 2: 755-761
    [127] Morcrette M., Martin P., Rozier P., Vezin H., Chevallier F., Laffont L, Poizot P., Tarascon J. M., Cu_(1.1)V_4O_(11): A New Positive Electrode Material for Rechargeable Li Batteries, Chem. Mater., 2005,17(2): 418-426
    [128] Nielsen U. G., Jakobsen H. J., Skibsted J., Characterization of Divalent Metal Metavanadates by ~(51)V Magic-Angle Spinning NMR Spectroscopy of the Central and Satellite Transitions, Inorg. Chem., 2000, 39(10): 2135-2145
    [129] Kamenar B., Cindric M., Strukan N., Ba_3[V_(10)O_(28)]·19H_2O, Acta Cryst. C52, 1996, 1338-1341.
    [130] Hughes W.L., Wang Z., Formation of Piezoelectric Single-Crystal Nanorings and Nanobows, J. Am. Soc., 2004, 126(21): 6703-6309
    [131] Chirayil T., Zavalij P. Y., Whittingham M. S., Hydrothermal Synthesis of Vanadium Oxides, Chem. Mater., 1998,10(10): 2629-2640
    
    
    [132] Kanatzidis M. G, Wu C. G, Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels, J. Am. Chem. Soc., 1989,111(11): 4139-4141
    
    [133] Wu C. G, DeGroot D.C., Marcy H. O., Schindler J. L., Kannewurf C. R., Liu Y. J., Hirpo W., Kanatzidis M. G, Redox Intercalative Polymerization of Aniline in V_2O_5 Xerogel. The Postintercalative Intralamellar Polymer Growth in Polyaniline/Metal Oxide Nanocomposites Is Facilitated by Molecular Oxygen, Chem. Mater., 1996, 8(8): 1992-2004
    
    [134] Gomez-Romero P., Hybrid Organic-Inorganic Materials-In Search of Synergic Activity, Adv. Mater., 2001,13(3): 163-174
    
    [135] Ferrer-Anglada N., Gorri J. A., Muster J., Liu K., Burghard M., Roth S., Electrical transport and AFM microscopy on V_2O_(5-x)-polyaniline nanorods, Mater. Sci. Eng. C, 2001,15,237-239
    
    [136] Ferreira M., Huguenin F, Zucolotto V., Pereira da Silva J. E., Cordoba de Torresi S. I., Temperini M. L. A., Torresi R. M., Oliveira O. N. J., Electroactive Multilayer Films of Polyaniline and Vanadium Pentoxide, J. Phys. Chem. B, 2003,107(33): 8351-8354
    
    [137] Muhr H. J., Krumeich F., Schonholzer U. P., Bieri F., Niederberger M., Gauckler L. J., Nesper R., Vanadium Oxide Nanotubes-A New Flexible Vanadate Nanophase, Adv. Mater., 2000,12(3): 231-234
    
    [138] Li G, Zhang Z., Synthesis of Dendritic Polyaniline Nanofibers in a Surfactant Gel, Macromolecules, 2004,37(8): 2683-2685
    
    [139] Li G, Peng H., Wang Y., Qin Y, Cui Z., Zhang Z., Synthesis of Polyaniline Nanobelts, Macromol. Rapid Commun., 2004, 25(18): 1611-1614
    
    [140] Li Z. F., and Ruckenstein E., Intercalation of Conductive Polyaniline in the Mesostructured V_2O_5, Langmuir, 2002,18(8): 6956-6961

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700